1
|
Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martínez A, Costa M, Cattaneo A, Hristova K, Vilar M, Mineev KS. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15:9316. [PMID: 39472452 PMCID: PMC11522581 DOI: 10.1038/s41467-024-53710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurotrophin receptors of the Trk family are involved in the regulation of brain development and neuroplasticity, and therefore can serve as targets for anti-cancer and stroke-recovery drugs, antidepressants, and many others. The structures of Trk protein domains in various states upon activation need to be elucidated to allow rational drug design. However, little is known about the conformations of the transmembrane and juxtamembrane domains of Trk receptors. In the present study, we employ NMR spectroscopy to solve the structure of the TrkB dimeric transmembrane domain in the lipid environment. We verify the structure using mutagenesis and confirm that the conformation corresponds to the active state of the receptor. Subsequent study of TrkB interaction with the antidepressant drug fluoxetine, and the antipsychotic drug chlorpromazine, provides a clear self-consistent model, describing the mechanism by which fluoxetine activates the receptor by binding to its transmembrane domain.
Collapse
Affiliation(s)
- Erik F Kot
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Daniel M McKenzie
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Andrea Benito-Martínez
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Mario Costa
- Scuola Normale Superiore Laboratory of Biology BIO@SNS, Pisa, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC, València, Spain.
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Goethe University Frankfurt, Frankfurt am Main, Germany, Germany.
| |
Collapse
|
2
|
Mineev KS, Hargittay B, Jin J, Catapano C, Dietz MS, Segarra M, Harwardt MS, Richter C, Jonker HRA, Saxena K, Sreeramulu S, Heilemann M, Acker-Palmer A, Schwalbe H. Differential effects of the N-terminal helix of FGF8b on the activity of a small-molecule FGFR inhibitor in cell culture and for the extracellular domain of FGFR3c in solution. FEBS Lett 2024; 598:2518-2532. [PMID: 38997225 DOI: 10.1002/1873-3468.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
SSR128129E (SSR) is a unique small-molecule inhibitor of fibroblast growth factor receptors (FGFRs). SSR is a high-affinity allosteric binder that selectively blocks one of the two major FGFR-mediated pathways. The mechanisms of SSR activity were studied previously in much detail, allowing the identification of its binding site, located in the hydrophobic groove of the receptor D3 domain. The binding site overlaps with the position of an N-terminal helix, an element exclusive for the FGF8b growth factor, which could potentially convert SSR from an allosteric inhibitor into an orthosteric blocker for the particular FGFR/FGF8b system. In this regard, we report here on the structural and functional investigation of FGF8b/FGFR3c system and the effects imposed on it by SSR. We show that SSR is equally or more potent in inhibiting FGF8b-induced FGFR signaling compared to FGF2-induced activation. On the other hand, when studied in the context of separate extracellular domains of FGFR3c in solution with NMR spectroscopy, SSR is unable to displace the N-terminal helix of FGF8b from its binding site on FGFR3c and behaves as a weak orthosteric inhibitor. The substantial inconsistency between the results obtained with cell culture and for the individual water-soluble subdomains of the FGFR proteins points to the important role played by the cell membrane.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Jing Jin
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Marta Segarra
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Mark S Harwardt
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Amparo Acker-Palmer
- BMLS and Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
3
|
Wirth D, Özdemir E, Hristova K. Probing phosphorylation events in biological membranes: The transducer function. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184362. [PMID: 38885782 PMCID: PMC11365757 DOI: 10.1016/j.bbamem.2024.184362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The extracellular environment is sensed by receptors in the plasma membrane. Some of these receptors initiate cytoplasmic signaling cascades involving phosphorylation: the addition of a phosphate group to a specific amino acid, such as tyrosine, in a protein. Receptor Tyrosine Kinases (RTKs) are one large class of membrane receptors that can directly initiate signaling cascades through their intracellular kinase domains, which both catalyze tyrosine phosphorylation and get phosphorylated. In the first step of signaling, the ligands stabilize phosphorylation-competent RTK dimers and oligomers, which leads to the phosphorylation of specific tyrosine residues in the activation loop of the kinases. Here we discuss quantitative measurements of tyrosine phosphorylation efficiencies for RTKs, described by the "transducer function". The transducer function links the phosphorylation (the response) and the binding of the activating ligand to the receptor (the stimulus). We overview a methodology that allows such measurements in direct response to ligand binding. We discuss experiments which demonstrate that EGF is a partial agonist, and that two tyrosines in the intracellular domain of EGFR, Y1068 and Y1173, are differentially phosphorylated in the EGF-bound EGFR dimers.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America.
