1
|
Metko M, Tonne J, Veliz Rios A, Thompson J, Mudrick H, Masopust D, Diaz RM, Barry MA, Vile RG. Intranasal Prime-Boost with Spike Vectors Generates Antibody and T-Cell Responses at the Site of SARS-CoV-2 Infection. Vaccines (Basel) 2024; 12:1191. [PMID: 39460356 PMCID: PMC11511174 DOI: 10.3390/vaccines12101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity. METHODS Here, we tested the hypothesis that a heterologous prime and boost vaccine regimen delivered intranasally (IN) will generate improved immune responses locally at the site of virus infection compared to intramuscular vaccine/booster regimens. RESULTS In a transgenic human ACE2 murine model, both a Spike-expressing single-cycle adenovirus (SC-Ad) and an IFNß safety-enhanced replication-competent Vesicular Stomatitis Virus (VSV) platform generated anti-Spike antibody and T-cell responses that diminished with age. Although SC-Ad-Spike boosted a prime with VSV-Spike-mIFNß, SC-Ad-Spike alone induced maximal levels of IgG, IgA, and CD8+ T-cell responses. CONCLUSIONS There were significant differences in T-cell responses in spleens compared to lungs, and the intranasal boost was significantly superior to the intramuscular boost in generating sentinel immune effectors at the site of the virus encounter in the lungs. These data show that serious consideration should be given to intranasal boosting with anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Alexa Veliz Rios
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics Program, Mayo Clinic, Rochester, MN 55905, USA;
| | - David Masopust
- Department of Microbiology & Immunology, University of Minnesota Medical School, 2101 6th St. SE, Minneapolis, MN 55455, USA;
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
| | - Michael A. Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (M.M.); (J.T.); (A.V.R.); (J.T.); (R.M.D.)
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Freitag PC, Kolibius J, Wieboldt R, Weber R, Hartmann KP, van Gogh M, Brücher D, Läubli H, Plückthun A. DARPin-fused T cell engager for adenovirus-mediated cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200821. [PMID: 39021370 PMCID: PMC11253662 DOI: 10.1016/j.omton.2024.200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Bispecific T cell engagers are a promising class of therapeutic proteins for cancer therapy. Their potency and small size often come with systemic toxicity and short half-life, making intravenous administration cumbersome. These limitations can be overcome by tumor-specific in situ expression, allowing high local accumulation while reducing systemic concentrations. However, encoding T cell engagers in viral or non-viral vectors and expressing them in situ ablates all forms of quality control performed during recombinant protein production. It is therefore vital to design constructs that feature minimal domain mispairing, and increased homogeneity of the therapeutic product. Here, we report a T cell engager architecture specifically designed for vector-mediated immunotherapy. It is based on a fusion of a designed ankyrin repeat protein (DARPin) to a CD3-targeting single-chain antibody fragment, termed DATE (DARPin-fused T cell Engager). The DATE induces potent T cell-mediated killing of HER2+ cancer cells, both as recombinantly produced therapeutic protein and as in situ expressed payload from a HER2+-retargeted high-capacity adenoviral vector (HC-AdV). We report remarkable tumor remission, DATE accumulation, and T cell infiltration through in situ expression mediated by a HER2+-retargeted HC-AdV in vivo. Our results support further investigations and developments of DATEs as payloads for vector-mediated immunotherapy.
Collapse
Affiliation(s)
- Patrick C. Freitag
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jonas Kolibius
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ronja Wieboldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Remi Weber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Patricia Hartmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Merel van Gogh
- Department of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Dominik Brücher
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
De S, Ehrlich M. Arrest and Attack: Microtubule-Targeting Agents and Oncolytic Viruses Employ Complementary Mechanisms to Enhance Anti-Tumor Therapy Efficacy. Genes (Basel) 2024; 15:1193. [PMID: 39336785 PMCID: PMC11431212 DOI: 10.3390/genes15091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Oncolytic viruses (OVs) are promising cancer immunotherapy agents that stimulate anti-tumor immunity through the preferential infection and killing of tumor cells. OVs are currently under limited clinical usage, due in part to their restricted efficacy as monotherapies. Current efforts for enhancement of the therapeutic potency of OVs involve their combination with other therapy modalities, aiming at the concomitant exploitation of complementary tumor weaknesses. In this context, microtubule-targeting agents (MTAs) pose as an enticing option, as they perturb microtubule dynamics and function, induce cell-cycle arrest, and cause mitotic cell death. MTAs induce therapeutic benefit through cancer-cell-autonomous and non-cell-autonomous mechanisms and are a main component of the standard of care for different malignancies. However, off-target effects and acquired resistance involving distinct cellular and molecular mechanisms may limit the overall efficacy of MTA-based therapy. When combined, OVs and MTAs may enhance therapeutic efficacy through increases in OV infection and immunogenic cell death and a decreased probability of acquired resistance. In this review, we introduce OVs and MTAs, describe molecular features of their activity in cancer cells, and discuss studies and clinical trials in which the combination has been tested.
