1
|
Delehedde C, Ciganek I, Bernard PL, Laroui N, Da Silva CC, Gonçalves C, Nunes J, Bennaceur-Griscelli AL, Imeri J, Huyghe M, Even L, Midoux P, Rameix N, Guittard G, Pichon C. Enhancing natural killer cells proliferation and cytotoxicity using imidazole-based lipid nanoparticles encapsulating interleukin-2 mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102263. [PMID: 39104868 PMCID: PMC11298638 DOI: 10.1016/j.omtn.2024.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation, involving high costs, risks, and toxicity, emphasizing the need for alternative way as mRNA technology. We successfully developed, screened, and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells, KHYG-1 cells, and primary NK cells with high efficiency without cytotoxicity, while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover, the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably, the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether, our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies.
Collapse
Affiliation(s)
- Christophe Delehedde
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Ivan Ciganek
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Pierre Louis Bernard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Nabila Laroui
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
| | - Cathy Costa Da Silva
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
| | - Jacques Nunes
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Anne-Lise Bennaceur-Griscelli
- Inserm U 1310 F-94800 Villejuif and CITHERA/ UMS45 Infrastructure INGESTEM, 91100 Evry, France
- University Paris Saclay, APHP Paul Brousse Hospital, School of Medicine, 94270 Le Kremlin Bicêtre, France
| | - Jusuf Imeri
- Inserm U 1310 F-94800 Villejuif and CITHERA/ UMS45 Infrastructure INGESTEM, 91100 Evry, France
- University Paris Saclay, APHP Paul Brousse Hospital, School of Medicine, 94270 Le Kremlin Bicêtre, France
| | - Matthias Huyghe
- Inserm U 1310 F-94800 Villejuif and CITHERA/ UMS45 Infrastructure INGESTEM, 91100 Evry, France
- University Paris Saclay, APHP Paul Brousse Hospital, School of Medicine, 94270 Le Kremlin Bicêtre, France
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
| | - Nathalie Rameix
- Sanofi R&D, Integrated Drug Discovery, 94400 Vitry-sur-Seine, France
| | - Geoffrey Guittard
- Immunity and Cancer Team, Onco-Hemato Immuno-Onco Department, OHIO, Cancer Research Centre of Marseille, CRCM, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, 13273 Marseille, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, 45071 Orléans Cedex 02, France
- Inserm UMS 55 ART ARNm and University of Orléans, 45100 Orléans, France
- Institut Universitaire de France, 1 rue Descartes, 75035 Paris, France
| |
Collapse
|
2
|
Salhotra A, Falk L, Park G, Sandhu K, Ali H, Modi B, Hui S, Nakamura R. A review of low dose interleukin-2 therapy in management of chronic graft-versus-host-disease. Expert Rev Clin Immunol 2024; 20:169-184. [PMID: 37921226 DOI: 10.1080/1744666x.2023.2279188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Patients with chronic graft versus host disease (cGVHD) have low circulating regulatory T cells (Tregs). Interleukin-2(IL-2) is a growth factor for Tregs, and clinical trials have explored its use in cGVHD patients. AREAS COVERED Here we will discuss the biology of IL-2, its rationale for use and results of clinical trials in cGVHD. We also describe its mechanisms of action and alteration in gene expression in T-cell subsets after treatment with low dose IL-2 and photopheresis. EXPERT OPINION Clinical trials using Low dose IL-2 have been done at single centers in small patient series. The majority of the clinical responses seen with IL-2 in cGVHD are classified as partial responses and efficacy as a single agent is limited. Compared to currently approved oral therapies, it has to be administered subcutaneously and requires specialized processing for compounding and storage limiting its widespread use. Its use is associated with constitutional symptoms and local injection site reactions. Local reactions can be easily managed by supportive care practices like rotation of injection sites and premeditations, constitutional symptoms resolve with, dose reduction (25-50%) allowing for continued therapy. Additional studies are needed to define optimal combination strategies with approved agents. Longer acting formulations of IL-2 that require less frequent dosing may also improve patient compliance.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Leah Falk
