1
|
Yao T, Tong Z, Lu J, Fu S, Cheng C, Ye L. A novel C-type lectin, perlucin, from the small abalone, Haliotis diversicolor involved in the innate immune defense against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110029. [PMID: 39561913 DOI: 10.1016/j.fsi.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
C-type lectins (CTLs), a member of pattern recognition receptors, play an important role in the innate immunity by recognizing invading microorganisms. In this study, a novel perlucin gene (designated as HdPer 3), a typical CTLs was cloned and characterized from the small abalone Haliotis diversicolor. The open reading frame of HdPer 3 was 471 bp, encoding a protein of 156 amino acids that included a single carbohydrate-recognition domain. HdPer 3 was widely expressed in all tested tissues and developmental stage. HdPer 3 expression was significantly up-regulated after Vibrio harveyi infection, suggesting that HdPer 3 was activated in response to bacterial infection. The encapsulation ability of hemocytes could be significantly enhanced by the recombinant protein HdPer 3 (rHdPer 3). To understand the regulation mechanism of the HdPer 3, HdPer 3 was silenced in vivo by RNAi. Knocking down HdPer 3 decreased the hemocytes phagocytosis. Meanwhile, knocking down HdPer 3 can reduce the expression of 2 phagocytosis-related genes (Rab and Dynamin), TNF-α, and 2 MAPK pathway-related genes (MAPK-X1 and Ras) after V. harveyi infection. Moreover, HdPer 3 interference could increase the bacterial load in the hemolymph and the mortality of abalones after V. harveyi infection. All these results suggested that HdPer 3 played a crucial role in the defense against V. harveyi infection by recognizing bacterial pathogens and activating the expression of immune-related genes.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhengxin Tong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Shengli Fu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| | - Lingtong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
2
|
Zhang L, Wei C, Guo Y, Hu J, Wang M. Molecular identification and functional characterization of a C-type lectin gene in Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109833. [PMID: 39147178 DOI: 10.1016/j.fsi.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
C-type lectins (CTLs) are a kind of Ca2+-dependent immunoreactive factors, which participated in pathogens recognition and defense. The present study identified a new CTL from hard clam Meretrix meretrix (designated as MmCTL4). The full-length of MmCTL4 cDNA was 608 bp, encoding a presumed signal peptide of 19 bp and a carbohydrate recognition domain (CRD) of 131 bp. The tertiary structure of recombinant MmCTL4 protein (rMmCTL4) was the typical long double-ring structure with three conserved disulfide bonds, and the motifs in Ca2+-binding sites of MmCTL4 were QPN and WSD. The SYBR Green real-time PCR analysis indicated that MmCTL4 was widely expressed in the hemocytes, hepatopancreas and mantle of healthy clams. After Vibrio splendidus stimulation, the temporal expression profile of MmCTL4 mRNA in hemocytes and hepatopancreas increased by 7.8-fold at 6 hpi and 3.9-fold at 12 hpi, respectively. The cDNA fragments encoding MmCTL4 were recombined into pET-32a (+) vectors, and transformed into Escherichia coli BL21 (DE3). The rMmCTL4 with the presence of Ca2+ performed obvious hemagglutination activity, and could agglutinate E. coli, Bacillus subtilis, and Staphylococcus aureus, while it only weakly agglutinate Vibrio parahaemolyticus and fungi P. pastoris. The agglutination activity of rMmCTL4 were significantly inhibited by D-mannose, D-xylose, D-lactose, maltose and lipopolysaccharides. These results indicated that MmCTL4, as a class of typical pattern recognition receptors (PRRs), could protect the host against pathogen invasion in the innate immunity of clams.
Collapse
Affiliation(s)
- Lu Zhang
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Cun Wei
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Ying Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
| | - Jingjie Hu
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Mengqiang Wang
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Simha N A, Patil SM, M K J, N C, Wong LS, Kijsomporn J, Raj R, Ramu R. From sugar binders to diabetes fighters: the lectin saga of antihyperglycemic activity through systematic review and meta-analysis. Front Pharmacol 2024; 15:1382876. [PMID: 39323638 PMCID: PMC11422237 DOI: 10.3389/fphar.2024.1382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Lectins are carbohydrate-binding proteins that are extremely selective for sugar groups in the other molecules. As a result, they perform a variety of roles in biological processes involving cell, carbohydrate, and protein recognition at the cellular and molecular levels. Because lectins can bind to carbohydrates, they may play a role in determining the rate of carbohydrate digestion. They also bind to some proteins involved in diabetes mellitus (DM) pathophysiology. The present review aims to summarize the efficiency of lectins from different sources as potential antihyperglycemic agents. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed for the drafting. In this regard, published scientific articles on the effects of different lectins on blood glucose (BG), glucose tolerance, hormonal effects, carbohydrate-digesting enzymes, oxidative stress, and insulin production process were collected from reputed journals using electronic databases. Furthermore, the toxicity effects of lectins from different sources were collected. A specific keyword search was completed to collect numerous articles with unique experimental designs and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. Results and Discussion Of 13 identified studies, 11 studies were considered after double screening based on the inclusion criteria. All 11 pharmacological investigations were considered for review. Subsequent studies reflected on the pharmacological properties of lectins on the levels of BG, oxidative stress, β-cell proliferation, insulin resistance, inhibition of carbohydrate digesting enzymes, body weight, food and water intake, lipid profile, and other parameters. This review highlights lectins as potential anti-diabetic agents. Conclusion However, due to limited research, systematic evaluation is recommended for their development and promotion as effective potential antihyperglycemic agents. The clinical efficacy and safety of lectins against diabetes mellitus must also be evaluated.
Collapse
Affiliation(s)
- Akshaya Simha N
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M K
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chaitra N
- Division of Medical Statistics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Ranjith Raj
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
4
|
Liu P, Li W, Peng Y, Han S, Liang Z, Cen Y, Li X, Wang P, Lv H, Zhang Q, Chen H, Lin J. Molecular cloning, expression, and functional analysis of a putative lectin from the pearl oyster (Pinctada fucata, Gould 1850). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109215. [PMID: 37951320 DOI: 10.1016/j.fsi.2023.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 μg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 μg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 μg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 μg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 μg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.
Collapse
Affiliation(s)
- Peng Liu
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| | - Wenyue Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yue Peng
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyin Han
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongxiu Liang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Cen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinrong Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyan Wang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiying Lv
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Qingying Zhang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Honglin Chen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiang Lin
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
5
|
Saco A, Suárez H, Novoa B, Figueras A. A Genomic and Transcriptomic Analysis of the C-Type Lectin Gene Family Reveals Highly Expanded and Diversified Repertoires in Bivalves. Mar Drugs 2023; 21:md21040254. [PMID: 37103393 PMCID: PMC10140915 DOI: 10.3390/md21040254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Hugo Suárez
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | | |
Collapse
|
6
|
Lv X, Chen Y, Cai Y, Lv C, Bi X, Wang M, Hua S, Yang D, Zhao J. A single-CRD C-type lectin from Haliotis discus hannai acts as pattern recognition receptor enhancing hemocytes opsonization. FISH & SHELLFISH IMMUNOLOGY 2022; 125:17-25. [PMID: 35525410 DOI: 10.1016/j.fsi.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
C-type lectins (CTLs), as a member of the Ca2+-dependent carbohydrate recognition protein superfamily, play multiple roles in non-self recognition and the elimination of invading pathogens. In this study, a C-type lectin was identified and characterized from the Pacific abalone Haliotis discus hannai (designed as HdClec), and its open reading frame (ORF) encoded a polypeptide of 163 amino acids containing a typical signal peptide and only one carbohydrate-recognition domain (CRD). The deduced amino acid sequence of CRD in HdClec shared identities ranging from 22.4% to 39.8% with that of other identified CRDs of CTLs. A novel NPN motif was found in Ca2+-binding site 2 of HdClec. The mRNA transcripts of HdClec were detectable in all the examined tissues of non-stimulated abalones, with the highest expression in hepatopancreas (224.13-fold of that in gills). The expression of HdClec mRNA in hemocytes was significantly up-regulated after Vibrio harveyi challenge. Recombinant HdClec protein (rHdClec) could bind lipopolysaccharide (LPS) and peptidoglycan (PGN) in vitro in the presence of Ca2+. Coinciding with the PAMPs binding assay, rHdClec displayed broad agglutination activities towards Gram-negative bacteria V. splendidus, V. anguillarum, V. parahaemolyticus, V. harveyi, Escherichia coli, and Gram-positive bacteria Micrococcus luteus. Moreover, rHdClec could significantly elicit the chemotactic response of hemocytes in vitro. And the phagocytosis and encapsulation ability of hemocytes could be significantly enhanced by rHdClec. All these results showed that HdClec could function as pattern recognition receptors (PRRs) and further enhance the opsonization of hemocytes, which might play a crucial role in the innate immune responses of Pacific abalone.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuying Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yaxuan Cai
- Yantai University, Yantai, Shandong, 264005, PR China
| | - Chengjie Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiujuan Bi
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Mengmei Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Shaomeng Hua
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
7
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
8
|
Characterization of a C-Type Lectin Domain-Containing Protein with Antibacterial Activity from Pacific Abalone ( Haliotis discus hannai). Int J Mol Sci 2022; 23:ijms23020698. [PMID: 35054883 PMCID: PMC8775961 DOI: 10.3390/ijms23020698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Genes that influence the growth of Pacific abalone (Haliotis discus hannai) may improve the productivity of the aquaculture industry. Previous research demonstrated that the differential expression of a gene encoding a C-type lectin domain-containing protein (CTLD) was associated with a faster growth in Pacific abalone. We analyzed this gene and identified an open reading frame that consisted of 145 amino acids. The sequence showed a significant homology to other genes that encode CTLDs in the genus Haliotis. Expression profiling analysis at different developmental stages and from various tissues showed that the gene was first expressed at approximately 50 days after fertilization (shell length of 2.47 ± 0.13 mm). In adult Pacific abalone, the gene was strongly expressed in the epipodium, gill, and mantle. Recombinant Pacific abalone CTLD purified from Escherichia coli exhibited antimicrobial activity against several Gram-positive bacteria (Bacillus subtilis, Streptococcus iniae, and Lactococcus garvieae) and Gram-negative bacteria (Vibrio alginolyticus and Vibrio harveyi). We also performed bacterial agglutination assays in the presence of Ca2+, as well as bacterial binding assays in the presence of the detergent dodecyl maltoside. Incubation with E. coli and B. subtilis cells suggested that the CTLD stimulated Ca2+-dependent bacterial agglutination. Our results suggest that this novel Pacific abalone CTLD is important for the pathogen recognition in the gastropod host defense mechanism.