Collapse
Affiliation(s)
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
4
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Azar F, Deforges J, Demeusoit C, Kleinpeter P, Remy C, Silvestre N, Foloppe J, Fend L, Spring-Giusti C, Quéméneur E, Marchand JB. TG6050, an oncolytic vaccinia virus encoding interleukin-12 and anti-CTLA-4 antibody, favors tumor regression via profound immune remodeling of the tumor microenvironment. J Immunother Cancer 2024; 12:e009302. [PMID: 39060022 DOI: 10.1136/jitc-2024-009302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND TG6050 was designed as an improved oncolytic vector, combining the intrinsic properties of vaccinia virus to selectively replicate in tumors with the tumor-restricted expression of recombinant immune effectors to modify the tumor immune phenotype. These properties might be of particular interest for "cold" tumors, either poorly infiltrated or infiltrated with anergic T cells. METHODS TG6050, an oncolytic vaccinia virus encodes single-chain human interleukin-12 (hIL-12) and full-length anti-cytotoxic T-lymphocyte-associated antigen-4 (@CTLA-4) monoclonal antibody. The relevant properties of TG6050 (replication, cytopathy, transgenes expression and functionality) were extensively characterized in vitro. The biodistribution and pharmacokinetics of the viral vector, @CTLA-4 and IL-12, as well as antitumoral activities (alone or combined with immune checkpoint inhibitors) were investigated in several "hot" (highly infiltrated) and "cold" (poorly infiltrated) syngeneic murine tumor models. The mechanism of action was deciphered by monitoring both systemic and intratumoral immune responses, and by tumor transcriptome analysis. The safety of TG6050 after repeated intravenous administrations was evaluated in cynomolgus monkeys, with a focus on the level of circulating IL-12. RESULTS Multiplication and propagation of TG6050 in tumor cells in vitro and in vivo were associated with local expression of functional IL-12 and @CTLA-4. This dual mechanism translated into a strong antitumoral activity in both "cold" and "hot" tumor models (B16F10, LLC1 or EMT6, CT26, respectively) that was further amplified when combined with anti-programmed cell death protein-1. Analysis of changes in the tumor microenvironment (TME) after treatment with TG6050 showed increases in interferon-gamma, of CD8+T cells, and of M1/M2 macrophages ratio, as well as a drastic decrease of regulatory T cells. These local modifications were observed alongside bolstering a systemic and specific antitumor adaptive immune response. In toxicology studies, TG6050 did not display any observable adverse effects in cynomolgus monkeys. CONCLUSIONS TG6050 effectively delivers functional IL-12 and @CTLA-4 into the tumor, resulting in strong antitumor activity. The shift towards an inflamed TME correlated with a boost in systemic antitumor T cells. The solid preclinical data and favorable benefit/risk ratio paved the way for the clinical evaluation of TG6050 in metastatic non-small cell lung cancer (NCT05788926 trial in progress).
Collapse
Affiliation(s)
- Fadi Azar
- Transgene SA, Illkirch-Graffenstaden, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
7
|
Mokhtarpour K, Akbarzadehmoallemkolaei M, Rezaei N. A viral attack on brain tumors: the potential of oncolytic virus therapy. J Neurovirol 2024; 30:229-250. [PMID: 38806994 DOI: 10.1007/s13365-024-01209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
Managing malignant brain tumors remains a significant therapeutic hurdle that necessitates further research to comprehend their treatment potential fully. Oncolytic viruses (OVs) offer many opportunities for predicting and combating tumors through several mechanisms, with both preclinical and clinical studies demonstrating potential. OV therapy has emerged as a potent and effective method with a dual mechanism. Developing innovative and effective strategies for virus transduction, coupled with immune checkpoint inhibitors or chemotherapy drugs, strengthens this new technique. Furthermore, the discovery and creation of new OVs that can seamlessly integrate gene therapy strategies, such as cytotoxic, anti-angiogenic, and immunostimulatory, are promising advancements. This review presents an overview of the latest advancements in OVs transduction for brain cancer, focusing on the safety and effectiveness of G207, G47Δ, M032, rQNestin34.5v.2, C134, DNX-2401, Ad-TD-nsIL12, NSC-CRAd-S-p7, TG6002, and PVSRIPO. These are evaluated in both preclinical and clinical models of various brain tumors.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| | - Milad Akbarzadehmoallemkolaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran.
| |
Collapse
|
8
|
Kurmasheva N, Said A, Wong B, Kinderman P, Han X, Rahimic AHF, Kress A, Carter-Timofte ME, Holm E, van der Horst D, Kollmann CF, Liu Z, Wang C, Hoang HD, Kovalenko E, Chrysopoulou M, Twayana KS, Ottosen RN, Svenningsen EB, Begnini F, Kiib AE, Kromm FEH, Weiss HJ, Di Carlo D, Muscolini M, Higgins M, van der Heijden M, Bardoul A, Tong T, Ozsvar A, Hou WH, Schack VR, Holm CK, Zheng Y, Ruzek M, Kalucka J, de la Vega L, Elgaher WAM, Korshoej AR, Lin R, Hiscott J, Poulsen TB, O'Neill LA, Roy DG, Rinschen MM, van Montfoort N, Diallo JS, Farin HF, Alain T, Olagnier D. Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways. Nat Commun 2024; 15:4096. [PMID: 38750019 PMCID: PMC11096414 DOI: 10.1038/s41467-024-48422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.