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Gabriel Park
- Department of Pharmacy, City of Hope National Medical Center, Duarte, CA, USA
| | - Karamjeet Sandhu
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Haris Ali
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Badri Modi
- Department of Surgery, Division of Dermatology, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| |
Collapse
|
3
|
Dehghan R, Parikhani AB, Cohan RA, Shokrgozar MA, Mirabzadeh E, Ajdary S, Zeinali S, Ghaderi H, Talebkhan Y, Behdani M. Specific Targeting of Zinc Transporter LIV-1 with Immunocytokine Containing Anti-LIV-1 VHH and Human IL-2 and Evaluation of its In vitro Antitumor Activity. Curr Pharm Des 2024; 30:868-876. [PMID: 38482625 DOI: 10.2174/0113816128295195240305060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/16/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Interleukin 2 (IL-2) is a vital cytokine in the induction of T and NK cell responses, the proliferation of CD8+ T cells, and the effective treatment of human cancers such as melanoma and renal cell carcinoma. However, widespread use of this cytokine is limited due to its short half-life, severe toxicity, lack of specific tumor targeting, and activation of Treg cells mediated by high-affinity interleukin-2 receptors. OBJECTIVE In this study, a tumor-targeting LIV-1 VHH-mutIL2 immunocytokine with reduced CD25 (α chain of the high-affinity IL-2 receptor) binding activity was developed to improve IL-2 half-life by decreasing its renal infiltration in comparison with wild and mutant IL-2 molecules. METHODS The recombinant immunocytokine was designed and expressed. The biological activity of the purified fusion protein was investigated in in vitro and in vivo experiments. RESULTS The fusion protein represented specific binding to MCF7 (the breast cancer cell line) and more efficient cytotoxicity than wild-type IL-2 and mutant IL-2. The PK parameters of the recombinant immunocytokine were also improved in comparison to the IL-2 molecules. CONCLUSION The observed results showed that LIV1-mIL2 immunocytokine could be considered as an effective agent in the LIV-1-targeted treatment of cancers due to its longer half-life and stronger cytotoxicity.
Collapse
Affiliation(s)
- Rada Dehghan
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Arezoo Beig Parikhani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Hajarossadat Ghaderi
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Nealy ES, Reed SJ, Adelmund SM, Badeau BA, Shadish JA, Girard EJ, Pakiam FJ, Mhyre AJ, Price JP, Sarkar S, Kalia V, DeForest CA, Olson JM. Versatile Tissue-Injectable Hydrogels with Extended Hydrolytic Release of Bioactive Protein Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.554391. [PMID: 37693598 PMCID: PMC10491173 DOI: 10.1101/2023.09.01.554391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue. In this study, we engineered injectable, biocompatible hydrogels that function as a local protein therapeutic depot with a high degree of user-customizability. We showcase a PEG-based hydrogel functionalized with bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) handles for its polymerization and functionalization with a variety of payloads. Small-molecule and protein cargos, including chemokines and antibodies, were site-specifically modified with hydrolysable "azidoesters" of varying hydrophobicity via direct chemical conjugation or sortase-mediated transpeptidation. These hydrolysable esters afforded extended release of payloads linked to our hydrogels beyond diffusion; with timescales spanning days to months dependent on ester hydrophobicity. Injected hydrogels polymerize in situ and remain in tissue over extended periods of time. Hydrogel-delivered protein payloads elicit biological activity after being modified with SPAAC-compatible linkers, as demonstrated by the successful recruitment of murine T-cells to a mouse melanoma model by hydrolytically released murine CXCL10. These results highlight a highly versatile, customizable hydrogel-based delivery system for local delivery of protein therapeutics with payload release profiles appropriate for a variety of clinical needs.
