1
|
Goździk M, Żelaźniewicz A, Nowak-Kornicka J, Pawłowska-Seredyńska K, Umławska W, Pawłowski B. Autoimmune Hashimoto's Disease and Feminization Level-Testing the Immunocompetence Hypothesis. EVOLUTIONARY PSYCHOLOGY 2024; 22:14747049241259187. [PMID: 39238450 PMCID: PMC11378202 DOI: 10.1177/14747049241259187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Morphological femininity depends mainly on estrogen levels at puberty and is perceived as a cue of a woman's biological condition. Due to the immunostimulant properties of estradiol, estradiol-dependent feminine traits are expected to be positively related to immunity. However, heightened immunity in women may increase the risk of autoimmune disease, thus the relationship between femininity and immune quality may be complex. This study aimed to assess the relationship between morphological femininity and both the occurrence and severity of Hashimoto thyroiditis (HT) in women of reproductive age. Moreover, 95 women with HT and 84 without HT (all between 20 and 37 years) participated in the study. Morphological femininity was assessed based on somatic measurements of sexually dimorphic traits (2D:4D ratio, WHR, breast size, facial sexual dimorphism). The occurrence and severity of HT were assessed by serum TPOAb levels. The results showed that only the 2D:4D ratio of the right hand was higher in the HT group, indicating higher femininity in these women. However, there was also a positive relationship between facial femininity and TPOAb level in women with HT, indicating a higher severity of the disease. The results suggest that prenatal and pubertal exposure to estrogens may increase the probability or severity of autoimmune diseases in adulthood, but the relationship is tentative.
Collapse
Affiliation(s)
- Malwina Goździk
- Department of Human Biology, University of Wrocław, Wroclaw, Poland
| | | | | | | | - Wioleta Umławska
- Department of Human Biology, University of Wrocław, Wroclaw, Poland
| | | |
Collapse
|
2
|
Nilforoushzadeh MA, Heidari N, Heidari A, Ghane Y, Lotfi Z, Jaffary F, Najar Nobari M, Najar Nobari N. The role of BAFF and BAFF-R inhibitors in the treatment of immune thrombocytopenia; a focused review. Int Immunopharmacol 2024; 131:111827. [PMID: 38460303 DOI: 10.1016/j.intimp.2024.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune-driven disease characterized by increased destruction and impaired platelet production resulting in an enhanced risk of bleeding. Immunosuppressant agents are the most common treatment strategies for ITP. Despite their efficacy, these medications often cause unpredictable side effects. Recent investigations revealed that patients with ITP exhibit elevated B-cell activating factor (BAFF) levels in both their spleens and serum. Belimumab, a BAFF inhibitor, illustrated a promising therapeutic avenue for managing ITP by interfering with BAFF activity and long-lived plasma cell production. Both clinical and experimental studies have yielded positive outcomes when combining rituximab with an anti-BAFF monoclonal antibody in treating ITP. In addition, ianalumab, a monoclonal antibody with a dual mechanism that targets BAFF-R and deletes peripheral BAFF-R+ B cells, is currently being used for ITP treatment [NCT05885555]. The upcoming results from novel BAFF inhibitors, such as ianalumab, could offer clinicians an additional therapeutic option for treating ITP.
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nazila Heidari
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Heidari
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yekta Ghane
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Lotfi
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Jaffary
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Minou Najar Nobari
- Department of Orofacial Pain and Dysfunction, UCLA School of Dentistry, Los Angeles, CA, USA.