Collapse
|
9
|
Differentially expressed lncRNAs involved in immune responses of Haliotis diversicolor and H. discus hannai challenged with Vibrio parahaemolyticus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100873. [PMID: 34245965 DOI: 10.1016/j.cbd.2021.100873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023]
Abstract
Although many studies have shown that lncRNA, a non-coding RNA with a length of more than 200 bases, is involved in various biological functions, including the immune process, stress process, and cell development process. However, the function of lncRNA in abalone, especially in immunity, has been rarely studied. H. discus hannai and H. diversicolor are two main aquaculture abalone, and their growth is easily affected by the main pathogen Vibrio parahaemolyticus. Through rigorous screening procedures for transcripts in this study, we found that lncRNAs were 34,240, 23,022 in Haliotis diversicolor and H. discus hannai injected with V. parahaemolyticus, respectively. We also identified the unique and common lncRNAs and mRNAs of two abalone species for the first time; the shared lncRNAs and mRNAs in Haliotis diversicolor and H. discus hannai were 2352 and 13,165, respectively. Then gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed target genes of common and unique lncRNAs has shown that common lncRNAs could be widely involved in the biological processes of stress and cell development in both abalone species. In contrast, unique lncRNAs are linked to the Toll-like receptor, NF-kappaB signaling pathway of H. diversicolor, and pattern recognition receptors and lectins immune-related pathways of H. discus hannai. The co-expression network shows that some immune-related genes, such as INFK1, INFK2, CASP2, CASP8, IRAK1, lectin C, were closely related to lncRNAs. Further, we identified the targeted relationship between some immune-related genes and lncRNAs by qRT-PCR, through which we showed that the expression trend between targeted genes, such as INFK1 and Lnc7057, lectin C and Lnc6943, Lnc5637, and PLCG1 and Lnc1692, were consistent. In general, our results showed that lncRNA expression was induced in the two species of abalone after being infected with V. parahaemolyticus, and lncRNA was involved in the immune response of abalone by targeting coding genes.
Collapse
|
10
|
Chen H, Cai X, Qiu H, Fang J, Wu X. A novel C-type lectin from Crassostrea gigas involved in the innate defense against Vibrio alginolyticus. Biochem Biophys Res Commun 2021; 566:155-163. [PMID: 34126346 DOI: 10.1016/j.bbrc.2021.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
C-type lectins (CTLs) are important immune molecules that participate in invertebrate defense response. In the present work, a novel structural CTL (CgLec-4E) was identified from Crassostrea gigas, which encodes 237 amino acids (aa) with an extra long chain of aa and in the C-type CRD domain with EPA, QPG and WHD mutated motifs respectively. rCgLec-4E could agglutinate and inhibit the growth of Vibrio alginolyticus, except Chlorella, which might be relevant to three mutated motifs. CgLec-4E was mainly expressed in digestive gland, and its expression level was significantly up-regulated post V. alginolyticus challenge, indicating that the high expression of CgLec-4E could provide necessary mucosal immune protections and might involve in food particle recognition for C. gigas. Moreover, the subcellular locations indicated that CgLec-4E might play different roles in the immune response. Taken together, our results enrich our understanding of the structures and function of CTLs in invertebrates.
Collapse
Affiliation(s)
- Honglin Chen
- College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaohui Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Hangna Qiu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China
| | - Jing Fang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China
| | - Xinzhong Wu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou, 535011, China; College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Xin Z, Yu D, Yang B, Chen L, Hayouka Z, Chen X, Gong Y, Dai H, Wang L, Zhao Y, Liu X, Yang D. Molecular characterization, expression and immune functions of two C-type lectin from Venerupis philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 107:260-268. [PMID: 33031900 DOI: 10.1016/j.fsi.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/08/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
In the present study, two C-type lectins (designated as VpClec-3 and VpClec-4) were identified and characterized from the manila clam Venerupis philippinarum. Multiple alignment and phylogenetic relationship analysis strongly suggested that VpClec-3 and VpClec-4 belong to the C-type lectin family. In nonstimulated clams, the VpClec-3 transcript was dominantly expressed in the hepatopancreas, while the VpClec-4 transcript was mainly expressed in gill tissues. Both VpClec-3 and VpClec-4 mRNA expression was significantly upregulated following Vibrio anguillarum challenge. Recombinant VpClec-4 (rVpClec-4) was shown to bind lipopolysaccharide (LPS) and glucan in vitro, whereas recombinant VpClec-3 (rVpClec-3) only bound to glucan. In addition, rVpClec-3 and rVpClec-4 displayed broad agglutination activities towards Vibrio harveyi, Vibrio splendidus and V. anguillarum, while no agglutination activities towards Enterobacter cloacae or Aeromonas hydrophila were observed in rVpClec-3. Moreover, hemocyte phagocytosis was significantly enhanced by rVpClec-3 and rVpClec-4. All the results showed that VpClecs function as pattern recognition receptors (PRRs) with distinct recognition spectra and are potentially involved in the innate immune responses of V. philippinarum.
Collapse
Affiliation(s)
- Zifan Xin
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, 266002, PR China
| | - Bowen Yang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Xingfu Chen
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yitong Gong
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Haiyu Dai
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Lei Wang
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yancui Zhao
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
12
|
Kamei R, Devi OS, Singh SJ, Singh SS. Roles and Biomedical Applications of Haemolymph Lectin. Curr Pharm Biotechnol 2020; 21:1444-1450. [PMID: 32744967 DOI: 10.2174/1389201021666200730123330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lectins are class of proteins characterized by their ability to selectively bind carbohydrate moieties of glycoproteins. Many invertebrate lectins, especially derived from hemolymph, are being purified, and yet their functions and medical applications are subjects of major interest. METHODS Hemolymph lectins in invertebrates play a major role in protecting against many pathogens and microbes. Further, many hemolymph lectins show anticancer properties towards various cancer cell lines, which expresses globotriaosyl ceramides on their cell surface. RESULTS These vast repertoires of hemolymph lectins in recognizing and inhibiting the growth of various harmful microbes and cancerous cells have spurred the biochemist to use them in histochemical and cytochemical studies. CONCLUSION The present review will address the biological roles and biomedical applications of hemolymph lectin.
Collapse
Affiliation(s)
- Rana Kamei
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| | - Oinam S Devi
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| | - Sorokhaibam J Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| | - Senjam S Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal 795003, India
| |
Collapse
|
13
|
Su Y, Liu Y, Gao F, Cui Z. A novel C-type lectin with a YPD motif from Portunus trituberculatus (PtCLec1) mediating pathogen recognition and opsonization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103609. [PMID: 31923433 DOI: 10.1016/j.dci.2020.103609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
C-type lectins are a superfamily of Ca2+-dependent carbohydrate-recognition proteins that function as pattern recognition receptors (PRRs) in innate immune system. In this study, a new C-type lectin was identified from the swimming crab Portunus trituberculatus (PtCLec1). The full-length cDNA of PtCLec1 was 873 bp encoding 176 amino acids. The predicted PtCLec1 protein contained a signal peptide and a single carbohydrate-recognition domain with a special YPD motif. The PtCLec1 transcripts were mainly detected in hepatopancreas and its relative expression levels were significantly up-regulated after the challenges of Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. The recombinant PtCLec1 (rPtCLec1) could bind all the tested pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN) and glucan (GLU), and microorganisms, including V. alginolyticus, V. parahaemolyticus, Pseudomonas aeruginosa, Staphylococcus aureus, M. luteus and P. pastoris. It also exhibited strong activity to agglutinate bacteria and yeast in a Ca2+-dependent manner, and such agglutinating activity could be inhibited by d-galactose and LPS. Moreover, rPtCLec1 revealed antimicrobial activity against the tested Gram-negative (V. alginolyticus, V. parahaemolyticus and P. aeruginosa) and Gram-positive bacteria (S. aureus and M. luteus), and promoted the clearance of V. alginolyticus in vivo and hemocyte phagocytosis in vitro. Knockdown of PtCLec1 could down-regulate the expression of phagocytosis-related genes, but enhance the expression levels of prophenoloxidase (proPO) system-related genes, mannose-binding lectin (MBL), antimicrobial peptides (AMPs), MyD88 and Relish. All these results indicate that PtCLec1 might act as a PRR in immune recognition and an opsonin in pathogen elimination.