Collapse
Affiliation(s)
- Eric S. Nealy
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | | | - Steve M. Adelmund
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Barry A. Badeau
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Jared A. Shadish
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Emily J. Girard
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | | | - Andrew J. Mhyre
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | - Jason P. Price
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | - Surojit Sarkar
- Seattle Children’s Research Institute, Seattle WA
- Department of Pathology, University of Washington, Seattle WA
- Department of Pediatrics, University of Washington, Seattle WA
| | - Vandana Kalia
- Seattle Children’s Research Institute, Seattle WA
- Department of Pediatrics, University of Washington, Seattle WA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA
- Department of Bioengineering, University of Washington, Seattle WA
- Department of Biochemistry, University of Washington, Seattle WA
- Department of Biology, University of Washington, Seattle WA
- Department of Chemistry, University of Washington, Seattle WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA
- Institute for Protein Design, University of Washington, Seattle WA
| | - James M. Olson
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
- Department of Pharmacology, University of Washington, Seattle WA
| |
Collapse
|
5
|
Quijano-Rubio A, Bhuiyan AM, Yang H, Leung I, Bello E, Ali LR, Zhangxu K, Perkins J, Chun JH, Wang W, Lajoie MJ, Ravichandran R, Kuo YH, Dougan SK, Riddell SR, Spangler JB, Dougan M, Silva DA, Baker D. A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy. Nat Biotechnol 2023; 41:532-540. [PMID: 36316485 PMCID: PMC10110466 DOI: 10.1038/s41587-022-01510-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
The therapeutic potential of recombinant cytokines has been limited by the severe side effects of systemic administration. We describe a strategy to reduce the dose-limiting toxicities of monomeric cytokines by designing two components that require colocalization for activity and that can be independently targeted to restrict activity to cells expressing two surface markers. We demonstrate the approach with a previously designed mimetic of cytokines interleukin-2 and interleukin-15-Neoleukin-2/15 (Neo-2/15)-both for trans-activating immune cells surrounding targeted tumor cells and for cis-activating directly targeted immune cells. In trans-activation mode, tumor antigen targeting of the two components enhanced antitumor activity and attenuated toxicity compared with systemic treatment in syngeneic mouse melanoma models. In cis-activation mode, immune cell targeting of the two components selectively expanded CD8+ T cells in a syngeneic mouse melanoma model and promoted chimeric antigen receptor T cell activation in a lymphoma xenograft model, enhancing antitumor efficacy in both cases.
Collapse
Affiliation(s)
- Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Monod Bio, Inc., Seattle, WA, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Isabel Leung
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Zhangxu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jilliane Perkins
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jung-Ho Chun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wentao Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marc J Lajoie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Outpace Bio, Seattle, WA, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stanley R Riddell
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Michael Dougan
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Monod Bio, Inc., Seattle, WA, USA.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
IL-2 Flexible Loops Might Play a Role in IL-2 Interaction with the High-Affinity IL-2 Receptor: A Molecular Dynamics (MD) Study. J CHEM-NY 2022. [DOI: 10.1155/2022/3646375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The clinical use of high-dose IL-2 in cancer immunotherapy faces several drawbacks such as toxicity and unfavorable pharmacokinetic profile. These drawbacks can be avoided by inhibiting IL-2 interaction with the CD25 subunit, which is a component of the high-affinity IL-2 receptor (IL-2Rαβγ). Several studies showed mutations of potential IL-2 residues such as R38, F42, Y45, and Y72 would produce IL-2 that is CD25-independent. In essence, structural comparison between wild-type (WT) IL-2 and CD25-independent IL-2 can be very insightful to assess the role of IL-2 flexibility and conformation in the IL-2 receptor interactions. Here, we investigated the flexibility loops and conformation of IL-2m (F24A, Y45A, and L72G), which is known to be CD25-independent, and IL-2m2 (F42Y and L72R) mutants along with WT IL-2 using MD simulations. Despite residue mutations, both IL-2m and IL-2m2 showed comparable conformational compactness and better stability than WT IL-2. Interestingly, IL-2m and IL-2m2 mutants showed rigid BC and CD loops in comparison to WT IL-2 . Also, the AB loop conformation of IL-2m was a bent structure compared to the WT IL-2 and IL-2m2. Principal component analysis (PCA) and free-energy landscape results suggested IL-2m and IL-2m2 have stable conformations compared to the WT IL-2. Therefore, these mutation sites of IL-2 produced stable and rigid loops that might prevent IL-2 from binding to the CD25 subunit. Our results can help to assess IL-2 flexibility loops to design new CD25-independent IL-2 mutants without compromising the IL-2 structure.
