1
|
Amaro-Sánchez T, Ruiz-Guzmán G, Hernández-Martínez S, Krams I, Rantala MJ, Contreras-Garduño J. Effect of juvenile hormone on phenoloxidase and hemocyte number: The role of age, sex, and immune challenge. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110827. [PMID: 36610635 DOI: 10.1016/j.cbpb.2023.110827] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hormones are key factors in determining the response of organisms to their environment. For example, the juvenile hormone (JH) coordinates the insects' development, reproduction, and survival. However, it is still unclear how the impact of juvenile hormone on insect immunity varies depending on the sex and reproductive state of the individual, as well as the type of the immune challenge (i.e., Gram-positive or Gram-negative bacteria). We used Tenebrio molitor and methoprene, a JH analog (JHa) to explore these relationships. We tested the effect of methoprene on phenoloxidase activity (PO), an important component of humoral immunity in insects, and hemocyte number. Lyophilized Gram-positive Staphylococcus aureus or Gram-negative Escherichia coli were injected for the immune challenge. The results suggest that JH did not affect the proPO, PO activity, or hemocyte number of larvae. JH and immune challenge affected the immune response and consequently, affected adult developmental stage and sex. We propose that the influence of JH on the immune response depends on age, sex, the immune response parameter, and the immune challenge, which may explain the contrasting results about the role of JH in the insect immune response.
Collapse
Affiliation(s)
- Tania Amaro-Sánchez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta s/n, Colonia Noria Alta, 36050 Guanajuato, Mexico
| | - Gloria Ruiz-Guzmán
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico
| | - Salvador Hernández-Martínez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62300 Cuernavaca, Morelos, Mexico
| | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Department of Biotechnology, Daugavpils University, Daugavpils 5401, Latvia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Riga 1004, Latvia
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No.8701, Col. Ex-Hacienda San José de la Huerta, 58190 Morelia, Michoacán, Mexico.
| |
Collapse
|
2
|
Marieshwari BN, Bhuvaragavan S, Sruthi K, Mullainadhan P, Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J Comp Physiol B 2023; 193:1-23. [PMID: 36472653 DOI: 10.1007/s00360-022-01468-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Insect life on earth is greatly diversified despite being exposed to several infectious agents due to their diverse habitats and ecological niche. One of the major factors responsible for their successful establishment is having a powerful innate immune system. The most common and effective method used by insects in recognizing pathogen and non-self-substances is the melanization process among others. The key enzyme involved in melanin biosynthesis is the copper containing humoral defense enzyme, phenoloxidase (PO). This review focused on understanding about PO and that had been in research for nearly a century. The review elaborates about evolutionary significance of PO in arthropods, its relationship with mammalian tyrosinases, various substrates, activators and inhibitors involved in the activation of phenoloxidase cascade, as it requires an integrated system of activation that vary among insect species. The enzyme also plays a vital role in insect immunity by involving in several other immune functions like sclerotization, wound healing, opsonization, encapsulation and nodule formation. Further, gene knock down or knock out of PO genes and inhibition of PO-melanization cascade by several mechanisms can also be considered as promising future alternative to control serious pests by making them highly susceptible to any targeted attack.
Collapse
Affiliation(s)
| | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
3
|
Burciaga RA, Ruiz-Guzmán G, Lanz-Mendoza H, Krams I, Contreras-Garduño J. The honey bees immune memory. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104528. [PMID: 36067906 DOI: 10.1016/j.dci.2022.104528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Invertebrates' immune priming or innate immune memory is an analogous response to the vertebrates' adaptive memory. We investigated if honey bees have immune memory. We compared survival and immune response between bees that were: 1) manipulated (Naïve), 2) challenged twice with the same pathogen Escherichia coli (Memory), 3) challenged twice with different pathogens (Staphylococcus aureus versus E. coli, Micrococcus lysodeikticus versus E. coli), or 4) with PBS (the diluent of bacteria) versus E. coli (heterologous challenge; Control). Results indicate better survival in the Memory than the Control group, and the Memory group showed a similar survival than Naïve insects. The Memory group had higher lytic activity but lower prophenoloxidase, phenoloxidase activity, and hemocyte count than the Control and Naïve groups. No differences were found in relative expression of defensin-1. This first demonstration of immune memory opens the questions about its molecular mechanisms and whether, immune memory could be used against natural parasites that affect honey bees, hence, if they could be "vaccinated" against some natural parasites.