Collapse
Affiliation(s)
- Yue Su
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Fengtao Gao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoxia Cui
- School of Marine Science, Ningbo University, Zhejiang, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
14
|
Li D, Nie H, Jahan K, Yan X. Expression analyses of C-type lectins (CTLs) in Manila clam under cold stress provide insights for its potential function in cold resistance of Ruditapes philippinarum. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108708. [PMID: 31945500 DOI: 10.1016/j.cbpc.2020.108708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 02/04/2023]
Abstract
Manila clam Ruditapes philippinarum is an economically and scientifically important marine bivalve species. C-type lectin acts as a pattern-recognition receptor (PPR), plays a crucial role in the innate immunity of invertebrates, and involves in pathogen recognition, and cell-cell interaction. In this study, six different types of C-type lectin genes, CTL-1, CTL-2, CTL-3, CTL-4, CTL-5, and CTL-6, were identified from the R. philippinarum. CTL amino acid sequence was highly conserved compare to other invertebrate CTL sequences. Also, the temporal expressions of CTLs mRNA were detected in R. philippinarum with higher expression level in hepatopancreas and gill, and with lower expression levels in other tissues. The expression pattern of CTL genes in hepatopancreas were investigated under low-temperature stress using real-time quantitative fluorescence PCR (RT-qPCR) and the results showed that the transcription of CTL mRNAs were induced after low-temperature challenge. Overall, the sequence analysis and the expression patterns of CTLs provide clues for understanding the response of the Manila clam to low-temperature stress.
Collapse
Affiliation(s)
- Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Kifat Jahan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
15
|
Wang G, Lei Y, Kang T, Li Z, Fei H, Zeng B, Zhou P, Wang C, Lv Z, Huang M, Xu X. Two C-type lectins (ReCTL-1, ReCTL-2) from Rimicaris exoculata display broad nonself recognition spectrum with novel carbohydrate binding specificity. FISH & SHELLFISH IMMUNOLOGY 2020; 96:152-160. [PMID: 31794843 DOI: 10.1016/j.fsi.2019.11.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
C-type lectins are Ca2+-dependent carbohydrate-binding proteins containing one or more carbohydrate-recognition domains (CRDs). C-type lectins play crucial roles in innate immunity, including nonself-recognition and pathogen elimination. In the present study, two C-type lectins (designated ReCTL-1 and ReCTL-2) were identified from the shrimp Rimicaris exoculata which dwells in deep-sea hydrothermal vents. The open reading frames of ReCTL-1 and ReCTL-2 encoded polypeptides of 171 and 166 amino acids respectively, which were both composed of a signal peptide and a single CRD. The key motifs determining the carbohydrate binding specificity of ReCTL-1 and ReCTL-2 were respectively Glu-Pro-Ala (EPA) and Gln-Pro-Asn (QPN), which were firstly discovered in R. exoculata. ReCTL-1 and ReCTL-2 displayed similar pathogen-associated molecular pattern (PAMP) binding features and they bound three PAMPs-β-glucan, lipopolysaccharide and peptidoglycan-with relatively high affinity. In addition, both could efficiently recognize and bind Gram-positive bacteria, Gram-negative bacteria and fungi. However, ReCTL-1 and ReCTL-2 exhibited different microbial agglutination activities: ReCTL-1 agglutinated Staphylococcus aureus and Saccharomyces cerevisiae, while ReCTL-2 agglutinated Micrococcus luteus, Vibrio parahaemolyticus and V. fluvialis. Both ReCTL-1 and ReCTL-2 inhibited the growth of V. fluvialis. All these results illustrated that ReCTL-1 and ReCTL-2 could function as important pattern-recognition receptors with broad nonself-recognition spectra and be involved in immune defense against invaders, but their specificities are not the same. In addition, the two ReCTLs possessed different carbohydrate binding specificities from each other and from the classical pattern: ReCTL-1 with an EPA motif bound d-galactose and l-mannose, while ReCTL-2 with a QPN motif bound d-fucose and N-acetylglucosamine.
Collapse
Affiliation(s)
- Gaoyang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yutong Lei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhi Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Boxin Zeng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Zhengbing Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| |
Collapse
|
16
|
Antitumor Potential of Marine and Freshwater Lectins. Mar Drugs 2019; 18:md18010011. [PMID: 31877692 PMCID: PMC7024344 DOI: 10.3390/md18010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Often, even the most effective antineoplastic drugs currently used in clinic do not efficiently allow complete healing due to the related toxicity. The reason for the toxicity lies in the lack of selectivity for cancer cells of the vast majority of anticancer agents. Thus, the need for new potent anticancer compounds characterized by a better toxicological profile is compelling. Lectins belong to a particular class of non-immunogenic glycoproteins and have the characteristics to selectively bind specific sugar sequences on the surface of cells. This property is exploited to exclusively bind cancer cells and exert antitumor activity through the induction of different forms of regulated cell death and the inhibition of cancer cell proliferation. Thanks to the extraordinary biodiversity, marine environments represent a unique source of active natural compounds with anticancer potential. Several marine and freshwater organisms, ranging from the simplest alga to the most complex vertebrate, are amazingly enriched in these proteins. Remarkably, all studies gathered in this review show the impressive anticancer effect of each studied marine lectin combined with irrelevant toxicity in vitro and in vivo and pave the way to design clinical trials to assess the real antineoplastic potential of these promising proteins. It provides a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
Collapse
|
17
|
Zhang J, Zhang Y, Chen L, Yang J, Wei Q, Yang B, Liu X, Yang D. Two c-type lectins from Venerupis philippinarum: Possible roles in immune recognition and opsonization. FISH & SHELLFISH IMMUNOLOGY 2019; 94:230-238. [PMID: 31499201 DOI: 10.1016/j.fsi.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In the study, two c-type lectins were identified and characterized from the manila clam Venerupis philippinarum (designed as VpClec-1 and VpClec-2, respectively). Multiple alignments and phylogenetic analysis strongly suggested that they were new members of the c-type lectin superfamily. In normal tissue of clams, both VpClec-1 and VpClec-2 transcripts were highly expressed in the tissue of hepatopancreas. After Vibrio anguillarum challenge, the temporal expression of both VpClec-1 and VpClec-2 transcripts was up-regulated in the hemocytes of manila clams. The recombinant protein VpClec-1 (rVpClec-1) showed obvious binding activities to lipopolysaccharide (LPS), peptidoglycan (PGN), glucan and zymosan in vitro, while the recombinant protein VpClec-2 (rVpClec-2) could only bind LPS, glucan and zymosan. Coinciding with the PAMPs binding assay, both rVpClec-1 and rVpClec-2 displayed broad agglutination and antibacterial activities towards Vibrio harveyi, Vibrio splendidus, Vibrio anguillarum, Enterobacter cloacae and Aeromonas hydrophila. Moreover, the phagocytosis and encapsulation ability of hemocytes could be significantly enhanced by rVpClec-1 and rVpClec-2. Notably, the rVpClec-1 but not rVpClec-2 elicited a chemotactic response from hemocytes. All the results showed that VpClec-1 and VpClec-2 functioned as pattern recognition receptors (PRRs) with distinct recognition spectrum, and involved in the innate immune responses of manila clams.
Collapse
Affiliation(s)
- Jianning Zhang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Yifei Zhang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Lizhu Chen
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Jianmin Yang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Qianyu Wei
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Bowen Yang
- School of Life Sciences, Ludong University, Yantai, 264025, PR China
| | - Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai, 264025, PR China.
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
18
|
Song X, Xin X, Wang H, Li H, Zhang H, Jia Z, Liu C, Jiang S, Wang L, Song L. A single-CRD C-type lectin (CgCLec-3) with novel DIN motif exhibits versatile immune functions in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2019; 92:772-781. [PMID: 31279080 DOI: 10.1016/j.fsi.2019.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
C-type lectins (CTLs), as important pattern recognition receptors (PRRs), are a superfamily of Ca2+-dependent carbohydrate-recognition proteins which participate in nonself-recognition and eliminating pathogens. In the present study, a novel CTL (designated as CgCLec-3) was identified from the Pacific oyster Crassostrea gigas. There was only one carbohydrate-recognition domain (CRD) of 151 amino acid residues within the deduced amino acid sequence of CgCLec-3. The deduced amino acid sequence of CgCLec-3 CRD shared low homology with the CRDs of other CTLs in oyster with the identities ranging from 12% to 22%. A novel DIN motif was found in Ca2+-binding site 2 of CgCLec-3. The relative expression level of CgCLec-3 in hemocytes was up-regulated significantly after the stimulations of bacteria and Pathogen Associated Molecular Patterns (PAMPs). Immunohistochemistry assay showed that CgCLec-3 protein was mainly distributed in gill and mantle, less in gonad, and could not be detected in adductor muscle and hepatopancreas. The recombinant protein (rCgCLec-3) could bind lipopolysaccharide (LPS), mannose (MAN) and peptidoglycan (PGN), but not poly (I:C). rCgCLec-3 exihibited strong binding ability to Vibrio anguillarum and V. splendidus, moderate binding activities to Escherichia coli, Pichia pastoris and Yarrowia lipolytica, weak binding affinity to Staphylococcus aureus and Micrococcus luteus. rCgCLec-3 could agglutinate microorganisms, in a Ca2+-dependent manner and its activity to agglutinate V. splendidus was remarkably higher than that to agglutinate E. coli, S. aureus and P. pastoris. The phagocytic activity of oyster hemocytes was significantly enhanced after incubation with rCgCLec-3. rCgCLec-3 also exhibited antibacterial activity against E. coli and S. aureus. The results clearly suggested that CgCLec-3 in Pacific oyster C. gigas not only served as a PRR involved in the PAMPs recognition and microbes binding, but also functioned as an immune effector participating in the clearance of invaders.