Collapse
|
7
|
Viitanen R, Virtanen H, Liljenbäck H, Moisio O, Li XG, Nicolini V, Richard M, Klein C, Nayak T, Jalkanen S, Roivainen A. [68Ga]Ga-DOTA-Siglec-9 Detects Pharmacodynamic Changes of FAP-Targeted IL2 Variant Immunotherapy in B16-FAP Melanoma Mice. Front Immunol 2022; 13:901693. [PMID: 35874707 PMCID: PMC9298541 DOI: 10.3389/fimmu.2022.901693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule, which supports contact between leukocytes and inflamed endothelium. There is evidence that VAP-1 is involved in the recruitment of leukocytes to melanoma tumors. Interleukin-2 (IL-2)-based immunotherapy is an efficient therapy that promotes immune system activity against cancers but is associated with toxicity. In the present study, we evaluated the feasibility of PET/CT imaging using the radiotracer [68Ga]Ga-DOTA-Siglec-9, which is targeted to VAP-1, to monitor pharmacodynamic effects of a novel FAP-IL2v immunocytokine (a genetically engineered variant of IL-2 fused with fibroblast activation protein) in the B16-FAP melanoma model. At 9 days after the inoculation of B16-FAP melanoma cells, mice were studied with [68Ga]Ga-DOTA-Siglec-9 PET/CT as a baseline measurement. Immediately after baseline imaging, mice were treated with FAP-IL2v or vehicle, and treatment was repeated 3 days later. Subsequent PET/CT imaging was performed 3, 5, and 7 days after baseline imaging. In addition to in vivo PET imaging, ex vivo autoradiography, histology, and immunofluorescence staining were performed on excised tumors. B16-FAP tumors were clearly detected with [68Ga]Ga-DOTA-Siglec-9 PET/CT during the follow-up period, without differences in tumor volume between FAP-IL2v-treated and vehicle-treated groups. Tumor-to-muscle uptake of [68Ga]Ga-DOTA-Siglec-9 was significantly higher in the FAP-IL2v-treated group than in the vehicle-treated group 7 days after baseline imaging, and this was confirmed by tumor autoradiography analysis. FAP-IL2v treatment did not affect VAP-1 expression on the tumor vasculature. However, FAP-IL2v treatment increased the number of CD8+ T cells and natural killer cells in tumors. The present study showed that [68Ga]Ga-DOTA-Siglec-9 can detect B16-FAP tumors and allows monitoring of FAP-IL2v treatment.