| |
Collapse
|
4
|
Krzyscik MA, Karl K, Dudeja P, Krejci P, Hristova K. Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands. Cytokine Growth Factor Rev 2024; 78:77-84. [PMID: 39043538 PMCID: PMC11389727 DOI: 10.1016/j.cytogfr.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Karl
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno 65691, Czech Republic; Institute of Animal Physiology and Genetics of the CAS, Brno 60200, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
5
|
Zou Q, Zhang Q, Du B, Wang H, Yang X, Wang Q, Wang K. Atomic Force Microscopy Lifetime Analysis: An Intuitive Method for Evaluating Receptor Tyrosine Kinase Dimer-Targeting Inhibitors. Anal Chem 2024; 96:10962-10968. [PMID: 38925633 DOI: 10.1021/acs.analchem.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Overexpression of receptor tyrosine kinases (RTKs) or binding to ligands can lead to the formation of specific unliganded and liganded RTK dimers, and these two RTK dimers are potential targets for preventing tumor metastasis. Traditional RTK dimer inhibitor analysis was mostly based on end point assays, which required cumbersome cell handling and behavior monitoring. There are still challenges in developing intuitive process-based analytical methods to study RTK dimer inhibitors, especially those used to visually distinguish between unliganded and liganded RTK dimer inhibitors. Herein, taking the mesenchymal-epithelial transition factor (MET) receptor, an intuitive method for evaluating MET inhibitors has been developed based on atomic force microscopy (AFM) lifetime analysis. The time interval between the start of the force and the bond break point was regarded as the bond lifetime, which could reflect the stability of the MET dimer. The results showed that there was a significant difference in the lifetime (τ) of unliganded MET dimers (τ1 = 207.87 ± 4.69 ms) and liganded MET dimers (τ2 = 330.58 ± 15.60 ms) induced by the hepatocyte growth factor, and aptamer SL1 could decrease τ1 and τ2, suggesting that SL1 could inhibit both unliganded and liganded MET dimers. However, heparin only decreased τ2, suggesting that it could inhibit only the liganded MET dimer. AFM-based lifetime analysis methods could monitor RTK dimer status rather than provide overall average results, allowing for intuitive process-based analysis and evaluation of RTK dimers and related inhibitors at the single-molecule level. This study provides a novel complementary strategy for simple and intuitive RTK inhibitor research.
Collapse
Affiliation(s)
- Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qianqian Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Bin Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Singh PK, Rybak JA, Schuck RJ, Barrera FN, Smith AW. Phosphatidylinositol (4,5)-bisphosphate drives the formation of EGFR and EphA2 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592400. [PMID: 38746348 PMCID: PMC11092790 DOI: 10.1101/2024.05.03.592400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.
Collapse
|
7
|
Fujii T, Nakano Y, Hagita D, Onishi N, Endo A, Nakagawa M, Yoshiura T, Otsuka Y, Takeuchi S, Suzuki M, Shimizu Y, Toyooka T, Matsushita Y, Hibiya Y, Tomura S, Kondo A, Wada K, Ichimura K, Tomiyama A. KLC1-ROS1 Fusion Exerts Oncogenic Properties of Glioma Cells via Specific Activation of JAK-STAT Pathway. Cancers (Basel) 2023; 16:9. [PMID: 38201436 PMCID: PMC10778328 DOI: 10.3390/cancers16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Here, we investigated the detailed molecular oncogenic mechanisms of a novel receptor tyrosine kinase (RTK) fusion, KLC1-ROS1, with an adapter molecule, KLC1, and an RTK, ROS1, discovered in pediatric glioma, and we explored a novel therapeutic target for glioma that possesses oncogenic RTK fusion. When wild-type ROS1 and KLC1-ROS1 fusions were stably expressed in the human glioma cell lines A172 and U343MG, immunoblotting revealed that KLC1-ROS1 fusion specifically activated the JAK2-STAT3 pathway, a major RTK downstream signaling pathway, when compared with wild-type ROS1. Immunoprecipitation of the fractionated cell lysates revealed a more abundant association of the KLC1-ROS1 fusion with JAK2 than that observed for wild-type ROS1 in the cytosolic fraction. A mutagenesis study of the KLC1-ROS1 fusion protein demonstrated the fundamental roles of both the KLC1 and ROS1 domains in the constitutive activation of KLC1-ROS1 fusion. Additionally, in vitro assays demonstrated that KLC1-ROS1 fusion upregulated cell proliferation, invasion, and chemoresistance when compared to wild-type ROS1. Combination treatment with the chemotherapeutic agent temozolomide and an inhibitor of ROS1, JAK2, or a downstream target of STAT3, demonstrated antitumor effects against KLC1-ROS1 fusion-expressing glioma cells. Our results demonstrate that KLC1-ROS1 fusion exerts oncogenic activity through serum-independent constitutive activation, resulting in specific activation of the JAK-STAT pathway. Our data suggested that molecules other than RTKs may serve as novel therapeutic targets for RTK fusion in gliomas.