Collapse
Affiliation(s)
- Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Aida Said
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Boaz Wong
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoying Han
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Alena Kress
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | | | - Emilia Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Chen Wang
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Elina Kovalenko
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Fabio Begnini
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Anders E Kiib
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Hauke J Weiss
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Daniele Di Carlo
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Michela Muscolini
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Mirte van der Heijden
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelina Bardoul
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Tong Tong
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Attila Ozsvar
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yunan Zheng
- Small Molecule Therapeutics & Platform Technologies, AbbVie Inc., 1 North Waukegon Road, North Chicago, IL, 60064, USA
| | - Melanie Ruzek
- AbbVie, Bioresearch Center, 100 Research Drive, Worcester, MA, 01608, USA
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, E8.1, 66123, Saarbrücken, Germany
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - John Hiscott
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Dominic G Roy
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- III. Department of Medicine and Hamburg Center for Kidney Health, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Simon Diallo
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
9
|
Romanishin A, Vasilev A, Khasanshin E, Evtekhov A, Pusynin E, Rubina K, Kakotkin V, Agapov M, Semina E. Oncolytic viral therapy for gliomas: Advances in the mechanisms and approaches to delivery. Virology 2024; 593:110033. [PMID: 38442508 DOI: 10.1016/j.virol.2024.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Glioma is a diverse category of tumors originating from glial cells encompasses various subtypes, based on the specific type of glial cells involved. The most aggressive is glioblastoma multiforme (GBM), which stands as the predominant primary malignant tumor within the central nervous system in adults. Despite the application of treatment strategy, the median survival rate for GBM patients still hovers around 15 months. Oncolytic viruses (OVs) are artificially engineered viruses designed to selectively target and induce apoptosis in cancer cells. While clinical trials have demonstrated encouraging results with intratumoral OV injections for some cancers, applying this approach to GBM presents unique challenges. Here we elaborate on current trends in oncolytic viral therapy and their delivery methods. We delve into the various methods of delivering OVs for therapy, exploring their respective advantages and disadvantages and discussing how selecting the optimal delivery method can enhance the efficacy of this innovative treatment approach.
Collapse
Affiliation(s)
- A Romanishin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - A Vasilev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - E Khasanshin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - A Evtekhov
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - E Pusynin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - K Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - V Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - M Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - E Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| |
Collapse
|
10
|
Bhatt DK, Daemen T. Molecular Circuits of Immune Sensing and Response to Oncolytic Virotherapy. Int J Mol Sci 2024; 25:4691. [PMID: 38731910 PMCID: PMC11083234 DOI: 10.3390/ijms25094691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses. We describe how the molecular signals induced in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.
Collapse
Affiliation(s)
- Darshak K. Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, HPC EB88, 9700 RB Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, HPC EB88, 9700 RB Groningen, The Netherlands
| |
Collapse
|
11
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Shen Z, Liu X, Fan G, Na J, Liu Q, Lin F, Zhang Z, Zhong L. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J Transl Med 2023; 21:842. [PMID: 37993941 PMCID: PMC10666393 DOI: 10.1186/s12967-023-04709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Oncolytic viruses (OVs) for cancer treatment are in a rapid stage of development, and the direct tumor lysis and activation of a comprehensive host immune response are irreplaceable advantages of cancer immunotherapy. However, excessive antiviral immune responses also restrict the spread of OVs in vivo and the infection of tumor cells. Macrophages are functionally diverse innate immune cells that phagocytose tumor cells and present antigens to activate the immune response, while also limiting the delivery of OVs to tumors. Studies have shown that the functional propensity of macrophages between OVs and tumor cells affects the overall therapeutic effect of oncolytic virotherapy. How to effectively avoid the restrictive effect of macrophages on OVs and reshape the function of tumor-associated macrophages in oncolytic virotherapy is an important challenge we are now facing. Here, we review and summarize the complex dual role of macrophages in oncolytic virotherapy, highlighting how the functional characteristics of macrophage plasticity can be utilized to cooperate with OVs to enhance anti-tumor effects, as well as highlighting the importance of designing and optimizing delivery modalities for OVs in the future.