Collapse
Affiliation(s)
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Olli Moisio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Valeria Nicolini
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marine Richard
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Tapan Nayak
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sirpa Jalkanen
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- *Correspondence: Anne Roivainen,
| |
Collapse
|
8
|
Rosen DB, Kvarnhammar AM, Laufer B, Knappe T, Karlsson JJ, Hong E, Lee YC, Thakar D, Zúñiga LA, Bang K, Sabharwal SS, Uppal K, Olling JD, Kjaergaard K, Kurpiers T, Schnabel M, Reich D, Glock P, Zettler J, Krusch M, Bernhard A, Heinig S, Konjik V, Wegge T, Hehn Y, Killian S, Viet L, Runz J, Faltinger F, Tabrizi M, Abel KL, Breinholt VM, Singel SM, Sprogøe K, Punnonen J. TransCon IL-2 β/γ: a novel long-acting prodrug with sustained release of an IL-2Rβ/γ-selective IL-2 variant with improved pharmacokinetics and potent activation of cytotoxic immune cells for the treatment of cancer. J Immunother Cancer 2022; 10:jitc-2022-004991. [PMID: 35817480 PMCID: PMC9274542 DOI: 10.1136/jitc-2022-004991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recombinant interleukin-2 (IL-2, aldesleukin) is an approved cancer immunotherapy but causes severe toxicities including cytokine storm and vascular leak syndrome (VLS). IL-2 promotes antitumor function of IL-2Rβ/γ+ natural killer (NK) cells and CD8+, CD4+ and gamma delta (γδ) T cells. However, IL-2 also potently activates immunosuppressive IL-2Rα+ regulatory T cells (Tregs) and IL-2Rα+ eosinophils and endothelial cells, which may promote VLS. Aldesleukin is rapidly cleared requiring frequent dosing, resulting in high Cmax likely potentiating toxicity. Thus, IL-2 cancer immunotherapy has two critical drawbacks: potent activation of undesired IL-2Rα+ cells and suboptimal pharmacokinetics with high Cmax and short half-life. METHODS TransCon IL-2 β/γ was designed to optimally address these drawbacks. To abolish IL-2Rα binding yet retain strong IL-2Rβ/γ activity, IL-2 β/γ was created by permanently attaching a small methoxy polyethylene glycol (mPEG) moiety in the IL-2Rα binding site. To improve pharmacokinetics, IL-2 β/γ was transiently attached to a 40 kDa mPEG carrier via a TransCon (transient conjugation) linker creating a prodrug, TransCon IL-2 β/γ, with sustained release of IL-2 β/γ. IL-2 β/γ was characterized in binding and primary cell assays while TransCon IL-2 β/γ was studied in tumor-bearing mice and cynomolgus monkeys. RESULTS IL-2 β/γ demonstrated selective and potent human IL-2Rβ/γ binding and activation without IL-2Rα interactions. TransCon IL-2 β/γ showed slow-release pharmacokinetics with a low Cmax and a long (>30 hours) effective half-life for IL-2 β/γ in monkeys. In mouse tumor models, TransCon IL-2 β/γ promoted CD8+ T cell and NK cell activation and antitumor activity. In monkeys, TransCon IL-2 β/γ induced robust activation and expansion of CD8+ T cells, NK cells and γδ T cells, relative to CD4+ T cells, Tregs and eosinophils, with no evidence of cytokine storm or VLS. Similarly, IL-2 β/γ enhanced proliferation and cytotoxicity of primary human CD8+ T cells, NK cells and γδ T cells. SUMMARY TransCon IL-2 β/γ is a novel long-acting prodrug with sustained release of an IL-2Rβ/γ-selective IL-2. It has remarkable and durable pharmacodynamic effects in monkeys and potential for improved clinical efficacy and tolerability compared with aldesleukin. TransCon IL-2 β/γ is currently being evaluated in a Phase 1/2 clinical trial (NCT05081609).