Collapse
Affiliation(s)
- Takashi Fujii
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yoshiko Nakano
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Daichi Hagita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Arumu Endo
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Masaya Nakagawa
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Toru Yoshiura
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Yohei Otsuka
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yuzaburo Shimizu
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Terushige Toyooka
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Yuko Hibiya
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Satoshi Tomura
- Division of Traumatology, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan;
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| | - Arata Tomiyama
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.F.); (D.H.); (Y.M.); (Y.H.); (K.I.)
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Saitama, Japan; (A.E.); (M.N.); (T.Y.); (Y.O.); (S.T.); (T.T.); (K.W.)
- Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (M.S.); (Y.S.); (A.K.)
| |
Collapse
|
8
|
Wirth D, Özdemir E, Hristova K. Quantification of ligand and mutation-induced bias in EGFR phosphorylation in direct response to ligand binding. Nat Commun 2023; 14:7579. [PMID: 37989743 PMCID: PMC10663608 DOI: 10.1038/s41467-023-42926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Signaling bias is the ability of a receptor to differentially activate downstream signaling pathways in response to different ligands. Bias investigations have been hindered by inconsistent results in different cellular contexts. Here we introduce a methodology to identify and quantify bias in signal transduction across the plasma membrane without contributions from feedback loops and system bias. We apply the methodology to quantify phosphorylation efficiencies and determine absolute bias coefficients. We show that the signaling of epidermal growth factor receptor (EGFR) to EGF and TGFα is biased towards Y1068 and against Y1173 phosphorylation, but has no bias for epiregulin. We further show that the L834R mutation found in non-small-cell lung cancer induces signaling bias as it switches the preferences to Y1173 phosphorylation. The knowledge gained here challenges the current understanding of EGFR signaling in health and disease and opens avenues for the exploration of biased inhibitors as anti-cancer therapies.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
9
|
McKenzie DM, Wirth D, Pogorelov TV, Hristova K. Utility of FRET in studies of membrane protein oligomerization: The concept of the effective dissociation constant. Biophys J 2023; 122:4113-4120. [PMID: 37735871 PMCID: PMC10598290 DOI: 10.1016/j.bpj.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.
Collapse
Affiliation(s)
- Daniel M McKenzie
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, School of Chemical Sciences, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland.
| |
Collapse
|
10
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
11
|
Lin CC, Wieteska L, Poncet-Montange G, Suen KM, Arold ST, Ahmed Z, Ladbury JE. The combined action of the intracellular regions regulates FGFR2 kinase activity. Commun Biol 2023; 6:728. [PMID: 37452126 PMCID: PMC10349056 DOI: 10.1038/s42003-023-05112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are typically activated through a precise sequence of intracellular phosphorylation events starting with a tyrosine residue on the activation loop (A-loop) of the kinase domain (KD). From this point the mono-phosphorylated enzyme is active, but subject to stringent regulatory mechanisms which can vary dramatically across the different RTKs. In the absence of extracellular stimulation, fibroblast growth factor receptor 2 (FGFR2) exists in the mono-phosphorylated state in which catalytic activity is regulated to allow rapid response upon ligand binding, whilst restricting ligand-independent activation. Failure of this regulation is responsible for pathologic outcomes including cancer. Here we reveal the molecular mechanistic detail of KD control based on combinatorial interactions of the juxtamembrane (JM) and the C-terminal tail (CT) regions of the receptor. JM stabilizes the asymmetric dimeric KD required for substrate phosphorylation, whilst CT binding opposes dimerization, and down-regulates activity. Direct binding between JM and CT delays the recruitment of downstream effector proteins adding a further control step as the receptor proceeds to full activation. Our findings underscore the diversity in mechanisms of RTK oligomerisation and activation.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lukasz Wieteska
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Guillaume Poncet-Montange