| | - Niloufar Najar Nobari
- Skin Repair Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sanges S, Tian W, Dubucquoi S, Chang JL, Collet A, Launay D, Nicolls MR. B-cells in pulmonary arterial hypertension: friend, foe or bystander? Eur Respir J 2024; 63:2301949. [PMID: 38485150 PMCID: PMC11043614 DOI: 10.1183/13993003.01949-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/22/2024]
Abstract
There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Wen Tian
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Jason L Chang
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Aurore Collet
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| | - Mark R Nicolls
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| |
Collapse
|
4
|
Satoh T, Uojima H, Wada N, Takiguchi H, Kaneko M, Nakamura M, Gonda N, Homma M, Hidaka H, Kusano C, Horie R. Introduction of direct-acting antiviral agents alters frequencies of anti-GPIIb/IIIa antibody-producing B cells in chronic hepatitis C patients with thrombocytopenia. Platelets 2023; 34:2161498. [PMID: 36597279 DOI: 10.1080/09537104.2022.2161498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The pathogenesis of thrombocytopenia in chronic hepatitis C (CHC) conceivably involves autoimmunity; however, the dynamics of autoantibodies and other autoimmune mechanisms remain unclear. In this study, we examined the changes in the frequency of anti-glycoprotein (GP) IIb/IIIa antibody-producing B cells and the levels of plasma B-cell-activating factor (BAFF), a proliferation-inducing ligand (APRIL), and interleukin (IL)-21 following treatment of CHC with direct-acting antiviral agents (DAA). We recruited 28 patients with CHC who underwent treatment with DAA for 8-12 weeks and subsequently tested negative for serum hepatitis C virus RNA. Thirty healthy controls were recruited for comparison. Platelet counts increased significantly (p = .016), and the frequency of anti-GPIIb/IIIa antibody-producing B cells decreased significantly (p = .002) in CHC patients with thrombocytopenia at the end of treatment (EOT) than before DAA treatment (baseline). However, these changes were not observed in CHC patients without thrombocytopenia. Plasma BAFF levels in CHC patients with thrombocytopenia significantly decreased from baseline to EOT (p = .002). Anti-GPIIb/IIIa antibody-producing B cells were positively correlated with plasma BAFF levels in these patients (r = 0.669, p = .039). These results suggest that DAA treatment suppresses the autoimmune response against platelets and improves thrombocytopenia.
Collapse
Affiliation(s)
- Takashi Satoh
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan.,Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Sagamihara, anagawa, Japan.,Regenerative Medicine and Cell Design Research Facility, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naohisa Wada
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hayato Takiguchi
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Sagamihara, anagawa, Japan
| | - Mei Kaneko
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Marina Nakamura
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Natsuki Gonda
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Michika Homma
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Chika Kusano
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ryouichi Horie
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan.,Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Sagamihara, anagawa, Japan
| |
Collapse
|
5
|
Yang Z, Li J, Song H, Mei Z, Jia X, Tian X, Yan C, Han Y. Unraveling the molecular links between benzopyrene exposure, NASH, and HCC: an integrated bioinformatics and experimental study. Sci Rep 2023; 13:20520. [PMID: 37993485 PMCID: PMC10665343 DOI: 10.1038/s41598-023-46440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Benzopyrene (B[a]P) is a well-known carcinogen that can induce chronic inflammation and fibrosis in the liver, leading to liver disease upon chronic exposure. Nonalcoholic steatohepatitis (NASH) is a chronic liver condition characterized by fat accumulation, inflammation, and fibrosis, often resulting in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the intricate connections between B[a]P exposure, NASH, and HCC. Through comprehensive bioinformatics analysis of publicly available gene expression profiles, we identified differentially expressed genes (DEGs) associated with B[a]P exposure, NASH, and liver cancer. Furthermore, network analysis revealed hub genes and protein-protein interactions, highlighting cellular metabolic dysfunction and disruption of DNA damage repair in the B[a]P-NASH-HCC process. Notably, HSPA1A and PPARGC1A emerged as significant genes in this pathway. To validate their involvement, we conducted qPCR analysis on cell lines and NASH mouse liver tissues and performed immunohistochemistry labeling in mouse and human HCC liver sections. These findings provide crucial insights into the potential regulatory mechanisms underlying benzopyrene-induced hepatotoxicity, shedding light on the pathogenesis of B[a]P-associated NASH and HCC. Moreover, our study suggests that HSPA1A and PPARGC1A could serve as promising therapeutic targets. Enhancing our understanding of their regulatory roles may facilitate the development of targeted therapies, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Zheming Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jiayin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Zhu Mei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaodong Jia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaoxiang Tian