Collapse
Affiliation(s)
| | | | | | | | | | - Enping Hong
- Ascendis Pharma Inc, Redwood City, California, USA
| | - Yu-Chi Lee
- Ascendis Pharma Inc, Redwood City, California, USA
| | - Dhruv Thakar
- Ascendis Pharma Inc, Redwood City, California, USA
| | | | - Kathy Bang
- Ascendis Pharma Inc, Redwood City, California, USA
| | | | - Karan Uppal
- Ascendis Pharma Inc, Redwood City, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laura Viet
- Ascendis Pharma GmbH, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dehghan R, Beig Parikhani A, Zeinali S, Shokrgozar M, Amanzadeh A, Ajdary S, Ahangari Cohan R, Talebkhan Y, Behdani M. Efficacy and antitumor activity of a mutant type of interleukin 2. Sci Rep 2022; 12:5376. [PMID: 35354847 PMCID: PMC8968711 DOI: 10.1038/s41598-022-09278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInterleukin-2 (IL-2) is an important cytokine in survival, expansion, function of CD8+ T cells and natural killer cells in immunotherapy of melanoma and renal cell carcinomas. Its severe toxicity following binding to its high affinity IL-2 receptor alpha (IL-2Rα) has restricted its application in cancer patients. In the present study, we investigated the antitumor efficacy and cytotoxicity of a mutated human IL-2 previously designed by selective amino acid substitutions, and its reduced affinity towards high-affinity IL-2Rα (CD25) was approved compared to the wild type IL-2 (wtIL-2). Furthermore, their ability to induce PBMC cell proliferation, and interferon-gamma secretion was compared. The mutant IL-2 also represented higher antitumor activity and more efficient cytotoxicity than wild type hIL-2. The developed mutant IL-2 can be an alternative tool in IL-2 associated immunotherapy of various cancers.
Collapse
|
10
|
Beig Parikhani A, Bagherzadeh K, Dehghan R, Biglari A, Shokrgozar MA, Riazi Rad F, Zeinali S, Talebkhan Y, Ajdary S, Ahangari Cohan R, Behdani M. Human IL-2Rɑ subunit binding modulation of IL-2 through a decline in electrostatic interactions: A computational and experimental approach. PLoS One 2022; 17:e0264353. [PMID: 35213635 PMCID: PMC8880607 DOI: 10.1371/journal.pone.0264353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Although high-dose IL-2 has clear antitumor effects, severe side effects like severe toxicity and activation of Tregs by binding of IL-2 to high-affinity IL-2R, hypotension, and vascular leak syndrome limit its applications as a therapeutic antitumor agent. Here in this study, a rational computational approach was employed to develop and design novel triple-mutant IL-2 variants with the aim of improving IL-2-based immunotherapy. The affinity of the mutants towards IL-2Rα was further computed with the aid of molecular dynamic simulations and umbrella sampling techniques and the obtained results were compared to those of wild-type IL-2. In vitro experiments by flow cytometry showed that the anti-CD25 mAb was able to bind to PBMC cells even after mutant 2 preincubation, however, the binding strength of the mutant to α-subunit was less than of wtIL-2. Additionally, reduction of IL-2Rα subunit affinity did not significantly disturb IL-2/IL2Rβγc subunits interactions.
Collapse
Affiliation(s)
- Arezoo Beig Parikhani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rada Dehghan
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Biglari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: , (MB); (RAC); (SA)
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: , (MB); (RAC); (SA)
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: , (MB); (RAC); (SA)
| |
Collapse
|
11
|
Switchable assembly and function of antibody complexes in vivo using a small molecule. Proc Natl Acad Sci U S A 2022; 119:2117402119. [PMID: 35210365 PMCID: PMC8892515 DOI: 10.1073/pnas.2117402119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
The antigen specificity and long serum half-life of monoclonal antibodies have made them a critical part of modern therapeutics. These properties have been coopted in a number of synthetic formats, such as antibody-drug conjugates, bispecific antibodies, or Fc-fusion proteins to generate novel biologic drug modalities. Historically, these new therapies have been generated by covalently linking multiple molecular moieties through chemical or genetic methods. This irreversible fusion of different components means that the function of the molecule is static, as determined by the structure. Here, we report the development of a technology for switchable assembly of functional antibody complexes using chemically induced dimerization domains. This approach enables control of the antibody's intended function in vivo by modulating the dose of a small molecule. We demonstrate this switchable assembly across three therapeutically relevant functionalities in vivo, including localization of a radionuclide-conjugated antibody to an antigen-positive tumor, extension of a cytokine's half-life, and activation of bispecific, T cell-engaging antibodies.