- Center for the Development of Therapeutics, Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kin Man Suen
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John E Ladbury
- School of Molecular and Cellular Biology, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
12
|
Polyansky AA, Efremov RG. On a mechanistic impact of transmembrane tetramerization in the pathological activation of RTKs. Comput Struct Biotechnol J 2023; 21:2837-2844. [PMID: 37216019 PMCID: PMC10192832 DOI: 10.1016/j.csbj.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Constitutive activation of receptor tyrosine kinases (RTKs) via different mutations has a strong impact on the development of severe human disorders, including cancer. Here we propose a putative activation scenario of RTKs, whereby transmembrane (TM) mutations can also promote higher-order oligomerization of the receptors that leads to the subsequent ligand-free activation. We illustrate this scenario using a computational modelling framework comprising sequence-based structure prediction and all-atom 1 µs molecular dynamics (MD) simulations in a lipid membrane for a previously characterised oncogenic TM mutation V536E in platelet-derived growth factor receptor alpha (PDGFRA). We show that in the course of MD simulations the mutant TM tetramer retains stable and compact configuration strengthened by tight protein-protein interactions, while the wild type TM tetramer demonstrates looser packing and a tendency to dissociate. Moreover, the mutation affects the characteristic motions of mutated TM helical segments by introducing additional non-covalent crosslinks in the middle of the TM tetramer, which operate as mechanical hinges. This leads to dynamic decoupling of the C-termini from the rigidified N-terminal parts and facilitates more pronounced possible displacement between the C-termini of the mutant TM helical regions that can provide more freedom for mutual rearrangement of the kinase domains located downstream. Our results for the V536E mutation in the context of PDGFRA TM tetramer allow for the possibility that the effect of oncogenic TM mutations can go beyond alternating the structure and dynamics of TM dimeric states and might also promote the formation of higher-order oligomers directly contributing to ligand-independent signalling effectuated by PDGFRA and other RTKs.
Collapse
Affiliation(s)
- Anton A. Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna BioCenter 5, A-1030 Vienna, Austria
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region, 141701, Russia
| |
Collapse
|
13
|
Hartl I, Brumovska V, Striedner Y, Yasari A, Schütz GJ, Sevcsik E, Tiemann-Boege I. Measurement of FGFR3 signaling at the cell membrane via total internal reflection fluorescence microscopy to compare the activation of FGFR3 mutants. J Biol Chem 2023; 299:102832. [PMID: 36581204 PMCID: PMC9900515 DOI: 10.1016/j.jbc.2022.102832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/mitogen-activated protein kinase pathway by their tyrosine kinase activation known to determine cell growth, tissue differentiation, and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here, we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (monomeric GFP [mGFP]-FGFR3) in certain areas of the plasma membrane of living cells. We quantified receptor activation via total internal reflection fluorescence microscopy of FGFR3 signaling at the cell membrane that captured the recruitment of the downstream signal transducer growth factor receptor-bound 2 (GRB2) tagged with mScarlet (GRB2-mScarlet) to FGFR3 micropatterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) for WT and four FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, and K650E). Our data showed that ligand addition increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared with previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This can be attributed to the different methodology, since micropatterning specifically captures signaling events at the plasma membrane. Collectively, our results provide further insight into the functional effects of mutations to FGFR3.
Collapse
Affiliation(s)
- Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Atena Yasari
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Eva Sevcsik
- Insitute of Applied Physics, TU Wien, Vienna, Austria.
| | | |
Collapse
|
14
|
Srinivasan S, Regmi R, Lin X, Dreyer CA, Chen X, Quinn SD, He W, Coleman MA, Carraway KL, Zhang B, Schlau-Cohen GS. Ligand-induced transmembrane conformational coupling in monomeric EGFR. Nat Commun 2022; 13:3709. [PMID: 35794108 PMCID: PMC9259572 DOI: 10.1038/s41467-022-31299-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/13/2022] [Indexed: 01/26/2023] Open
Abstract
Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.