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110167, Liaoning, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
6
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Al-Samkari H, Bussel JB. Common-sense combination therapy in refractory immune thrombocytopaenia. Br J Haematol 2023; 202:728-730. [PMID: 37287116 PMCID: PMC10527081 DOI: 10.1111/bjh.18919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General
Hospital, Harvard Medical School, Boston, MA
| | - James B. Bussel
- Department of Pediatrics, Weill Cornell Medical College,
New York, NY
| |
Collapse
|
8
|
Athni TS, Barmettler S. Hypogammaglobulinemia, late-onset neutropenia, and infections following rituximab. Ann Allergy Asthma Immunol 2023; 130:699-712. [PMID: 36706910 PMCID: PMC10247428 DOI: 10.1016/j.anai.2023.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Rituximab is a chimeric anti-CD20 monoclonal antibody that targets CD20-expressing B lymphocytes, has a well-defined efficacy and safety profile, and is broadly used to treat a wide array of diseases. In this review, we cover the mechanism of action of rituximab and focus on hypogammaglobulinemia and late-onset neutropenia-2 immune effects secondary to rituximab-and subsequent infection. We review risk factors and highlight key considerations for immunologic monitoring and clinical management of rituximab-induced secondary immune deficiencies. In patients treated with rituximab, monitoring for hypogammaglobulinemia and infections may help to identify the subset of patients at high risk for developing poor B cell reconstitution, subsequent infections, and adverse complications. These patients may benefit from early interventions such as vaccination, antibacterial prophylaxis, and immunoglobulin replacement therapy. Systematic evaluation of immunoglobulin levels and peripheral B cell counts by flow cytometry, both at baseline and periodically after therapy, is recommended for monitoring. In addition, in those patients with prolonged hypogammaglobulinemia and increased infections after rituximab use, immunologic evaluation for inborn errors of immunity may be warranted to further risk stratification, increase monitoring, and assist in therapeutic decision-making. As the immunologic effects of rituximab are further elucidated, personalized approaches to minimize the risk of adverse reactions while maximizing benefit will allow for improved care of patients with decreased morbidity and mortality.
Collapse
Affiliation(s)
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
9
|
Mustafa AJ, Balaky HM, Ismail PA, Abdalla HO, Muhammed KM. Serum Calprotectin and B-cell activating factor are potential biomarkers for Helicobacter pylori infection. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2023. [DOI: 10.4081/jbr.2023.10803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Humans always mount a robust immune response to the bacterial infection caused by Helicobacter pylori, which causes various gastrointestinal tract infections. Calprotectin (CALP) and B-Cell Activating Factor (BAFF) are inflammatory biomarkers having a role in the gastrointestinal neutrophilic response to bacterial infection. The study was designed to assess serum CALP and BAFF as inflammatory biomarkers in H. pylori infection and peptic ulcer patients. The current study comprised 112 people, including 62 H. pylori-infected patients (34 men and 28 women) who were clinically diagnosed with H. pylori infection via testing positive for the H. pylori stool antigen test; they were compared to a control group of 50 healthy people (34 men and 16 women) who were age and gender-matched to H. pylori-infected patients. The serum level of CALP and BAFF were assayed using the ELISA technique. The biochemical parameters were statistically compared between patients and controls by unpaired Man-Whitney U t-test and Receiver Operating Characteristic (ROC) curve analysis. There was a significant elevation of serum CALP in H. pylori-infected patients [116.4(120.7), p=0.0132] in comparison to healthy controls [99.50(115.8)]. Similarly, there was a significant elevation of serum BAFF concentration in H. pylori-infected patients [485.7(367.1), p=0.0014] in comparison to healthy controls [444.5(513.0)]. The ROC curve analysis suggests serum CALP and BAFF as reasonable inflammatory biomarkers for H. pylori infection with statistically significant (p=0.0135, p=0.0015) area under the ROC curve of (0.6361, 0.6748), respectively. CALP and BAFF are potent inflammatory biomarkers involved in the development and etiology of H. pylori infection. Serum CALP and BAFF levels could be used as biomarkers for chronic inflammation induced by H. pylori. CALP and BAFF biomarkers can be combined to diagnose and predict the prognosis of H. pylori infection.