Collapse
Affiliation(s)
- Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
13
|
Wang H, Borlongan M, Hemminki A, Basnet S, Sah N, Kaufman HL, Rabkin SD, Saha D. Viral Vectors Expressing Interleukin 2 for Cancer Immunotherapy. Hum Gene Ther 2023; 34:878-895. [PMID: 37578106 PMCID: PMC10623065 DOI: 10.1089/hum.2023.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Interleukin 2 (IL-2) plays a crucial role in T cell growth and survival, enhancing the cytotoxic activity of natural killer and cytotoxic T cells and thus functioning as a versatile master proinflammatory anticancer cytokine. The FDA has approved IL-2 cytokine therapy for the treatment of metastatic melanoma and metastatic renal cell carcinoma. However, IL-2 therapy has significant constraints, including a short serum half-life, low tumor accumulation, and life-threatening toxicities associated with high doses. Oncolytic viruses (OVs) offer a promising option for cancer immunotherapy, selectively targeting and destroying cancer cells while sparing healthy cells. Numerous studies have demonstrated the successful delivery of IL-2 to the tumor microenvironment without compromising safety using OVs such as vaccinia, Sendai, parvo, Newcastle disease, tanapox, and adenoviruses. Additionally, by engineering OVs to coexpress IL-2 with other anticancer transgenes, the immune properties of IL-2 can be further enhanced. Preclinical and clinical studies have shown promising antitumor effects of IL-2-expressing viral vectors, either alone or in combination with other anticancer therapies. This review summarizes the therapeutic potential of IL-2-expressing viral vectors and their antitumor mechanisms of action.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- Master of Pharmaceutical Sciences Program, College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Mia Borlongan
- Master of Pharmaceutical Sciences Program, College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Naresh Sah
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| | - Howard L. Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Ankyra Therapeutics, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D. Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| |
Collapse
|
14
|
Muthukutty P, Yoo SY. Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses 2023; 15:1645. [PMID: 37631987 PMCID: PMC10459766 DOI: 10.3390/v15081645] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oncolytic viruses have positively impacted cancer immunotherapy over the past 20 years. Both natural and genetically modified viruses have shown promising results in treating various cancers. Various regulatory authorities worldwide have approved four commercial oncolytic viruses, and more are being developed to overcome this limitation and obtain better anti-tumor responses in clinical trials at various stages. Faster advancements in translating research into the commercialization of cancer immunotherapy and a comprehensive understanding of the modification strategies will widen the current knowledge of future technologies related to the development of oncolytic viruses. In this review, we discuss the strategies of virus engineering and the progress of clinical trials to achieve virotherapeutics.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Zolaly MA, Mahallawi W, Khawaji ZY, Alahmadi MA. The Clinical Advances of Oncolytic Viruses in Cancer Immunotherapy. Cureus 2023; 15:e40742. [PMID: 37485097 PMCID: PMC10361339 DOI: 10.7759/cureus.40742] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
A promising future for oncology treatment has been brought about by the emergence of a novel approach utilizing oncolytic viruses in cancer immunotherapy. Oncolytic viruses are viruses that have been exploited genetically to assault malignant cells and activate a robust immune response. Several techniques have been developed to endow viruses with an oncolytic activity through genetic engineering. For instance, redirection capsid modification, stimulation of anti-neoplastic immune response, and genetically arming viruses with cytokines such as IL-12. Oncolytic viral clinical outcomes are sought after, particularly in more advanced cancers. The effectiveness and safety profile of the oncolytic virus in clinical studies with or without the combination of standard treatment (chemotherapy, radiotherapy, or primary excision) has been assessed using response evaluation criteria in solid tumors (RECIST). This review will comprehensively outline the most recent clinical applications and provide the results from various phases of clinical trials in a variety of cancers in the latest published literature.
Collapse
Affiliation(s)
- Mohammed A Zolaly
- Pediatric Hematology Oncology, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Waleed Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah al-Munawwarah, SAU
| | - Zakaria Y Khawaji
- Medicine and Surgery, Taibah University, Al-Madinah al-Munawwarah, SAU
| | | |
Collapse
|
16
|
Davola ME, Cormier O, Vito A, El-Sayes N, Collins S, Salem O, Revill S, Ask K, Wan Y, Mossman K. Oncolytic BHV-1 Is Sufficient to Induce Immunogenic Cell Death and Synergizes with Low-Dose Chemotherapy to Dampen Immunosuppressive T Regulatory Cells. Cancers (Basel) 2023; 15:cancers15041295. [PMID: 36831636 PMCID: PMC9953776 DOI: 10.3390/cancers15041295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Immunogenic cell death (ICD) can switch immunologically "cold" tumors "hot", making them sensitive to immune checkpoint inhibitor (ICI) therapy. Many therapeutic platforms combine multiple modalities such as oncolytic viruses (OVs) and low-dose chemotherapy to induce ICD and improve prognostic outcomes. We previously detailed many unique properties of oncolytic bovine herpesvirus type 1 (oBHV) that suggest widespread clinical utility. Here, we show for the first time, the ability of oBHV monotherapy to induce bona fide ICD and tumor-specific activation of circulating CD8+ T cells in a syngeneic murine model of melanoma. The addition of low-dose mitomycin C (MMC) was necessary to fully synergize with ICI through early recruitment of CD8+ T cells and reduced infiltration of highly suppressive PD-1+ Tregs. Cytokine and gene expression analyses within treated tumors suggest that the addition of MMC to oBHV therapy shifts the immune response from predominantly anti-viral, as evidenced by a high level of interferon-stimulated genes, to one that stimulates myeloid cells, antigen presentation and adaptive processes. Collectively, these data provide mechanistic insights into how oBHV-mediated therapy modalities overcome immune suppressive tumor microenvironments to enable the efficacy of ICI therapy.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Olga Cormier
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alyssa Vito
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nader El-Sayes
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Susan Collins
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Omar Salem
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Spencer Revill
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Yonghong Wan
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Karen Mossman
- Department of Medicine, Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 23542)
| |
Collapse
|
17
|
Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023; 9:122-139. [PMID: 36402738 PMCID: PMC9877109 DOI: 10.1016/j.trecan.2022.10.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Oncolytic viruses (OVs) provide novel and promising therapeutic options for patients with cancers resistant to traditional therapies. Natural or genetically modified OVs are multifaceted tumor killers. They directly lyse tumor cells while sparing normal cells, and indirectly potentiate antitumor immunity by releasing antigens and activating inflammatory responses in the tumor microenvironment. However, some limitations, such as limited penetration of OVs into tumors, short persistence, and the host antiviral immune response, are impeding the broad translation of oncolytic virotherapy into the clinic. If these challenges can be overcome, combination therapies, such as OVs plus immune checkpoint blockade (ICB), chimeric antigen receptor (CAR) T cells, or CAR natural killer (NK) cells, may provide powerful therapeutic platforms in the clinic.