Collapse
|
12
|
Shaker MA, Doré JJE, Younes HM. Controlled release of bioactive IL-2 from visible light photocured biodegradable elastomers for cancer immunotherapy applications. Pharm Dev Technol 2021; 27:40-51. [PMID: 34927547 DOI: 10.1080/10837450.2021.2019764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biodegradable elastomeric controlled-release poly (decane-co-tricarballylate) (PDET) based matrices capable of maintaining the stability and bioactivity of Interleukin-2 (IL-2) through the utilization of visible-light curing and solvent-free loading of the cytokine are reported. The elastomeric devices were fabricated by intimately mixing lyophilized IL-2 powder with the acrylated prepolymer before photocrosslinking. The bioactivity of the released protein was assessed by its ability to stimulate the proliferation of the C57BL/6 mouse cytotoxic T lymphocyte, and its concentration was analysed using ELISA. The influence of changes in the polymer's physicochemical and mechanical properties on IL-2 release kinetics and bioactivity were also studied. The increase in the device's surface area and the incorporation of trehalose in the loaded lyophilized mix increased the IL-2 release rate with drug release proceeding via typical zero-order release kinetics. Moreover, the decrease in the degree of acrylation of the prepared devices increased the IL-2 release rate. The bioactivity assay showed that IL-2 retained over 94% of its initial bioactivity throughout 28 days of the release period. A new protein delivery vehicle composed of biodegradable PDET elastomers was demonstrated to be promising and effective for linear, constant, and sustained osmotic-driven release of bioactive IL-2 and other sensitive proteins and hormones.
Collapse
Affiliation(s)
- Mohamed A Shaker
- School of Pharmacy, Memorial University of Newfoundland, St. John's, Canada.,Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jules J E Doré
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Husam M Younes
- Tissue Engineering and Nanopharmaceuticals Research Laboratory, Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Tryptanthrin exerts anti-breast cancer effects both in vitro and in vivo through modulating the inflammatory tumor microenvironment. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:245-266. [PMID: 33151167 DOI: 10.2478/acph-2021-0020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2020] [Indexed: 01/19/2023]
Abstract
Tryptanthrin is an indole quinazoline alkaloid from the indigo-bearing plants, such as Isatis indigotica Fort. Typically, this natural compound shows a variety of pharmacological activities such as antitumor, antibacterial, anti-inflammatory and antioxidant effects. This study was conducted to assess the antitumor activity of tryptanthrin in breast cancer models both in vitro and in vivo, and to explore the important role of the inflammatory tumor microenvironment (TME) in the antitumor effects of tryptanthrin. Human breast adenocarcinoma MCF-7 cells were used to assess the antitumor effect of tryptanthrin in vitro. MTT assay and colony formation assay were carried out to monitor the antiproliferative effect of tryptanthrin (1.56~50.0 μmol L-1) on inhibiting the proliferation and colony formation of MCF-7 cells, respectively. The migration and invasion of MCF-7 cells were evaluated by wound healing assay and Transwell chamber assay, respectively. Moreover, the 4T1 murine breast cancer model was established to examine the pharmacological activity of tryptanthrin, and three groups with different doses of tryptanthrin (25, 50 and 100 mg kg-1) were set in study. Additionally, tumor volumes and organ coefficients were measured and calculated. After two weeks of tryptanthrin treatment, samples from serum, tumor tissue and different organs from tumor-bearing mice were collected, and the enzyme-linked immunosorbent assay (ELISA) was performed to assess the regulation of inflammatory molecules in mouse serum. Additionally, pathological examinations of tumor tissues and organs from mice were evaluated through hematoxylin and eosin (H&E) staining. The expression of inflammatory proteins in tumor tissues was measured by immunohistochemistry (IHC) and Western blotting. Tryptanthrin inhibited the proliferation, migration and invasion of MCF-7 cells, up-regulated the protein level of E-cadherin, and down-regulated those of MMP-2 and Snail, as suggested by the MCF-7 cell experiment. According to the results from in vivo experiment, tryptanthrin was effective in inhibiting tumor growth, and it showed favorable safety without inducing the fluctuations of body mass and organ coefficient (p > 0.05). In addition, tryptanthrin also suppressed the expression levels of NOS1, COX-2 and NF-κB in mouse tumor tissues, and regulated those of IL-2, IL-10 and TNF-α in the serum of tumor cells-transplanted mice. Tryptanthrin exerted its anti-breast cancer activities through modulating the inflammatory TME both in vitro and in vivo.