Collapse
Affiliation(s)
- Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Xin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Li D, Nie H, Dong S, Huo Z, Yan X. Molecular cloning and expression analysis of C-type lectin (RpCTL) in Manila clam Ruditapes philippinarum after lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 86:981-993. [PMID: 30578844 DOI: 10.1016/j.fsi.2018.12.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The Manila clam, Ruditapes philippinarum, is one of the most commercially important marine bivalves. C-type lectins (CTLs) are pattern recognition receptors (PRRs) that play important roles in the identification and elimination of pathogens by the innate immune system. In this study, a new CTL (RpCTL) was identified in the Manila clam, R. philippinarum. The full-length RpCTL cDNA is 802 bp, with an open reading frame of 591 bp, encoding 196 amino acids, including an N-terminal signal peptide and a carbohydrate recognition domain (CRD). RpCTL contains conserved CRD disulfide bonds involving four cysteine residues (Cys30-Cys104, Cys124, and Cys132), and the EPN (Glu94-Pro95-Asn96) and WND (Trp119-Asn120-Asp121) motifs. Quantitative reverse transcription (RT)-PCR detected RpCTL transcripts mainly in the gill, siphon, and hepatopancreas in three shell-color strains (zebra, white, and white-zebra strains) and two unselected populations of R. philippinarum, and the gene was highly expressed in the hepatopancreas after lipopolysaccharide treatment. Antimicrobial activity assays of recombinant RpCTL against both Gram-positive and Gram-negative bacteria showed that RpCTL inhibits microorganismal growth. In a survival test, RpCTL inhibited and killed Vibrio anguillarum in R. philippinarum. These results suggest that RpCTL participates in the pathogen identification process of R. philippinarum as a PRR and in its immune defense system.
Collapse
Affiliation(s)
- Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Shasha Dong
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
20
|
Shi Y, Zhao X, Wang Z, Shao Y, Zhang W, Bao Y, Li C. Novel Ca 2+-independent C-type lectin involved in immune defense of the razor clam Sinonovacula constricta. FISH & SHELLFISH IMMUNOLOGY 2019; 84:502-508. [PMID: 30336286 DOI: 10.1016/j.fsi.2018.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
C-type lectins (CTLs) are important pattern recognition molecules that participate in bacterial binding and agglutination by specific recognition of carbohydrates from pathogens. In this study, a full-length cDNA of CTL was cloned from Sinonovacula constricta (designated ScCTL-2). ScCTL-2 has a length of 981 bp, a 5'-untranslated region (UTR) of 47 bp, a short 3'-UTR of 37 bp, and an open reading frame (ORF) of 894 bp, which encodes a polypeptide of 298 amino acid residues. The deduced amino acid of ScCTL-2 possesses a conserved carbohydrate-recognition domain (CRD) similar to that of C31-E171. Spatial distribution analysis demonstrated that ScCTL-2 was constitutively expressed in all tested tissues, with dominant expression in foot and siphon and weak expression in hepatopancreas. The mRNA expression level of ScCTL-2 in gills and hepatopancreas was significantly upregulated at 6 and 12 h after challenge with the pathogen Vibrio parahaemolyticus. The recombinant ScCTL-2 showed specific binding and agglutinate capacities to all examined Gram-negative bacterial species, namely, Escherichia coli, Vibro anguillarum, and V. parahaemolyticus in a Ca2+-independent manner. However, these binding activities were not detected in Gram-positive Micrococcus luteus. Our results indicated that ScCTL-2 could be a novel pattern recognition receptor that can specifically recognize Gram-negative microorganisms in the innate immunity of S. constricta.
Collapse
Affiliation(s)
- Yuhong Shi
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, 315100, PR China.
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
21
|
Shen Y, Shao Y, Cui Y, Zhao X, Zhang W, Li C. Novel C-type lectin from razor clam Sinonovacula constricta agglutinates bacteria and erythrocytes in a Ca 2+-dependent manner. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:9-16. [PMID: 29723812 DOI: 10.1016/j.dci.2018.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Among its other physiological roles, C-type lectins functioned as pattern recognition receptors (PRR) in innate immunity received much attention. In the present study, a novel C-type lectin was identified and characterized from the invertebrate razor clam Sinonovacula constrict and designated as ScCTL. The complete cDNA sequence of ScCTL was 828 bp in length and coded a secreted polypeptide of 158 amino acids with a typical CRD domain. Multiple sequence alignments combined with phylogenetic analysis both collectively confirmed that ScCTL was a novel member belong to lectin family. Spatial expression distribution analysis revealed that ScCTL was extensively expressed in all of the examined tissues, and the highest expression was detected in the hepatopancreas. After 1 × 107 CFU/mL Vibrio parahaemolyticus challenge by immersion infection, the ScCTL transcript in hepatopancreas and gill were markedly upregulated and arrived the maximum levels at 24 or 12 h after challenge, respectively. Recombinant ScCTL could agglutinate not only all tested bacteria but sheep and mouse erythrocyte in the presence of Ca2+. All of our studies suggested that ScCTL performed important roles in protecting cells from pathogenic infection in S. constrict.
Collapse
Affiliation(s)
- Yaoyao Shen
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Yi Cui
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
22
|
Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int J Mol Sci 2018; 19:ijms19030721. [PMID: 29510476 PMCID: PMC5877582 DOI: 10.3390/ijms19030721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs–PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.
Collapse
|
23
|
Wang Y, Zeng Z, Zhang X, Shi Q, Wang C, Hu Z, Li H. Identification and characterization of a novel defensin from Asian green mussel Perna viridis. FISH & SHELLFISH IMMUNOLOGY 2018; 74:242-249. [PMID: 29278736 DOI: 10.1016/j.fsi.2017.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Defensin is one of the most diversified groups of antimicrobial peptides in invertebrate. In the present study, a novel defensin member referred as Pv-Def was identified and characterized from Asian green mussel Perna viridis. Using in silico survey of several EST databases released from diverse tissues of P. viridis, a single peptide referred as Pv-Def was predicted as defensin homologue with Mytilus counterparts. Further analysis on gene structure revealed that Pv-Def was 1001 nt in length and consisted of 3 exons and 2 introns. The precursor of Pv-Def was composed of a signal peptide of 19 amino acids and a mature peptide of 45 amino acids. The mature Pv-Def peptide contains 6 cysteines which formed 3 disulfide bonds at 27C1- 54C4, 40C2- 60C5 and 44C3- 62C6. Like most of the defensin family members, mature Pv-Def peptide included an alpha helix and 2 beta strands. Pv-Def showed significantly tissue-specific expression pattern, while highest transcription level was observed in hepatopancreas, which was about 900 folds to that in hemocytes. Moreover, the expression of Pv-Def mRNA in hemocytes was significantly and accurately up-regulated at different time intervals by Vibrio parahaemolyticus challenge. Interestingly, phylogenetic analysis suggested that the Pv-Def possesses closest relationships with arthropods counterparts rather than other mollusk defensins. To our knowledge, this is the first time that a defensin member was reported in Asian green mussel P. viridis.
Collapse
Affiliation(s)
- Yuting Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhiyong Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, 518060, PR China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Fisheries, BGI, Shenzhen, 518060, PR China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
24
|
Jo E, Elvitigala DAS, Wan Q, Oh M, Oh C, Lee J. Identification and molecular profiling of DC-SIGN-like from big belly seahorse (Hippocampus abdominalis) inferring its potential relevancy in host immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:270-279. [PMID: 28867209 DOI: 10.1016/j.dci.2017.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Dendritic-cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is a C-type lectin that functions as a pattern recognition receptor by recognizing pathogen-associated molecular patterns (PAMPs). It is also involved in various events of the dendritic cell (DC) life cycle, such as DC migration, antigen capture and presentation, and T cell priming. In this study, a DC-SIGN-like gene from the big belly seahorse Hippocampus abdominalis (designated as ShDCS-like) was identified and molecularly characterized. The putative, complete ORF was found to be 1368 bp in length, encoding a protein of 462 amino acids with a molecular mass of 52.6 kDa and a theoretical isoelectric point of 8.26. The deduced amino acid sequence contains a single carbohydrate recognition domain (CRD), in which six conserved cysteine residues and two Ca2+-binding site motifs (QPN, WND) were identified. Based on pairwise sequence analysis, ShDCS-like exhibits the highest amino acid identity (94.6%) and similarity (97.4%) with DC-SIGN-like counterpart from tiger tail seahorse Hippocampus comes. Quantitative real-time PCR revealed that ShDCS-like mRNA is transcribed universally in all tissues examined, but with abundance in kidney and gill tissues. The basal mRNA expression of ShDCS-like was modulated in blood cell, kidney, gill and liver tissues in response to the stimulation of healthy fish with lipopolysaccharides (LPS), Edwardsiella tarda, or Streptococcus iniae. Moreover, recombinant ShDCS-like-CRD domain exhibited detectable agglutination activity against different bacteria. Collectively, these results suggest that ShDCS-like may potentially involve in immune function in big belly seahorses.