Collapse
|
10
|
Yang Q, Kennicott K, Zhu R, Kim J, Wakefield H, Studener K, Liang Y. Sex hormone influence on female-biased autoimmune diseases hints at puberty as an important factor in pathogenesis. Front Pediatr 2023; 11:1051624. [PMID: 36793337 PMCID: PMC9923181 DOI: 10.3389/fped.2023.1051624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The majority of autoimmune diseases affect more women than men, suggesting an important role for sex hormones in regulating immune response. Current research supports this idea, highlighting the importance of sex hormones in both immune and metabolic regulation. Puberty is characterized by drastic changes in sex hormone levels and metabolism. These pubertal changes may be what forms the gulf between men and women in sex bias towards autoimmunity. In this review, a current perspective on pubertal immunometabolic changes and their impact on the pathogenesis of a select group of autoimmune diseases is presented. SLE, RA, JIA, SS, and ATD were focused on in this review for their notable sex bias and prevalence. Due to both the scarcity of pubertal autoimmune data and the differences in mechanism or age-of-onset in juvenile analogues often beginning prior to pubertal changes, data on the connection between the specific adult autoimmune diseases and puberty often relies on sex hormone influence in pathogenesis and established sex differences in immunity that begin during puberty.
Collapse
Affiliation(s)
- Qianfan Yang
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Kameron Kennicott
- Departments of Physiology and Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Runqi Zhu
- Departments of Physiology and Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jooyong Kim
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Hunter Wakefield
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Katelyn Studener
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Yun Liang
- Departments of Physiology and Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Correspondence: Yun Liang
| |
Collapse
|
11
|
Blincoe A, Labrosse R, Abraham RS. Acquired B-cell deficiency secondary to B-cell-depleting therapies. J Immunol Methods 2022; 511:113385. [PMID: 36372267 DOI: 10.1016/j.jim.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
The advantage of the newer biological therapies is that the immunosuppressive effect is targeted, in contrast, to the standard, traditional immunomodulatory agents, which have a more global effect. However, there are unintended targets and consequences, even to these "precise" therapeutics, leading to acquired or secondary immunodeficiencies. Besides depleting specific cellular immune subsets, these biological agents, which include monoclonal antibodies against biologically relevant molecules, often have broader functional immune consequences, which become apparent over time. This review focuses on acquired B-cell immunodeficiency, secondary to the use of B-cell depleting therapeutic agents. Among the many adverse consequences of B-cell depletion is the risk of hypogammaglobulinemia, failure of B-cell recovery, impaired B-cell differentiation, and risk of infections. Factors, which modulate the outcomes of B-cell depleting therapies, include the intrinsic nature of the underlying disease, the concomitant use of other immunomodulatory agents, and the clinical status of the patient and other co-existing morbidities. This article seeks to explore the mechanism of action of B-cell depleting agents, the clinical utility and adverse effects of these therapies, and the relevance of systematic and serial laboratory immune monitoring in identifying patients at risk for developing immunological complications, and who may benefit from early intervention to mitigate the secondary consequences. Though these biological drugs are gaining widespread use, a harmonized approach to immune evaluation pre-and post-treatment has not yet gained traction across multiple clinical specialties, because of which, the true prevalence of these adverse events cannot be determined in the treated population, and a systematic and evidence-based dosing schedule cannot be developed. The aim of this review is to bring these issues into focus, and initiate a multi-specialty, data-driven approach to immune monitoring.