Collapse
|
14
|
Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. Vaccines (Basel) 2020; 8:vaccines8040733. [PMID: 33287413 PMCID: PMC7761868 DOI: 10.3390/vaccines8040733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Recent developments in gene engineering technologies have drastically improved the therapeutic treatment options for cancer patients. The use of effective chimeric antigen receptor T (CAR-T) cells and recombinant T cell receptor engineered T (rTCR-T) cells has entered the clinic for treatment of hematological malignancies with promising results. However, further fine-tuning, to improve functionality and safety, is necessary to apply these strategies for the treatment of solid tumors. The immunosuppressive microenvironment, the surrounding stroma, and the tumor heterogeneity often results in poor T cell reactivity, functionality, and a diminished infiltration rates, hampering the efficacy of the treatment. The focus of this review is on recent advances in rTCR-T cell therapy, to improve both functionality and safety, for potential treatment of solid tumors and provides an overview of ongoing clinical trials. Besides selection of the appropriate tumor associated antigen, efficient delivery of an optimized recombinant TCR transgene into the T cells, in combination with gene editing techniques eliminating the endogenous TCR expression and disrupting specific inhibitory pathways could improve adoptively transferred T cells. Armoring the rTCR-T cells with specific cytokines and/or chemokines and their receptors, or targeting the tumor stroma, can increase the infiltration rate of the immune cells within the solid tumors. On the other hand, clinical “off-tumor/on-target” toxicities are still a major potential risk and can lead to severe adverse events. Incorporation of safety switches in rTCR-T cells can guarantee additional safety. Recent clinical trials provide encouraging data and emphasize the relevance of gene therapy and gene editing tools for potential treatment of solid tumors.
Collapse
|
15
|
Mortensen MR, Mock J, Bertolini M, Stringhini M, Catalano M, Neri D. Targeting an engineered cytokine with interleukin-2 and interleukin-15 activity to the neovasculature of solid tumors. Oncotarget 2020; 11:3972-3983. [PMID: 33216834 PMCID: PMC7646832 DOI: 10.18632/oncotarget.27772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
There is a growing interest in the antibody-based delivery of cytokines to the tumor environment as a means to boost the anti-cancer activity of tumor-resident T cells and NK cells. Here, we describe the expression and characterization of fusion proteins, featuring the L19 antibody (specific to the alternatively-spliced EDB domain of fibronectin) and an engineered cytokine with interleukin-2 and interleukin-15 properties. The cytokine moiety was fused either at the N-terminal or at the C-terminal extremity and both fusion proteins showed a selective tumor accumulation in a quantitative biodistribution experiment. The N-terminal fusion inhibited tumor growth in immunocompetent mice bearing F9 carcinomas or WEHI-164 sarcomas when used as single agent. The anticancer activity was compared to the one of the same cytokine payload used as recombinant protein or fused to an anti-hen egg lysozyme antibody, serving as negative control of irrelevant specificity in the mouse. These results indicate that the antibody-based delivery of engineered cytokines to the tumor neovasculature may mediate a potent anticancer activity.
Collapse
Affiliation(s)
- Michael R Mortensen
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Bertolini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|