Collapse
Affiliation(s)
- Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA.
| |
Collapse
|
18
|
CXCL10 Chemokine: A Critical Player in RNA and DNA Viral Infections. Viruses 2022; 14:v14112445. [PMID: 36366543 PMCID: PMC9696077 DOI: 10.3390/v14112445] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.
Collapse
|
19
|
Current landscape and perspective of oncolytic viruses and their combination therapies. Transl Oncol 2022; 25:101530. [PMID: 36095879 PMCID: PMC9472052 DOI: 10.1016/j.tranon.2022.101530] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Oncolytic virotherapy has become an important branch of cancer immunotherapy in clinical practice. Multiple viruses can be engineered to be OVs and armed with anticancer genes to enhance their efficacy. OVs can reshape TME and produce synergistic anticancer efficacy when combined with other therapies. Safety and effectiveness are the main direction of future research and development of OVs.
Oncolytic virotherapy has become an important strategy in cancer immunotherapy. Oncolytic virus (OV) can reshape the tumor microenvironment (TME) through its replication-mediated oncolysis and transgene-produced anticancer effect, inducing an antitumor immune response and creating favorable conditions for the combination of other therapeutic measures. Extensive preclinical and clinical data have suggested that OV-based combination therapy has definite efficacy and promising prospects. Recently, several clinical trials of oncolytic virotherapy combined with immunotherapy have made breakthroughs. This review comprehensively elaborates the OV types and their targeting mechanisms, the selection of anticancer genes armed in OVs, and the therapeutic modes of action and strategies of OVs to provide a theoretical basis for the better design and construction of OVs and the optimization of OV-based therapeutic strategies.
Collapse
|
20
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|
21
|
Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Vaccines (Basel) 2022; 10:vaccines10091552. [PMID: 36146629 PMCID: PMC9504998 DOI: 10.3390/vaccines10091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Oncolytic virotherapy has emerged as a novel form of cancer immunotherapy. Oncolytic viruses (OVs) can directly infect and lyse the tumor cells, and modulate the beneficial immune microenvironment. Vaccinia virus (VACV) is a promising oncolytic vector because of its high safety, easy gene editing, and tumor intrinsic selectivity. To further improve the safety, tumor-targeting ability, and OV-induced cancer-specific immune activation, various approaches have been used to modify OVs. The recombinant oncolytic VACVs with deleting viral virulence factors and/or arming various therapeutic genes have displayed better therapeutic effects in multiple tumor models. Moreover, the combination of OVs with other cancer immunotherapeutic approaches, such as immune checkpoint inhibitors and CAR-T cells, has the potential to improve the outcome in cancer patients. This will open up new possibilities for the application of OVs in cancer treatment, especially for personalized cancer therapies.
Collapse
|
22
|
Ji Q, Wu Y, Albers A, Fang M, Qian X. Strategies for Advanced Oncolytic Virotherapy: Current Technology Innovations and Clinical Approaches. Pharmaceutics 2022; 14:1811. [PMID: 36145559 PMCID: PMC9504140 DOI: 10.3390/pharmaceutics14091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is a type of nanomedicine with a dual antitumor mechanism. Viruses are engineered to selectively infect and lyse cancer cells directly, leading to the release of soluble antigens which induce systemic antitumor immunity. Representative drug Talimogene laherparepvec has showed promising therapeutic effects in advanced melanoma, especially when combined with immune checkpoint inhibitors with moderate adverse effects. Diverse viruses like herpes simplex virus, adenovirus, vaccina virus, and so on could be engineered as vectors to express different transgenic payloads, vastly expanding the therapeutic potential of oncolytic virotherapy. A number of related clinical trials are under way which are mainly focusing on solid tumors. Studies about further optimizing the genome of oncolytic viruses or improving the delivering system are in the hotspot, indicating the future development of oncolytic virotherapy in the clinic. This review introduces the latest progress in clinical trials and pre-clinical studies as well as technology innovations directed at oncolytic viruses. The challenges and perspectives of oncolytic virotherapy towards clinical application are also discussed.