Collapse
Affiliation(s)
- Shwetha Srinivasan
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Raju Regmi
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.4444.00000 0001 2112 9282Present Address: Institut Curie, CNRS, Laboratoire Physico Chimie Curie, Paris, France
| | - Xingcheng Lin
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Courtney A. Dreyer
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xuyan Chen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Steven D. Quinn
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.5685.e0000 0004 1936 9668Present Address: Department of Physics, University of York, York, UK
| | - Wei He
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Matthew A. Coleman
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.27860.3b0000 0004 1936 9684Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kermit L. Carraway
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bin Zhang
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gabriela S. Schlau-Cohen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
15
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
16
|
Increased stability of the TM helix oligomer abrogates the apoptotic activity of the human Fas receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183807. [PMID: 34662567 DOI: 10.1016/j.bbamem.2021.183807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 11/21/2022]
Abstract
Human death receptors control apoptotic events during cell differentiation, cell homeostasis and the elimination of damaged or infected cells. Receptor activation involves ligand-induced structural reorganizations of preformed receptor trimers. Here we show that the death receptor transmembrane domains only have a weak intrinsic tendency to homo-oligomerize within a membrane, and thus these domains potentially do not significantly contribute to receptor trimerization. However, mutation of Pro183 in the human CD95/Fas receptor transmembrane helix results in a dramatically increased interaction propensity, as shown by genetic assays. The increased interaction of the transmembrane domain is coupled with a decreased ligand-sensitivity of cells expressing the Fas receptor, and thus in a decreased number of apoptotic events. Mutation of Pro183 likely results in a substantial rearrangement of the self-associated Fas receptor transmembrane trimer, which likely abolishes further signaling of the apoptotic signal but may activate other signaling pathways. Our study shows that formation of a stable Fas receptor transmembrane helix oligomer does not per se result in receptor activation.
Collapse
|
17
|
Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 2021; 71:193-199. [PMID: 34399300 DOI: 10.1016/j.sbi.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|
18
|
Light TP, Gomez-Soler M, Wang Z, Karl K, Zapata-Mercado E, Gehring MP, Lechtenberg BC, Pogorelov TV, Hristova K, Pasquale EB. A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. J Biol Chem 2021; 297:100876. [PMID: 34139238 PMCID: PMC8260879 DOI: 10.1016/j.jbc.2021.100876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands regulate many physiological and pathological processes. EphA4 plays important roles in nervous system development and adult homeostasis, while aberrant EphA4 signaling has been implicated in neurodegeneration. EphA4 may also affect cancer malignancy, but the regulation and effects of EphA4 signaling in cancer are poorly understood. A correlation between decreased patient survival and high EphA4 mRNA expression in melanoma tumors that also highly express ephrinA ligands suggests that enhanced EphA4 signaling may contribute to melanoma progression. A search for EphA4 gain-of-function mutations in melanoma uncovered a mutation of the highly conserved leucine 920 in the EphA4 sterile alpha motif (SAM) domain. We found that mutation of L920 to phenylalanine (L920F) potentiates EphA4 autophosphorylation and signaling, making it the first documented EphA4 cancer mutation that increases kinase activity. Quantitative Föster resonance energy transfer and fluorescence intensity fluctuation (FIF) analyses revealed that the L920F mutation induces a switch in EphA4 oligomer size, from a dimer to a trimer. We propose this switch in oligomer size as a novel mechanism underlying EphA4-linked tumorigenesis. Molecular dynamics simulations suggest that the L920F mutation alters EphA4 SAM domain conformation, leading to the formation of EphA4 trimers that assemble through two aberrant SAM domain interfaces. Accordingly, EphA4 wild-type and the L920F mutant are affected differently by the SAM domain and are differentially regulated by ephrin ligand stimulation. The increased EphA4 activation induced by the L920F mutation, through the novel mechanism we uncovered, supports a functional role for EphA4 in promoting pathogenesis.