Collapse
Affiliation(s)
- Annaliesse Blincoe
- Department of Paediatric Immunology and Allergy, Starship Child Health, Auckland, NZ, New Zealand
| | - Roxane Labrosse
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
12
|
Li J, Ling J, Yao C. Recent advances in NIR-II fluorescence based theranostic approaches for glioma. Front Chem 2022; 10:1054913. [PMID: 36438867 PMCID: PMC9682463 DOI: 10.3389/fchem.2022.1054913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Gliomas are among the most common malignant tumors in the central nervous system and lead to poor life expectancy. However, the effective treatment of gliomas remains a considerable challenge. The recent development of near infrared (NIR) II (1000-1700 nm) theranostic agents has led to powerful strategies in diagnosis, targeted delivery of drugs, and accurate therapy. Because of the high capacity of NIR-II light in deep tissue penetration, improved spatiotemporal resolution can be achieved to facilitate the in vivo detection of gliomas via fluorescence imaging, and high contrast fluorescence imaging guided surgery can be realized. In addition to the precise imaging of tumors, drug delivery nano-platforms with NIR-II agents also allow the delivery process to be monitored in real-time. In addition, the combination of targeted drug delivery, photodynamic therapy, and photothermal therapy in the NIR region significantly improves the therapeutic effect against gliomas. Thus, this mini-review summarizes the recent developments in NIR-II fluorescence-based theranostic agents for glioma treatment.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nosocomial Infection Management, Nantong Third People’s Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Chaoyi Yao
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
14
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
15
|
Wang Y, Xie X, Zheng S, Du G, Chen S, Zhang W, Zhuang J, Lin J, Hu S, Zheng K, Mikish A, Xu Z, Zhang G, Gargani L, Bruni C, Hoffmann-Vold AM, Matucci-Cerinic M, Furst DE. Serum B-cell activating factor and lung ultrasound B-lines in connective tissue disease related interstitial lung disease. Front Med (Lausanne) 2022; 9:1066111. [PMID: 36590969 PMCID: PMC9798453 DOI: 10.3389/fmed.2022.1066111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To investigate the role of serum B-cell activating factor (BAFF) and lung ultrasound (LUS) B-lines in connective tissue disease related interstitial lung disease (CTD-ILD), and their association with different ILD patterns on high resolution computed tomography (HRCT) of chest. METHODS We measured the levels of BAFF and KL-6 by ELISA in the sera of 63 CTD-ILD patients [26 with fibrotic ILD (F-ILD), 37 with non-fibrotic ILD (NF-ILD)], 30 CTD patients without ILD, and 26 healthy controls. All patients underwent chest HRCT and LUS examination. RESULTS Serum BAFF levels were significantly higher in CTD patients compared to healthy subjects (617.6 ± 288.1 pg/ml vs. 269.0 ± 60.4 pg/ml, p < 0.01). BAFF concentrations were significantly different between ILD group and non-ILD group (698.3 ± 627.4 pg/ml vs. 448.3 ± 188.6 pg/ml, p < 0.01). In patients with ILD, BAFF concentrations were significantly correlated with B-lines number (r = 0.37, 95% CI 0.13-0.56, p < 0.01), KL-6 level (r = 0.26, 95% CI 0.01-0.48, p < 0.05), and Warrick score (r = 0.33, 95% CI 0.09-0.53, p < 0.01), although all correlations were only low to moderate. B-lines number correlated with Warrick score (r = 0.65, 95% CI 0.48-0.78, p < 0.01), and KL-6 levels (r = 0.43, 95% CI 0.21-0.61, p < 0.01). Patients with F-ILD had higher serum BAFF concentrations (957.5 ± 811.0 pg/ml vs. 516.1 ± 357.5 pg/ml, p < 0.05), KL-6 levels (750.7 ± 759.0 U/ml vs. 432.5 ± 277.5 U/ml, p < 0.05), B-lines numbers (174.1 ± 82 vs. 52.3 ± 57.5, p < 0.01), and Warrick score (19.9 ± 4.6 vs. 13.6 ± 3.4, p < 0.01) vs. NF-ILD patients. The best cut-off values to separate F-ILD from NF-ILD using ROC curves were 408 pg/ml for BAFF (AUC = 0.73, p < 0.01), 367 U/ml for KL-6 (AUC = 0.72, p < 0.05), 122 for B-lines number (AUC = 0.89, p < 0.01), and 14 for Warrick score (AUC = 0.87, p < 0.01) respectively. CONCLUSION Serum BAFF levels and LUS B-lines number could be useful supportive biomarkers for detecting and evaluating the severity and/or subsets of CTD-ILD. If corroborated, combining imaging, serological, and sonographic biomarkers might be beneficial and comprehensive in management of CTD-ILD.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
- *Correspondence: Yukai Wang,
| | - Xuezhen Xie
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Shaoyu Zheng
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Guangzhou Du
- Department of Radiology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Shaoqi Chen
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shaoqi Chen,
| | - Weijin Zhang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jinghua Zhuang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jianqun Lin
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Shijian Hu
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Kedi Zheng
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Angelina Mikish
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Zhuangyong Xu
- Department of Radiology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Luna Gargani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Cosimo Bruni
- Division of Rheumatology, Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Florence, Italy
| | | | - Marco Matucci-Cerinic
- Division of Rheumatology, Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Daniel E. Furst
- Division of Rheumatology, Department of Experimental and Clinical Medicine, Careggi University Hospital, University of Florence, Florence, Italy
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|