Collapse
Affiliation(s)
- Qing Ji
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Andreas Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Meiyu Fang
- Department of Rare and Head & Neck Oncology, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xu Qian
- Department of Clinical Laboratory, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
23
|
Wang Q, Ma X, Wu H, Zhao C, Chen J, Li R, Yan S, Li Y, Zhang Q, Song K, Yuan C, Kong B. Oncolytic adenovirus with MUC16-BiTE shows enhanced antitumor immune response by reversing the tumor microenvironment in PDX model of ovarian cancer. Oncoimmunology 2022; 11:2096362. [PMID: 35800156 PMCID: PMC9255048 DOI: 10.1080/2162402x.2022.2096362] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Qiuman Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Chen Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Jingying Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| |
Collapse
|
24
|
Hydrogel-based co-delivery of CIK cells and oncolytic adenovirus armed with IL12 and IL15 for cancer immunotherapy. Biomed Pharmacother 2022; 151:113110. [PMID: 35605298 DOI: 10.1016/j.biopha.2022.113110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Intratumoral injection of various effector cells combined with oncolytic adenovirus expressing antitumor cytokines exert an effective antitumor immune effect by oncolysis and altering the tumor microenvironment. However, this combination therapy had certain limitations. When used in high concentrations, effector cells and oncolytic viruses can spread rapidly to surrounding non-target tissues. And because both therapies used in combination are immunogenic and exhibit shorter biological activity, multiple injections were required to attain an adequate therapeutic index. To overcome these drawbacks, we encapsulated gelatin-based hydrogel capable of co-deliver oncolytic adenovirus armed with IL12 and IL15 (CRAd-IL12-IL15) and CIK cells for enhancing and prolonging the antitumor effects of both therapies after a single intratumoral injection. The injectable and biodegradable hydrogel reduced the dispersion of high-dose oncolytic adenovirus and CIK cells from the injection site to the liver and other non-target tissues. In this study, a novel oncolytic adenoviral vector CRAd-IL12-IL15 was constructed to verify the cytokine expression and oncolytic ability, which can upregulate the expression levels of Bcl-2, Cish and Gzmb in tumor cells. The CRAd-IL12-IL15 + CIKs/gelatin treatment maintained sustained release of CRAd-IL12-IL15 and active CIK cells over a longer period of time, attenuating the antiviral immune response against adenovirus. In conclusion, the results suggested that hydrogel-mediated co-delivery of CRAd-IL12-IL15 and CIK cells might be a an approach to overcome limitations. Both treatments could be effectively retained in tumor tissue and sustained to induce potent anti-tumor immune responses with a single administration.
Collapse
|
25
|
Ravirala D, Pei G, Zhao Z, Zhang X. Comprehensive characterization of tumor immune landscape following oncolytic virotherapy by single-cell RNA sequencing. Cancer Immunol Immunother 2022; 71:1479-1495. [PMID: 34716463 PMCID: PMC10992051 DOI: 10.1007/s00262-021-03084-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
An important mechanism of oncolytic virotherapy in ameliorating cancer immunotherapy is by inducing significant changes in the immune landscape in the tumor microenvironment (TME). Despite this notion and the potential therapeutic implications, a comprehensive analysis of the immune changes in carcinomas induced by virotherapy has not yet been elucidated. We conducted single-cell RNA sequencing analysis on carcinomas treated with an HSV-2-based oncolytic virus to characterize the immunogenic changes in the TME. We specifically analyzed and compared the immune cell composition between viral treated and untreated tumors. We also applied CellChat to analyze the complex interactions among the infiltrated immune cells. Our data revealed significant infiltration of B cells in addition to other important immune cells, including CD4+, CD8+, and NK cells following virotherapy. Further analysis identified distinct subset compositions of the infiltrated immune cells and their activation status upon virotherapy. The intensive interactions among the infiltrated immune cells as revealed by CellChat analysis may further shape the immune landscape in favor of generating antitumor immunity. Our findings will facilitate the design of new strategies in incorporating immunotherapy into virotherapy for clinical translation. Moreover, the significant infiltration of B cells makes it suitable for combining virotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Divya Ravirala
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
- University of Houston, SERC 3004, 3517 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
26
|
Alekseenko IV, Pleshkan VV, Kuzmich AI, Kondratieva SA, Sverdlov ED. Gene-Immune Therapy of Cancer: Approaches and Problems. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Su Y, Li J, Ji W, Wang G, Fang L, Zhang Q, Ang L, Zhao M, Sen Y, Chen L, Zheng J, Su C, Qin L. Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors. J Immunother Cancer 2022; 10:jitc-2022-004691. [PMID: 35609942 PMCID: PMC9131115 DOI: 10.1136/jitc-2022-004691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Oncolytic virotherapy has become an important branch of cancer immunotherapy. This study investigated the efficacy of an oncolytic adenovirus (OAV), OncoViron, with synergistic mechanisms in the treatment of multiple solid tumors. Methods An OAV, OncoViron, was constructed and investigated by cytological experiments and implanted tumor models of multiple solid tumor cell lines to certify its anticancer efficacy, the synergistic effects of viral oncolysis and transgene anticancer activity of OncoViron, as well as oncolytic virotherapy combined with immunotherapy, were also verified. Results The selective replication of OncoViron mediated high expression of anticancer factors, specifically targeted a variety of solid tumors and significantly inhibited cancer cell proliferation. On a variety of implanted solid tumor models in immunodeficient mice, immunocompetent mice, and humanized mice, OncoViron showed great anticancer effects on its own and in combination with programmed death 1 (PD-1) antibody and chimeric antigen receptor (CAR) T cells. Pathological examination, single-cell sequencing, and spatial transcriptome analysis of animal implanted tumor specimens confirmed that OncoViron significantly altered the gene expression profile of infected cancer cells, not only recruiting a large number of lymphocytes, natural killer cells, and mononuclear macrophages into tumor microenvironment (TME) and activated immune cells, especially T cells but also inducing M1 polarization of macrophages and promoting the release of more immune cytokines, thereby remodeling the TME for coordinating PD-1 antibody or CAR T therapy. Conclusions The chimeric OncoViron is a novel broad-spectrum anticancer product with multiple mechanisms of synergistic and potentiated immunotherapy, creating a good opportunity for combined immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Yinghan Su