Collapse
Affiliation(s)
- Taylor P Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zichen Wang
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly Karl
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marina P Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
19
|
Margiotta A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal. Int J Mol Sci 2021; 22:ijms22126342. [PMID: 34198477 PMCID: PMC8231876 DOI: 10.3390/ijms22126342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane receptors that regulate many fundamental cellular processes. A tight regulation of RTK signaling is fundamental for development and survival, and an altered signaling by RTKs can cause cancer. RTKs are localized at the plasma membrane (PM) and the major regulatory mechanism of signaling of RTKs is their endocytosis and degradation. In fact, RTKs at the cell surface bind ligands with their extracellular domain, become active, and are rapidly internalized where the temporal extent of signaling, attenuation, and downregulation are modulated. However, other mechanisms of signal attenuation and termination are known. Indeed, inhibition of RTKs’ activity may occur through the modulation of the phosphorylation state of RTKs and the interaction with specific proteins, whereas antagonist ligands can inhibit the biological responses mediated by the receptor. Another mechanism concerns the expression of endogenous inactive receptor variants that are deficient in RTK activity and take part to inactive heterodimers or hetero-oligomers. The downregulation of RTK signals is fundamental for several cellular functions and the homeostasis of the cell. Here, we will review the mechanisms of signal attenuation and termination of RTKs, focusing on FGFRs.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
20
|
Ghosh P, Torner J, Arora PS, Maayan G. Dual Control of Peptide Conformation with Light and Metal Coordination. Chemistry 2021; 27:8956-8959. [PMID: 33909298 DOI: 10.1002/chem.202101006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 11/08/2022]
Abstract
The design of a stimuli-responsive peptide whose conformation is controlled by wavelength-specific light and metal coordination is described. The peptide adopts a defined tertiary structure and its conformation can be modulated between an α-helical coiled coil and β-sheet. The peptide is designed with a hydrophobic interface to induce coiled coil formation and is based on a recently described strategy to obtain switchable helix dimers. Herein, we endowed the helix dimer with 8-hydroxyquinoline (HQ) groups to achieve metal coordination and shift to a β-sheet structure. It was found that the conformational shift only occurs upon introduction of Zn2+ ; other metal ions (Cu2+ , Fe3+ , Co2+ , Mg2 , and Ni2+ ) do not offer switching likely due to non-specific metal-peptide coordination. A control peptide lacking the metal-coordinating residues does not show conformational switching with Zn2+ supporting the role of this metal in stabilizing the β-sheet conformation in a defined manner.
Collapse
Affiliation(s)
- Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| | - Justin Torner
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York, 10003, United States
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa, 3200008, Israel
| |
Collapse
|
21
|
Joest EF, Winter C, Wesalo JS, Deiters A, Tampé R. Light-guided intrabodies for on-demand in situ target recognition in human cells. Chem Sci 2021; 12:5787-5795. [PMID: 35342543 PMCID: PMC8872839 DOI: 10.1039/d1sc01331a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Due to their high stability and specificity in living cells, fluorescently labeled nanobodies are perfect probes for visualizing intracellular targets at an endogenous level. However, intrabodies bind unrestrainedly and hence may interfere with the target protein function. Here, we report a strategy to prevent premature binding through the development of photo-conditional intrabodies. Using genetic code expansion, we introduce photocaged amino acids within the nanobody-binding interface, which, after photo-activation, show instantaneous binding of target proteins with high spatiotemporal precision inside living cells. Due to the highly stable binding, light-guided intrabodies offer a versatile platform for downstream imaging and regulation of target proteins.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh Pennsylvania 15260 USA
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| |
Collapse
|
22
|
Interactions between Ligand-Bound EGFR and VEGFR2. J Mol Biol 2021; 433:167006. [PMID: 33891904 DOI: 10.1016/j.jmb.2021.167006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.
Collapse
|
23
|
Paul MD, Rainwater R, Zuo Y, Gu L, Hristova K. Probing Membrane Protein Association Using Concentration‐Dependent Number and Brightness. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael D. Paul
- Program in Molecular Biophysics Johns Hopkins University Baltimore MD 21218 USA
| | - Randall Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Yi Zuo
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Program in Molecular Biophysics Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
24
|
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study. Biochem J 2021; 477:4515-4526. [PMID: 33094812 DOI: 10.1042/bcj20200671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
Tropomyosin receptor kinase B (Trk-B) belongs to the second largest family of membrane receptors, Receptor Tyrosine Kinases (RTKs). Trk-B is known to interact with three different neurotrophins: Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-4 (NT-4), and Neurotrophin-3 (NT-3). All three neurotrophins are involved in survival and proliferation of neuronal cells, but each induces distinct signaling through Trk-B. We hypothesize that the different biological effects correlate with differences in the interactions between the Trk-B receptors, when bound to different ligands, in the plasma membrane. To test this hypothesis, we use quantitative FRET to characterize Trk-B dimerization in response to NT-3 and NT-4 in live cells, and compare it to the previously published data for Trk-B in the absence and presence of BDNF. Our study reveals that the distinct Trk-B signaling outcomes are underpinned by both different configurations and different stabilities of the three ligand-bound Trk-B dimers in the plasma membrane.