Collapse
Affiliation(s)
- Eunyoung Jo
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Chemistry, University of Colombo, Colombo 03, 00300, Sri Lanka
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Minyoung Oh
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Chulhong Oh
- Jeju International Marine Science Research & Education Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju Special Self-Governing Province, 63349, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
25
|
Castillo-Acosta VM, Balzarini J, González-Pacanowska D. Surface Glycans: A Therapeutic Opportunity for Kinetoplastid Diseases. Trends Parasitol 2017; 33:775-787. [PMID: 28760415 DOI: 10.1016/j.pt.2017.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Abstract
Trypanosomal diseases are in need of innovative therapies that exploit novel mechanisms of action. The cell surface of trypanosomatid parasites is characterized by a dense coat of glycoconjugates with important functions in host cell recognition, immune evasion, infectivity, and cell function. The nature of parasite surface glycans is highly dynamic and changes during differentiation and in response to different stimuli through the action of glycosyltransferases and glycosidases. Here we propose a new approach to antiparasitic drug discovery that involves the use of carbohydrate-binding agents that bind specifically to cell-surface glycans, giving rise to cytotoxic events and parasite death. The potential and limitations of this strategy are addressed with a specific focus on the treatment of sleeping sickness.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016-Armilla (Granada), Spain
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016-Armilla (Granada), Spain.
| |
Collapse
|
26
|
Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai. Int J Mol Sci 2015; 16:27520-34. [PMID: 26593905 PMCID: PMC4661900 DOI: 10.3390/ijms161126042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/01/2022] Open
Abstract
The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.
Collapse
|
27
|
Wei X, Liu X, Yang J, Wang S, Sun G, Yang J. Critical roles of sea cucumber C-type lectin in non-self recognition and bacterial clearance. FISH & SHELLFISH IMMUNOLOGY 2015; 45:791-799. [PMID: 26052017 DOI: 10.1016/j.fsi.2015.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
C-type lectin is one important pattern recognition receptor (PRR) that plays crucial roles in multiple immune responses. A C-type lectin from sea cucumber Apostichopus japonicus (AjCTL-1) was characterized in the present study. The amino acid sequence of AjCTL-1 shared high similarities with other C-type lectins from invertebrates and vertebrates. The C-type lectin domain (CTLD) of AjCTL-1 contained a Ca(2+)-binding site 2 and four conserved cysteine residues. AjCTL-1 mRNA expression patterns in tissues and after bacterial challenge were then analysed. Quantitative PCR revealed that AjCTL-1 mRNA was widely expressed in the tested tissues of healthy sea cucumber. The highest expression level occurred in gonad followed by body wall, coelomocytes, tentacle, intestinum and longitudinal muscle, and the lowest expression level was in respiratory tree. AjCTL-1 mRNA expression in coelomocytes was significantly induced by gram-negative Listonella anguillarum and gram-positive Micrococcus luteus, with different up-regulation patterns post-challenge. Recombinant AjCTL-1 exhibited the ability to bind peptidoglycan directly, agglutinate M. luteus, Staphylococcus aureus and Escherichia coli, in a Ca(2+)-dependant manner, and enhance the phagocytosis of coelomocytes against E. coli in vitro. The results indicated that AjCTL-1 could act as a PRR in Apostichopus japonicus and had critical roles in non-self recognition and bacterial clearance against invading microbes.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Xiangquan Liu
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jianmin Yang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Sheng Wang
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Guohua Sun
- Shandong Provincial Key Laboratory of Marine Ecology Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Jialong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
28
|
Cardinaud M, Dheilly NM, Huchette S, Moraga D, Paillard C. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:287-97. [PMID: 25766281 DOI: 10.1016/j.dci.2015.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 02/07/2023]
Abstract
Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone.
Collapse
Affiliation(s)
- Marion Cardinaud
- UMR 6539-LEMAR (Laboratoire des Sciences de l'Environnement Marin), IUEM (Institut Universitaire Européen de la Mer), Université de Bretagne Occidentale (UBO), CNRS, IRD, Ifremer, Technopôle Brest Iroise, 29280 Plouzané, France.
| | - Nolwenn M Dheilly
- School of Marine and Atmospheric Sciences, Stonybrook University, Stony Brook, NY 11794-5000 USA
| | | | - Dario Moraga
- UMR 6539-LEMAR (Laboratoire des Sciences de l'Environnement Marin), IUEM (Institut Universitaire Européen de la Mer), Université de Bretagne Occidentale (UBO), CNRS, IRD, Ifremer, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Christine Paillard
- UMR 6539-LEMAR (Laboratoire des Sciences de l'Environnement Marin), IUEM (Institut Universitaire Européen de la Mer), Université de Bretagne Occidentale (UBO), CNRS, IRD, Ifremer, Technopôle Brest Iroise, 29280 Plouzané, France.
| |
Collapse
|
29
|
Li H, Zhang H, Jiang S, Wang W, Xin L, Wang H, Wang L, Song L. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. FISH & SHELLFISH IMMUNOLOGY 2015; 44:566-575. [PMID: 25800112 DOI: 10.1016/j.fsi.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs), serving as pattern recognition receptors (PRRs), are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins that participate in nonself-recognition and pathogen elimination. In the present study, a single carbohydrate-recognition domain (CRD) CTL was identified from oyster Crassostrea gigas (designated as CgCLec-2). There was only one CRD within the deduced amino acid sequence of CgCLec-2 consisting of 129 amino acid residues. A conserved EPN (Glu246-Pro247-Asn248) motif was found in Ca(2+)-binding site 2 of CgCLec-2. The CgCLec-2 mRNA could be detected in all the examined tissues at different expression levels in oysters. The mRNA expression of CgCLec-2 in hemocytes was up-regulated significantly at 6 h post Vibrio splendidus challenge. The recombinant CgCLec-2 (rCgCLec-2) could bind various Pathogen-Associated Molecular Patterns (PAMPs), including lipopolysaccharide, mannan and peptidoglycan, and displayed strong binding abilities to Vibrio anguillarum, V. splendidus and Yarrowiali polytica and week binding ability to Staphylococcus aureus. It could also enhance the phagocytic activity of oyster hemocytes to V. splendidus and exhibited growth suppression activity against gram-positive bacteria S. aureus but no effect on gram-negative bacteria V. splendidus. Furthermore, the interaction between rCgCLec-2 and rCgMASPL-1 was confirmed by GST Pull down. The results suggested that CgCLec-2 served as not only a PRR in immune recognition but also a regulatory factor in pathogen elimination, and played a potential role in the activation of complement system.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
30
|
Yau T, Dan X, Ng CCW, Ng TB. Lectins with potential for anti-cancer therapy. Molecules 2015; 20:3791-810. [PMID: 25730388 PMCID: PMC6272365 DOI: 10.3390/molecules20033791] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
This article reviews lectins of animal and plant origin that induce apoptosis and autophagy of cancer cells and hence possess the potential of being developed into anticancer drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis discus discus lectin, Polygonatum odoratum lectin, mistletoe lectin, and concanavalin A, fucose-binding Dicentrarchus labrax lectin, and Strongylocentrotus purpuratus lectin, Polygonatum odoratum lectin, and mistletoe lectin, Polygonatum odoratum lectin, autophagy inducing lectins include annexins and Polygonatum odoratum lectin.
Collapse
Affiliation(s)
- Tammy Yau
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
31
|
Chovar-Vera O, Valenzuela-Muñoz V, Gallardo-Escárate C. Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens). FISH & SHELLFISH IMMUNOLOGY 2015; 42:241-248. [PMID: 25463284 DOI: 10.1016/j.fsi.2014.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Collagen IV has been described as a structural protein of the basement membrane, which as a whole forms a specialized extracellular matrix. Recent studies have indicated a possible relationship between collagen IV and the innate immune response of invertebrate organisms. The present study characterized the alpha-1 chain of collagen IV in the red abalone Haliotis rufescens (Hr-ColIV) and evaluated its association with the innate immune response against Vibrio anguillarum. To further evidence the immune response, the matrix metalloproteinase-1 (Hr-MMP-1) and C-type lectin (Hr-CLEC) genes were also assessed. The complete sequence of Hr-ColIV was composed of 6658 bp, with a 5'UTR of 154 bp, a 3'UTR of 1177 bp, and an ORF of 5327 bp that coded for 1776 amino acids. The innate immune response generated against V. anguillarum resulted in a significant increase in the transcript levels of Hr-ColIV between 3 and 6 hpi, whereas Hr-MMP-1 and Hr-CLEC had the highest transcript activity 6 and 12 hpi, respectively. The results obtained in this study propose a putative biological function for collagen IV involved in the early innate immune response of the red abalone H. rufescens.