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.,National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China
| | - Jiang Li
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Weidan Ji
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lin Fang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Lin Ang
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Min Zhao
- Department of Pathology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Yuan Sen
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lei Chen
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Changqing Su
- National Center for Liver Cancer (NCLC), Navy Military Medical University, Shanghai 201805, China .,Department of Molecular Oncology, Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy & Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Valenzuela-Cardenas M, Gowan C, Dryja P, Bartee MY, Bartee E. TNF blockade enhances the efficacy of myxoma virus-based oncolytic virotherapy. J Immunother Cancer 2022; 10:e004770. [PMID: 35577502 PMCID: PMC9114862 DOI: 10.1136/jitc-2022-004770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Oncolytic virotherapy (OV) represents a method to treat a variety of solid tumors by inducing antitumor immune responses. While this therapy has been extremely efficacious in preclinical models, translating these successes into human patients has proven challenging. One of the major reasons for these failures is the existence of immune-regulatory mechanisms, which dampen the efficacy of virally induced antitumor immunity. Unfortunately, the full extent of these immune-regulatory pathways remains unclear. METHODS To address this issue, we generated a doubly recombinant, oncolytic myxoma virus which expresses both a soluble fragment of programmed cell death protein 1 (PD1) and an interleukin 12 (IL-12) fusion protein (vPD1/IL-12 (virus-expressing PD1 and IL-12)). We then tested the molecular impact and therapeutic efficacy of this construct in multiple models of disseminated disease to identify novel pathways, which are associated with poor therapeutic outcomes. RESULTS Our results demonstrate that vPD1/IL-12 causes robust inflammation during therapy including inducing high levels of tumor necrosis factor (TNF). Surprisingly, although expression of TNF has generally been assumed to be beneficial to OV, the presence of this TNF appears to inhibit therapeutic efficacy by reducing intratumoral T-cell viability. Likely because of this, disruption of the TNF pathway, either through genetic knockout or antibody-based blockade, significantly enhances the overall outcomes of vPD1/IL-12-based therapy that allows for the generation of complete cures in normally non-responsive models. CONCLUSIONS These data suggest that some aspects of OV-induced inflammation might represent a double-edged sword during therapy and that specific blockade of TNF might enhance the efficacy of these treatments.
Collapse
Affiliation(s)
- Miriam Valenzuela-Cardenas
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Cody Gowan
- Division of Nephrology and Hypertension, Mayo Clinical, Jacksonville, Florida, USA
| | - Parker Dryja
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Mee Y Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Eric Bartee
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.,College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Dholakia J, Cohen AC, Leath CA, Evans ET, Alvarez RD, Thaker PH. Development of Delivery Systems for Local Administration of Cytokines/Cytokine Gene-Directed Therapeutics: Modern Oncologic Implications. Curr Oncol Rep 2022; 24:389-397. [PMID: 35141857 PMCID: PMC10466172 DOI: 10.1007/s11912-022-01221-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss modern cytokine delivery systems in oncologic care, focusing on modalities being developed in the clinical trials or currently in use. These include pegylation, immune-cytokine drug conjugates, cytokine-expressing plasmid nanoparticles, nonviral cytokine nanoparticles, viral systems, and AcTakines. RECENT FINDINGS Cytokine therapy has the potential to contribute to cancer treatment options by modulating the immune system towards an improved antitumor response and has shown promise both independently and in combination with other immunotherapy agents. Despite promising preliminary studies, systemic toxicities and challenges with administration have limited the impact of unmodified cytokine therapy. In the last decade, novel delivery systems have been developed to address these challenges and facilitate cytokine-based oncologic treatments. Novel delivery systems provide potential solutions to decrease dose-limiting side effects, facilitate administration, and increase the therapeutic activity of cytokine treatments in oncology care. The expanding clinical and translational research in these systems provides an opportunity to augment the armamentarium of immune oncology and may represent the next frontier of cytokine-based immuno-oncology.
Collapse
Affiliation(s)
- Jhalak Dholakia
- Department of Obstetrics & Gynecology, University of Alabama Division of Gynecologic Oncology, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA.
| | - Alexander C Cohen
- Department of Obstetrics & Gynecology, Washington University in St. Louis Division of Gynecologic Oncology, St. Louis, MO, USA
| | - Charles A Leath
- Department of Obstetrics & Gynecology, University of Alabama Division of Gynecologic Oncology, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Elizabeth T Evans
- Department of Obstetrics & Gynecology, University of Alabama Division of Gynecologic Oncology, 1700 6th Avenue South, Room 10250, Birmingham, AL, 35249-7333, USA
| | - Ronald D Alvarez
- Department of Obstetrics & Gynecology, Vanderbilt University Division of Gynecologic Oncology, Nashville, TN, USA
| | - Premal H Thaker
- Department of Obstetrics & Gynecology, Washington University in St. Louis Division of Gynecologic Oncology, St. Louis, MO, USA
| |
Collapse
|
31
|
Floerchinger A, Engeland CE. NK Cell Effector Functions and Bystander Tumor Cell Killing in Immunovirotherapy. Methods Mol Biol 2022; 2521:233-248. [PMID: 35733001 DOI: 10.1007/978-1-0716-2441-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oncolytic virotherapy is a compelling strategy to combine cancer gene therapy with immunotherapy. Lytic virus replication in malignant cells not only enables localized transgene expression based on engineered vectors but also triggers immunogenic tumor cell death and elicits inflammation in the tumor microenvironment. Modified oncolytic viruses encoding immunomodulators have been developed to enhance antitumor immune effects and therapeutic efficacy. As one example, bispecific molecules that engage immune cells to exert antitumor cytotoxicity can be encoded within the viral vector. This chapter describes an in vitro coculture experiment to study functionality and antitumor efficacy of engineered measles vaccine strain virus encoding natural killer cell engagers. In a flow cytometry-based analysis, target cell death of noninfected bystander cancer cells and effector functions of primary human natural killer cells are investigated. This methodology can facilitate assessment of advanced oncolytic viral vectors for cancer immunotherapy.