Collapse
|
25
|
Paul MD, Rainwater R, Zuo Y, Gu L, Hristova K. Probing Membrane Protein Association Using Concentration-Dependent Number and Brightness. Angew Chem Int Ed Engl 2021; 60:6503-6508. [PMID: 33351993 DOI: 10.1002/anie.202010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Indexed: 01/13/2023]
Abstract
We introduce concentration-dependent number and brightness (cdN&B), a fluorescence fluctuation technique that can be implemented on a standard confocal microscope and can report on the thermodynamics of membrane protein association in the native plasma membrane. It uses transient transfection to enable measurements of oligomer size as a function of receptor concentration over a broad range, yielding the association constant. We discuss artifacts in cdN&B that are concentration-dependent and can distort the oligomerization curves, and we outline procedures that can correct for them. Using cdN&B, we characterize the association of neuropilin 1 (NRP1), a protein that plays a critical role in the development of the embryonic cardiovascular and nervous systems. We show that NRP1 associates into a tetramer in a concentration-dependent manner, and we quantify the strength of the association. This work demonstrates the utility of cdN&B as a powerful tool in biophysical chemistry.
Collapse
Affiliation(s)
- Michael D Paul
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Randall Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi Zuo
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.,Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
26
|
Harman JC, Otohinoyi DA, Reitnauer JW, Stowe AM, Gidday JM. Differential regulation of cerebral microvascular transcription by single and repetitive hypoxic conditioning. CONDITIONING MEDICINE 2021; 4:58-68. [PMID: 34414361 PMCID: PMC8372757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Systemic conditioning therapeutics afford brain protection at all levels of organization, occurring autonomously for neurons, glia, vascular smooth muscle, and endothelium, which are mediated systemically for the adaptive and innate immune system. The present study was undertaken to examine acute (3 h) and delayed (2 days) gene expression changes in mouse cerebral microvessels following single hypoxic conditioning (HX1) and repetitive hypoxic conditioning (HX9), the latter for which we showed previously to extend focal stroke tolerance from days to months. Microarray (Illumina) analyses were performed on microvessel-enriched fractions of adult mouse brain obtained from the following five groups (naïve; HX1-3h; HX1-2days; HX9-3h; HX9-2days). Differentially expressed genes were analyzed bioinformatically using Ingenuity Pathway Analysis software, with qPCR validating selected up- and down-regulated genes. As expected, some differentially expressed genes were common to more than one treatment or time point, whereas others were unique to treatment or time point. Bioinformatic analyses provided insights into acute (3h) inflammatory and immune signaling pathways that may be differentially activated by HX1 and HX9, with anti-inflammatory and trophic pathways coincident with the ischemia-tolerant phenotype two days after HX1. Interestingly, two days after HX9, microvessels were transcriptionally silent, with only five genes remaining differentially expressed relative to naïve mice. Our microarray findings and bioinformatic analyses suggest that cerebral microvessels from HX1-treated mice exhibit early activation of immune system signaling that is largely suppressed in microvessels from HX9-treated mice. These and other differences between these responses require further study, including at the proteomic level, and with pharmacologic and genetic experiments designed to reveal causality, to reveal further insights into the mechanisms underlying long-lasting stroke tolerance.
Collapse
Affiliation(s)
- Jarrod C Harman
- Departments of Ophthalmology, Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
- Biochemistry & Molecular Biology, Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
- Neuroscience Center of Excellence Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
| | - David A Otohinoyi
- Biochemistry & Molecular Biology, Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
| | - John W Reitnauer
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY
| | - Ann M Stowe
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY
| | - Jeff M Gidday
- Departments of Ophthalmology, Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
- Biochemistry & Molecular Biology, Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
- Neuroscience Center of Excellence Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
- Physiology, Louisiana State University School of Medicine, LSUHSC, New Orleans, LA
| |
Collapse
|
27
|
Engineering Stem Cell Factor Ligands with Different c-Kit Agonistic Potencies. Molecules 2020; 25:molecules25204850. [PMID: 33096693 PMCID: PMC7588011 DOI: 10.3390/molecules25204850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure–function dynamics of ligands and RTKs.
Collapse
|
28
|
Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. J Biol Chem 2020; 295:9917-9933. [PMID: 32467228 PMCID: PMC7380177 DOI: 10.1074/jbc.ra120.013639] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.
Collapse
Affiliation(s)
- Michael D Paul
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hana N Grubb
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kalina Hristova
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|