Collapse
Affiliation(s)
- Ornella Chovar-Vera
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P. O. Box 160-C, Concepción, Chile.
| |
Collapse
|
32
|
Zhang J, Qiu R, Hu YH. HdhCTL1 is a novel C-type lectin of abalone Haliotis discus hannai that agglutinates Gram-negative bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2014; 41:466-472. [PMID: 25301718 DOI: 10.1016/j.fsi.2014.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs) are Ca(2+)-dependent carbohydrate recognition proteins, which play important roles in the innate immunity of both vertebrates and invertebrates. In this study, we identified and characterized a C-type lectin (named HdhCTL1) from Pacific abalone, Haliotis discus hannai. HdhCTL1 is composed of 176 amino acid residues and shares low (23.9%) identity with the known CTL of abalone. HdhCTL1 possesses a putative signal peptide and a carbohydrate-recognition domain (CRD) typical of CTLs. The CRD of HdhCTL1 contains four disulfide bond-forming cysteine residues that are highly conserved in CTLs. HdhCTL1 mRNA was detected in a wide range of tissues and expressed abundantly in the digestive gland. Experimental infection with the bacterial pathogen Vibrio anguillarum significantly upregulated HdhCTL1 expression in a time-dependent manner. Recombinant HdhCTL1 (rHdhCTL1) purified from Escherichia coli was able to agglutinate Gram-negative bacterial pathogens. The agglutinating ability of rHdhCTL1 was abolished in the presence of mannose. These results suggest that HdhCTL1 is a novel CTL which is likely to be involved in host defense against bacterial infection.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Reng Qiu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 Henan, China
| | - Yong-hua Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
33
|
A C-type lectin (AiCTL-3) from bay scallop Argopecten irradians with mannose/galactose binding ability to bind various bacteria. Gene 2013; 531:31-8. [PMID: 24008017 DOI: 10.1016/j.gene.2013.08.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/20/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022]
Abstract
C-type lectins are a family of Ca(2+)-dependent carbohydrate-binding proteins playing crucial roles in innate immunity of vertebrates and invertebrates. In the present study, the cDNA of a C-type lectin with one carbohydrate-recognition domain (CRD) of 127 amino acids was cloned from bay scallop Argopecten irradians (designated AiCTL-3) by rapid amplification of cDNA end (RACE) techniques based on expressed sequence tag (EST) analysis. The mRNA transcripts of AiCTL-3 could be detected in all the tested tissues including hepatopancreas, gonad, adductor muscle, heart, hemocytes, mantle and gill, with the highest expression level in hepatopancreas. After the challenges with Vibrio anguillarum and Micrococcus luteus, the mRNA expression level of AiCTL-3 was obviously up-regulated and reached the maximum level at 9h (11.87fold, P<0.01, and 20.02-fold, P<0.05, respectively). The recombinant AiCTL-3 (designated as rAiCTL-3) could bind LPS, PGN, and glucan in vitro, but could not bind mannan. And it also bound Gram-positive bacteria Staphylococcus aureus as well as Gram-negative bacteria Escherichia coli and V. anguillarum. With a Ca(2+) binding site 2 EPN (Glu-Pro-Asn) motif, rAiCTL-3 could bind both mannose and galactose which was quite different from those in vertebrate. Meanwhile, it could significantly enhance the phagocytosis of scallop hemocytes in vitro. The results clearly suggested that AiCTL-3 could serve not only as a PRR participated in the immune response against various PAMPs and bacteria in non-self recognition via mannose/galactose binding specificity but an opsonin playing an important part in clearance of invaders.
Collapse
|
34
|
Chen G, Wang C, Zhang C, Wang Y, Xu Z, Wang C. A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1619-1627. [PMID: 23507337 DOI: 10.1016/j.fsi.2013.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
The scallop Chlamys farreri is one of the most important aquaculture species in northern coastal provinces. However, the sustainable development of scallop industry is currently threatened by a notorious pathogen named as acute viral necrobiotic virus (AVNV), which often causes mass mortality of the animals. Despite that great attention has been focused on this novel pathogen, little knowledge about the host-virus interactions is available. In this study, suppression subtractive hybridization (SSH) was employed to identify the up-regulated differentially expressed genes in the hemocytes of C. farreri challenged by AVNV. A forward subtracted cDNA library was finally constructed and 288 positive colonies representing differentially genes were screened to perform sequencing. A total of 275 ESTs were used for further analysis using bioinformatics tools after vector screening, among which 167 ESTs could be finally identified, with significant match (E values <1 × 10(-3)) to the deposited genes (proteins) in the corresponding databases. These genes could be classified into ten categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cell defense and homeostasis (13.82%), cellular protein metabolic process (14.90), cellular metabolism (13.09%), cytoskeletal or cellular component (5.82%), transcription regulation or RNA processing (2.18%), cell division (meiosis)/apoptosis (2.18%), DNA metabolic process and repair (1.45%), cell adhesion/signaling (1.09%), microsatellite (0.73%), and ungrouped or unknown functions (6.88). The possible biological significance of some novel genes (mainly immune and homeostasis related genes) in the host response to AVNV were discussed. This study is the first global analysis of differentially expressed genes in hemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated scallop disease, the results presented here should provide new insights into the molecular basis of host-pathogen interactions in C. farreri.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Huang M, Wang L, Yang J, Zhang H, Wang L, Song L. A four-CRD C-type lectin from Chlamys farreri mediating nonself-recognition with broader spectrum and opsonization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:363-9. [PMID: 23276881 DOI: 10.1016/j.dci.2012.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 12/09/2012] [Indexed: 05/26/2023]
Abstract
C-type lectins are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins consisting of at least one carbohydrate-recognition domain (CRD), which participate in nonself-recognition and clearance of invaders. In invertebrate, some multidomain C-type lectins have been identified, but their relative functions and binding mechanism are still meager. In the present study, A C-type lectin (CfLec-4) with four CRDs from Chlamys farreri was selected to investigate its possible function in innate immunity. The mRNA expression of CfLec-4 in hemocytes was significantly up-regulated (P<0.01) after the stimulations of β-glucan, LPS or PGN, and reached the highest expression level at 3, 6, 12 h post-stimulation, which was 27.9-, 22.6- or 47.9-fold of that in blank group, respectively. Immunohistochemistry assay with polyclonal antibody specific for CfLec-4 revealed that the endogenous CfLec-4 was mainly located in the hepatopancreas, kidney and gonad of the scallops. The recombinant CfLec-4 (rCflec-4) could bind LPS, PGN, glucan and mannose in vitro, but could not bind LTA. Furthermore, rCflec-4 displayed a broader bacteria binding spectrum towards Gram-positive bacteria Staphylococcus aureus and Micrococcus luteus as well as Gram-negative bacteria Escherichia coli, Vibrio anguillarum and fungi Pichia pastoris. Meanwhile, rCfLec-4 could significantly (P<0.01) enhance the phagocytosis of hemocytes in vitro. The results clearly suggested that four-CRD containing CfLec-4 not only served as PRR with wider recognition spectrum, but also functioned as an opsonin participating in the clearance of invaders in scallops. It could be inferred that the diversity and complexity of CRDs in C-type lectins endowed these receptors with comprehensive recognition spectrum and multiple immune functions against complex living environment.
Collapse
Affiliation(s)
- Mengmeng Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
36
|
Cheng L, Jin XK, Li WW, Li S, Guo XN, Wang J, Gong YN, He L, Wang Q. Fatty acid binding proteins FABP9 and FABP10 participate in antibacterial responses in Chinese mitten crab, Eriocheir sinensis. PLoS One 2013; 8:e54053. [PMID: 23365646 PMCID: PMC3554701 DOI: 10.1371/journal.pone.0054053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/05/2012] [Indexed: 12/12/2022] Open
Abstract
Invertebrates rely solely on the innate immune system for defense against pathogens and other stimuli. Fatty acid binding proteins (FABP), members of the lipid binding proteins superfamily, play a crucial role in fatty acid transport and lipid metabolism and are also involved in gene expression induced by fatty acids. In the vertebrate immune system, FABP is involved in inflammation regulated by fatty acids through its interaction with peroxidase proliferator activate receptors (PPARs). However, the immune functions of FABP in invertebrates are not well characterized. For this reason, we investigated the immune functionality of two fatty acid binding proteins, Es-FABP9 and Es-FABP10, following lipopolysaccharide (LPS) challenge in the Chinese mitten crab (Eriocheir sinensis). An obvious variation in the expression of Es-FABP9 and Es-FABP10 mRNA in E. sinensis was observed in hepatopancreas, gills, and hemocytes post-LPS challenge. Recombinant proteins rEs-FABP9 and rEs-FABP10 exhibited distinct bacterial binding activity and bacterial agglutination activity against Escherichia coli and Staphylococcus aureus. Furthermore, bacterial growth inhibition assays demonstrated that rEs-FABP9 responds positively to the growth inhibition of Vibrio parahaemolyticuss and S. aureus, while rEs-FABP10 responds positively to the growth inhibition of Aeromonas hydrophila and Bacillus subtilis. Coating of agarose beads with recombinant rEs-FABP9 and rEs-FABP10 dramatically enhanced encapsulation of the beads by crab hemocytes in vitro. In conclusion, the data presented here demonstrate the participation of these two lipid metabolism-related proteins in the innate immune system of E. sinensis.