Collapse
Affiliation(s)
- Alessia Floerchinger
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Christine E Engeland
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) and Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
32
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
33
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
34
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269-2287. [PMID: 34079226 PMCID: PMC8166316 DOI: 10.2147/dddt.s308578] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key components of the immune system and play pivotal roles in anticancer immune response. Cytokines as either therapeutic agents or targets hold clinical promise for cancer precise treatment. Here, we provide an overview of the various roles of cytokines in the cancer immunity cycle, with a particular focus on the clinical researches of cytokine-based drugs in cancer therapy. We review 27 cytokines in 2630 cancer clinical trials registered with ClinicalTrials.gov that had completed recruitment up to January 2021 while summarizing important cases for each cytokine. We also discuss recent progress in methods for improving the delivery efficiency, stability, biocompatibility, and availability of cytokines in therapeutic applications.
Collapse
Affiliation(s)
- Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Mengxi Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Leyi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yiqi Tang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Pan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
35
|
Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J Hematol Oncol 2021; 14:63. [PMID: 33863363 PMCID: PMC8052795 DOI: 10.1186/s13045-021-01075-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Bispecific T cell engagers (BiTEs) are an innovative class of immunotherapeutics that redirect T cells to tumor surface antigens. While efficacious against certain hematological malignancies, limited bioavailability and severe toxicities have so far hampered broader clinical application, especially against solid tumors. Another emerging cancer immunotherapy are oncolytic viruses (OVs) which selectively infect and replicate in malignant cells, thereby mediating tumor vaccination effects. These oncotropic viruses can serve as vectors for tumor-targeted immunomodulation and synergize with other immunotherapies. In this article, we discuss the use of OVs to overcome challenges in BiTE therapy. We review the current state of the field, covering published preclinical studies as well as ongoing clinical investigations. We systematically introduce OV-BiTE vector design and characteristics as well as evidence for immune-stimulating and anti-tumor effects. Moreover, we address additional combination regimens, including CAR T cells and immune checkpoint inhibitors, and further strategies to modulate the tumor microenvironment using OV-BiTEs. The inherent complexity of these novel therapeutics highlights the importance of translational research including correlative studies in early-phase clinical trials. More broadly, OV-BiTEs can serve as a blueprint for diverse OV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
36
|
Redirecting the Immune Microenvironment in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061423. [PMID: 33804676 PMCID: PMC8003817 DOI: 10.3390/cancers13061423] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Despite remarkable progress in the outcome of childhood acute myeloid leukemia (AML), risk of relapse and refractory diseases remains high. Treatment of the chemo-refractory disease is restricted by dose-limiting therapy-related toxicities which necessitate alternative tolerable efficient therapeutic modalities. By disrupting its immune environment, leukemic blasts are known to gain the ability to evade immune surveillance and promote disease progression; therefore, many efforts have been made to redirect the immune system against malignant blasts. Deeper knowledge about immunologic alterations has paved the way to the discovery and development of novel targeted therapeutic concepts, which specifically override the immune evasion mechanisms to eradicate leukemic blasts. Herein, we review innovative immunotherapeutic strategies and their mechanisms of action in pediatric AML. Abstract Acute myeloid leukemia is a life-threatening malignant disorder arising in a complex and dysregulated microenvironment that, in part, promotes the leukemogenesis. Treatment of relapsed and refractory AML, despite the current overall success rates in management of pediatric AML, remains a challenge with limited options considering the heavy but unsuccessful pretreatments in these patients. For relapsed/refractory (R/R) patients, hematopoietic stem cell transplantation (HSCT) following ablative chemotherapy presents the only opportunity to cure AML. Even though in some cases immune-mediated graft-versus-leukemia (GvL) effect has been proven to efficiently eradicate leukemic blasts, the immune- and chemotherapy-related toxicities and adverse effects considerably restrict the feasibility and therapeutic power. Thus, immunotherapy presents a potent tool against acute leukemia but needs to be engineered to function more specifically and with decreased toxicity. To identify innovative immunotherapeutic approaches, sound knowledge concerning immune-evasive strategies of AML blasts and the clinical impact of an immune-privileged microenvironment is indispensable. Based on our knowledge to date, several promising immunotherapies are under clinical evaluation and further innovative approaches are on their way. In this review, we first focus on immunological dysregulations contributing to leukemogenesis and progression in AML. Second, we highlight the most promising therapeutic targets for redirecting the leukemic immunosuppressive microenvironment into a highly immunogenic environment again capable of anti-leukemic immune surveillance.
Collapse
|