Collapse
Affiliation(s)
| | | | | | - Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Juan Wang
- School of Life Science, East China Normal University, Shanghai, China
| | - Ya-Nan Gong
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Wei X, Yang J, Liu X, Yang D, Xu J, Fang J, Wang W, Yang J. Identification and transcriptional analysis of two types of lectins (SgCTL-1 and SgGal-1) from mollusk Solen grandis. FISH & SHELLFISH IMMUNOLOGY 2012; 33:204-212. [PMID: 22565020 DOI: 10.1016/j.fsi.2012.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 04/22/2012] [Indexed: 05/31/2023]
Abstract
C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Fisheries Research Institute, Yantai 264006, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Characterization of interleukin-1 receptor-associated kinase 1 binding protein 1 gene in small abalone Haliotis diversicolor. Gene 2012; 506:417-22. [PMID: 22781544 DOI: 10.1016/j.gene.2012.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 12/17/2022]
Abstract
Interleukin receptor-associated kinase (IRAK)-1 binding protein 1 (IRAK1BP1) is a critical factor in preventing dangerous overproduction of proinflammatory cytokines by the innate immune system and in influencing the specificity of TLR responses. In this study, a first molluscan IRAK1BP1 gene, saIRAK1BP1, was cloned from the small abalone (Haliotis diversicolor). Its full-length cDNA sequence is 1047bp, with a 747bp open reading frame encoding a protein of 249 aa. The molecular mass of the deduced protein is approximately 28.1kDa with an estimated pI of 8.87, and shows highest identity (52%) to acorn worm Saccoglossus kowalevskii. Amino acid sequence analysis revealed that saIRAK1BP1 shares a conserved SIMPL domain. Quantitative real-time PCR was employed to investigate the tissue distribution of saIRAK1BP1 mRNA, and its expression in abalone under bacteria challenge and larvae at different developmental stages. The saIRAK1BP1 mRNA could be detected in all examined tissues, with the highest expression level in hemocytes, and was up-regulated in gills, kidneys and hemocytes after bacteria injection. Additionally, saIRAK1BP1 was constitutively expressed at all examined developmental stages. These results indicate that saIRAK1BP1 play an important role in the adult abalone immune system and might be essential in embryo and larval development in abalone.
Collapse
|
39
|
Wei X, Liu X, Yang J, Fang J, Qiao H, Zhang Y, Yang J. Two C-type lectins from shrimp Litopenaeus vannamei that might be involved in immune response against bacteria and virus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:132-140. [PMID: 22094589 DOI: 10.1016/j.fsi.2011.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
C-type lectins play crucial roles in innate immunity to recognize and eliminate pathogens efficiently. In the present study, two C-type lectins from shrimp Litopenaeus vannamei (designated as LvLectin-1 and LvLectin-2) were identified, and their expression patterns, both in tissues and toward pathogen stimulation, were then characterized. The full-length cDNA of LvLectin-1 and LvLectin-2 was 567 and 625 bp, containing an open reading frame (ORF) of 471 and 489 bp, respectively, and deduced amino acid sequences showed high similarity to other members of C-type lectin superfamily. Both two C-type lectins encoded a single carbohydrate-recognition domain (CRD). The motif of Ca(2+) binding site 2 in CRD, which determined carbohydrate-binding specificity, was QPN (Gln(122)-Pro(123)-Asn(124)) in LvLectin-1, but QPD (Gln(128)-Pro(129)-Asp(130)) in LvLectin-2. Two C-type lectins exhibited similar tissue expression pattern, for their mRNA were both constitutively expressed in all tested tissues, including hepatopancreas, muscle, gill, hemocytes, gonad and heart, furthermore they were both mostly expressed in hepatopancreas, though the expression level of LvLectin-2 was much higher than LvLectin-1. The expression level of two C-type lectins mRNA in hemocytes varied greatly after the challenge of Listonella anguillarum or WSSV. After L. anguillarum challenge, the expression of both C-type lectins were significantly (P<0.01) up-regulated compared with blank group, and LvLectin-1 exhibited higher level than LvLectin-2; while after the stimulation of WSSV, the expression of LvLectin-2 was significantly up-regulated at 6 h (P<0.01) and 12 h (P<0.05), but the expression level of LvLectin-1 down-regulated significantly (P<0.01) to 0.4-fold at 6 and 12 h post-stimulation. The results indicated that the two C-type lectins might be involved in immune response toward pathogen infection, and they might perform different recognition specificity toward bacteria or virus.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Marine Fisheries Research Institute, Yantai 264006, China
| | | | | | | | | | | | | |
Collapse
|
40
|
LI YW, DAN XM, ZHANG TW, LUO XC, LI AX. Immune-related genes expression profile in orange-spotted grouper during exposure to Cryptocaryon irritans. Parasite Immunol 2011; 33:679-987. [DOI: 10.1111/j.1365-3024.2011.01337.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Darville LNF, Merchant ME, Maccha V, Siddavarapu VR, Hasan A, Murray KK. Isolation and determination of the primary structure of a lectin protein from the serum of the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol 2011; 161:161-9. [PMID: 22085437 DOI: 10.1016/j.cbpb.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
Mass spectrometry in conjunction with de novo sequencing was used to determine the amino acid sequence of a 35kDa lectin protein isolated from the serum of the American alligator that exhibits binding to mannose. The protein N-terminal sequence was determined using Edman degradation and enzymatic digestion with different proteases was used to generate peptide fragments for analysis by liquid chromatography tandem mass spectrometry (LC MS/MS). Separate analysis of the protein digests with multiple enzymes enhanced the protein sequence coverage. De novo sequencing was accomplished using MASCOT Distiller and PEAKS software and the sequences were searched against the NCBI database using MASCOT and BLAST to identify homologous peptides. MS analysis of the intact protein indicated that it is present primarily as monomer and dimer in vitro. The isolated 35kDa protein was ~98% sequenced and found to have 313 amino acids and nine cysteine residues and was identified as an alligator lectin. The alligator lectin sequence was aligned with other lectin sequences using DIALIGN and ClustalW software and was found to exhibit 58% and 59% similarity to both human and mouse intelectin-1. The alligator lectin exhibited strong binding affinities toward mannan and mannose as compared to other tested carbohydrates.
Collapse
Affiliation(s)
- Lancia N F Darville
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sonthi M, Toubiana M, Pallavicini A, Venier P, Roch P. Diversity of coding sequences and gene structures of the antifungal peptide mytimycin (MytM) from the Mediterranean mussel, Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:857-867. [PMID: 21246236 DOI: 10.1007/s10126-010-9345-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
Knowledge on antifungal biomolecules is limited compared to antibacterial peptides. A strictly antifungal peptide from the blue mussel, Mytilus edulis named mytimycin (MytM) was reported in 1996 as partial NH(2) 33 amino acid sequence. Using back-translations of the previous sequence, MytM-related nucleotide sequences were identified from a normalized Mytilus galloprovincialis expressed sequence tag library. Primers designed from a consensus sequence have been used to obtain a fragment of 560 nucleotides, including the complete coding sequence of 456 nucleotides. Precursor is constituted by a signal peptide of 23 amino acids, followed by MytM of 54 amino acids (6.2-6.3 kDa, 12 cysteines) and C-terminal extension of 75 amino acids. Only two major amino acid precursor sequences emerged, one shared by M. galloprovincialis from Venice and Vigo, the other belonging to M. galloprovincialis from Palavas, with nine amino acid differences between the two MytM. Predicted disulfide bonds suggested the presence of two constrained domains joined by amino acidic NIFG track. Intriguing was the presence of conserved canonical EF hand-motif located in the C-terminus extension of the precursor. The MytM gene was found interrupted by two introns. Intron 2 existed in two forms, a long (1,112 nucleotides) and a short (716 nucleotides) one resulting from the removal of the central part of the long one. Both the short (GenBank FJ804479) and the long (GenBank FJ804478) genes are simultaneously present in the mussel genome.
Collapse
Affiliation(s)
- Molruedee Sonthi
- Ecosystèmes Lagunaires, CNRS-Université Montpellier 2, cc093, place E. Bataillon, 34095, Montpellier, Cedex 05, France
| | | | | | | | | |
Collapse
|
43
|
Ge H, Wang G, Zhang L, Zhang Z, Wang S, Zou Z, Yan S, Wang Y. Molecular cloning and expression of interleukin-1 receptor-associated kinase 4, an important mediator of Toll-like receptor signal pathway, from small abalone Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1138-1146. [PMID: 21362486 DOI: 10.1016/j.fsi.2011.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/15/2011] [Accepted: 02/20/2011] [Indexed: 05/30/2023]
Abstract
Mammal interleukin-1 receptor-associated kinases (IRAKs) have been demonstrated to play important functions in TLRs (Toll-like receptor) signal pathway and T cell proliferation, but there is less knowledge available on mollusc IRAKs. In this study, a molluscan IRAK-4 gene, saIRAK-4, was cloned for the first time from the small abalone (Haliotis diversicolor). Its full-length cDNA sequence was 2062 bp, with a 1548 bp open reading frame encoding a protein of 516 aa. The molecular mass of the deduced protein was approximately 57.8 kDa with an estimated pI of 5.23, and showed highest identity (47%) to acorn worm Saccoglossus kowalevskii. Amino acid sequence analysis revealed saIRAK-4 shares conserved signature motifs with other IRAK-4 proteins, including the death domain (DD), serine/threonine/tyrosine protein kinase domain (STYKc), protein kinases ATP-binding region signature, serine/threonine protein kinases active-site signature and prokaryotic membrane lipoprotein lipid attachment site. Quantitative real-time PCR was employed to investigate the tissue distribution of saIRAK-4 mRNA, and its expression in abalone under bacteria challenge and larvae at different developmental stages. The saIRAK-4 mRNA could be detected in all examined tissues, with the highest expression level in gills, and was up-regulated in hemocytes and gills after bacteria injection. Additionally, saIRAK-4 was constitutively expressed at all examined developmental stages. These results indicate that saIRAK-4 could respond to pathogenic infection and may play an important role in the adult abalone immune system and early innate immunity in the process of abalone larval development.
Collapse
Affiliation(s)
- Hui Ge
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen, Fujian 361021, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang XW, Wang XW, Sun C, Zhao XF, Wang JX. C-type lectin from red swamp crayfish Procambarus clarkii participates in cellular immune response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:168-184. [PMID: 21322006 DOI: 10.1002/arch.20416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
45
|
Kong P, Wang L, Zhang H, Song X, Zhou Z, Yang J, Qiu L, Wang L, Song L. A novel C-type lectin from bay scallop Argopecten irradians (AiCTL-7) agglutinating fungi with mannose specificity. FISH & SHELLFISH IMMUNOLOGY 2011; 30:836-844. [PMID: 21255651 DOI: 10.1016/j.fsi.2011.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/25/2010] [Accepted: 01/08/2011] [Indexed: 05/30/2023]
Abstract
C-type lectins are a superfamily of proteins that can bind pathogen-associated molecular patterns (PAMPs) and microorganisms through the recognition of carbohydrates, thus they are directly involved in innate defense mechanisms as part of the acute-phase response to infection. In this study, the cDNA of a novel C-type lectin (designated as AiCTL-7) was cloned from bay scallop Argopecten irradians by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full-length cDNA of AiCTL-7 was of 651 bp containing a 525 bp open reading frame which encoded a signal peptide of 15 residues and a conserved carbohydrate-recognition domain (CRD) of 174 residues with the EPD and WSD motifs instead of the invariant EPN and WND motifs for determining the carbohydrate-binding specificity and constructing Ca(2+)-binding site 2 in vertebrates. The deduced amino acid sequence of AiCTL-7 CRD shared homology not only with the CRDs of C-type lectins in mollusks, but also with the fish lectin CRDs. The mRNA transcripts of AiCTL-7 were mainly detected in the tissue of hepatopancreas and also marginally detectable in kidney, gonad, hemocytes, heart and adductor of health scallop. After challenge with fungi Pichia pastoris GS115 and Gram-negative bacteria Listonella anguillarum, the relative expression level of AiCTL-7 was up-regulated significantly in hepatopancreas and hemocytes. The CRD of AiCTL-7 was recombined and expressed in Escherichia coli, and the recombinant protein (rAiCTL-7) aggregated P. pastoris remarkably in a Ca(2+)-dependent manner, and this agglutination could be inhibited by d-mannose, but not by d-galactose or β-1,3-glucan. However, rAiCTL-7 displayed no obvious agglutinating activity against L. anguillarum. These results collectively indicated that AiCTL-7 was involved in the primitive acute-phase response to microbial invasion as an important pattern recognition receptor (PRR) in the innate immune system of scallops.
Collapse
Affiliation(s)
- Pengfei Kong
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang J, Wang L, Zhang H, Qiu L, Wang H, Song L. C-type lectin in Chlamys farreri (CfLec-1) mediating immune recognition and opsonization. PLoS One 2011; 6:e17089. [PMID: 21347232 PMCID: PMC3039652 DOI: 10.1371/journal.pone.0017089] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/17/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND C-type lectins are a superfamily of Ca(2+) dependent carbohydrate-recognition proteins that play significant diverse roles in nonself-recognition and clearance of invaders. Though they are well characterized in vertebrates, the study of the potential function and mechanism of C-type lectins in invertebrate immunity is still in its infancy. METHODOLOGY A C-type lectin (CfLec-1) from scallop Chlamys farreri, a dominant cultured mollusk species in China, was selected to investigate its mRNA expression, localization and the possible functions in innate immunity in the present study. After scallop was stimulated by three typical PAMPs, the mRNA expression of CfLec-1 in hemocytes was poles apart. It was significantly up-regulated (p<0.01) after scallops were stimulated by LPS or β-glucan, but significantly down-regulated (p<0.01) after PGN stimulation. The binding ability of recombinant CfLec-1 (designated as rCfLec-1) towards eight PAMPs was investigated subsequently by PAMPs microarray, which revealed rCfLec-1 could bind LPS, PGN and mannan in vitro, indicating CfLec-1 served as a PRR involved in the pathogen recognition. Immunofluorescence assay with polyclonal antibody specific for CfLec-1 revealed that CfLec-1 was mainly located in the mantle and gill of the scallop. CfLec-1 could bind to the surface of scallop hemocytes and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-1 antibody. Meanwhile, rCfLec-1 could also enhance the phagocytic activity of scallop hemocytes against Escherichia coli. CONCLUSIONS The results clearly suggested that CfLec-1 in C. farreri not only served as a PRR involved in the PAMPs recognition, but also functioned as an opsonin participating in the clearance of invaders. It is therefore suspected that CfLec-1 could be an attachment-molecule to nonself-agents acting as an alternative to immunoglobulin in vertebrates.
Collapse
Affiliation(s)
- Jialong Yang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Limei Qiu
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
47
|
De Zoysa M, Nikapitiya C, Oh C, Lee Y, Whang I, Lee JS, Choi CY, Lee J. Microarray analysis of gene expression in disk abalone Haliotis discus discus after bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2011; 30:661-673. [PMID: 21215803 DOI: 10.1016/j.fsi.2010.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 12/03/2010] [Accepted: 12/24/2010] [Indexed: 05/30/2023]
Abstract
In this study, we investigated the gene expression profiling of disk abalone, Haliotis discus discus challenged by a mixture of three pathogenic bacteria Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes using a cDNA microarray. Upon bacteria challenge, 68 (1.6%) and 112 (2.7%) gene transcripts changed their expression levels ≥2 or ≤2 -fold in gills and digestive tract, respectively. There were 46 tissue-specific transcripts that up-regulated specifically in the digestive tract. In contrast, only 13 transcripts showed gill-specific up-regulation. Quantitative real-time PCR was performed to verify microarray data and results revealed that candidate genes namely Krüppell-like factor (KLF), lachesin, muscle lim protein, thioredoxin-2 (TRx-2), nuclear factor interleukin 3 (NFIL-3) and abalone protein 38 were up-regulated. Also, our results further indicated that bacteria challenge may activate the transcription factors or their activators (Krüppell-like factor, inhibitor of NF-κB or Ik-B), inflammatory cytokines (IL-3 regulated protein, allograft inflammatory factor), other cytokines (IFN-44-like protein, SOCS-2), antioxidant enzymes (glutathione-S-transferase, thioredoxin-2 and thioredoxin peroxidase), and apoptosis-related proteins (TNF-α, archeron) in abalone. The identification of immune and stress response genes and their expression profiles in this microarray will permit detailed investigation of the stress and immune responses of abalone genes.
Collapse
Affiliation(s)
- Mahanama De Zoysa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Adhya M, Choi KS, Yu Y, Cho M. Expression and localization of MCsialec, a sialic acid-specific lectin in the marine bivalve Manila clam, Ruditapes philppinarum. JOURNAL OF FISH DISEASES 2010; 33:889-899. [PMID: 21039608 DOI: 10.1111/j.1365-2761.2010.01195.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel sialic acid-specific lectin (MCsialec) was detected from an expressed sequenced tag (EST) sequence from Manila clam haemocytes infected with Perkinsus olseni. The cDNA of the lectin was cloned using gene-specific primers based on a previously determined EST and characterized. The full-length cDNA of MCsialec is 603 bp in length and encodes a polypeptide of 200 amino acids with a calculated molecular mass of 21.928 kDa. Sequence alignment and protein motif analyses showed that MCsialec shares identity with sialic acid-specific invertebrate lectins from Cepaea hortensis, Helix pomatia and Haliotis discus discus. The lectin was expressed in Escherichia coli M15 cells and purified using a Ni-NTA His-binding resin matrix for antibody production. The presence of the lectin in various tissues of Perkinsus-infected and uninfected Manila clams was analysed by both PCR and immunohistochemical localization assays. MCsialec was detected in each tissue of the clams; however, upon infection, the level of expression of the lectin increased in each tissue. Vibrio tapetis infection also induced high-level expression of MCsialec in the haemocytes. These data suggest that MCsialec plays a crucial role in the immune system of the Manila clam during pathogenic infection.
Collapse
Affiliation(s)
- M Adhya
- Biochemistry Lab, Department of Medicine, School of Medicine, Cheju National University, Jeju, Korea
| | | | | | | |
Collapse
|
49
|
Xu D, Wei J, Cui H, Gong J, Yan Y, Lai R, Qin Q. Differential profiles of gene expression in grouper Epinephelus coioides, infected with Singapore grouper iridovirus, revealed by suppression subtractive hybridization and DNA microarray. JOURNAL OF FISH BIOLOGY 2010; 77:341-360. [PMID: 20646160 DOI: 10.1111/j.1095-8649.2010.02676.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Suppression subtractive hybridization (SSH) was used to generate a subtracted cDNA library enriched with gene transcripts differentially expressed in the spleen of orange-spotted grouper Epinephelus coioides after 5 days of infection with Singapore grouper iridovirus (SGIV). In the forward and reverse-subtracted libraries, 260 and 153 non-redundant expressed sequence tags (EST), respectively, were identified. These annotated genes responding to SGIV infection were grouped into eight gene categories related to immunity, cell structure, transcription-translation, cell signalling, metabolism, mitochondrial proteins, ribosomal proteins and unknown or hypothetical proteins. A DNA microarray containing all the differentially expressed genes was constructed, and the gene expression patterns in different tissues were investigated in virus-infected E. coioides. Of these genes, four associated with the infection processes were identified and further investigated by quantitative real-time PCR. These results provide new insights into the molecular basis of host-pathogen interactions in E. coioides, and will help the development of control strategies against SGIV infection.
Collapse
Affiliation(s)
- D Xu
- State Key Laboratory of Biocontrol, School of life sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
50
|
|