Collapse
Affiliation(s)
- Rodrigo Aarón Burciaga
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | - Gloria Ruiz-Guzmán
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Biotechnology, Daugavpils University, Daugavpils, Latvia; Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
| | - Jorge Contreras-Garduño
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
4
|
Duffield KR, Foquet B, Stasko JA, Hunt J, Sadd BM, Sakaluk SK, Ramirez JL. Induction of Multiple Immune Signaling Pathways in Gryllodes sigillatus Crickets during Overt Viral Infections. Viruses 2022; 14:v14122712. [PMID: 36560716 PMCID: PMC9786821 DOI: 10.3390/v14122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Despite decades of focus on crickets (family: Gryllidae) as a popular commodity and model organism, we still know very little about their immune responses to microbial pathogens. Previous studies have measured downstream immune effects (e.g., encapsulation response, circulating hemocytes) following an immune challenge in crickets, but almost none have identified and quantified the expression of immune genes during an active pathogenic infection. Furthermore, the prevalence of covert (i.e., asymptomatic) infections within insect populations is becoming increasingly apparent, yet we do not fully understand the mechanisms that maintain low viral loads. In the present study, we measured the expression of several genes across multiple immune pathways in Gryllodes sigillatus crickets with an overt or covert infection of cricket iridovirus (CrIV). Crickets with overt infections had higher relative expression of key pathway component genes across the Toll, Imd, Jak/STAT, and RNAi pathways. These results suggests that crickets can tolerate low viral infections but can mount a robust immune response during an overt CrIV infection. Moreover, this study provides insight into the immune strategy of crickets following viral infection and will aid future studies looking to quantify immune investment and improve resistance to pathogens.
Collapse
Affiliation(s)
- Kristin R. Duffield
- National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, USDA-ARS, 1815 N. University St., Peoria, IL 61604, USA
- Correspondence:
| | - Bert Foquet
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - Judith A. Stasko
- Microscopy Services Laboratory, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - Scott K. Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - José L. Ramirez
- National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, USDA-ARS, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|
5
|
Bai J, Cao J, Zhang Y, Xu Z, Li L, Liang L, Ma X, Han R, Ma W, Xu L, Ma L. Comparative analysis of the immune system and expression profiling of Lymantria dispar infected by Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105212. [PMID: 36127056 DOI: 10.1016/j.pestbp.2022.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Lymantria dispar is one of the most devastating forest pests worldwide. Fungal biopesticides have great potential as alternatives owing to their high lethality to pests and eco-friendly feature, which is, however, often severely compromised by the pests' innate immunity. A better understanding of the antifungal immune system in L. dispar would significantly facilitate the development of the biopesticide. Here, we investigated phylogenetic characteristics of immunity-related genes as well as the tissue expression patterns in L. dispar after the infection of an entomopathogen Beauveria bassiana using RNA-sequencing data. Results showed most immune genes remain at a low level of response after 24 h post-infection (HPI). Almost all genes in the Toll pathway were significantly up-regulated at 48 HPI, and SPH1, SPN6, Toll6, Toll12, Myd88, pelle, and Drosal were significantly down-regulated at 72 HPI. Immunoblotting analysis revealed that the protein levels of βGRP3 and PPO1 were significantly upregulated at 24 and 48 HPI, while Myd88 was downregulated at 24 HPI, which was further confirmed by Quantitative real-time PCR experiments. Moreover, the relative content of H2O2, a potent reactive oxygen species (ROS), was significantly increased with the decrease of the total antioxidant capacity, indicating that oxidative stress system positively participates in the clearance of the pathogenic fungus. Together, our study provides detailed genetic characteristics of antifungal immunity as well as profiling of the host defense against entomopathogenic infection, and comprehensive insight into molecular interaction between L. dispar and the entomopathogen.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyu Cao
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhe Xu
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Liwei Liang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaoqian Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin 150081, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
6
|
Zheng Y, Zha S, Zhang W, Dong Y, He J, Lin Z, Bao Y. Integrated RNA-seq and RNAi Analysis of the Roles of the Hsp70 and SP Genes in Red-Shell Meretrix meretrix Tolerance to the Pathogen Vibrio parahaemolyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:942-955. [PMID: 36030481 PMCID: PMC9420185 DOI: 10.1007/s10126-022-10156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/11/2022] [Indexed: 05/13/2023]
Abstract
The "Wanlihong" Meretrix meretrix (WLH-M) clam is a new variety of this species that has a red shell and stronger Vibrio tolerance than ordinary M. meretrix (ORI-M). To investigate the molecular mechanisms responsible for the WLH-M strain's tolerance to Vibrio, we challenged clams with Vibrio parahaemolyticus and then assessed physiological indexes and conducted transcriptome analysis and RNA interference experiments. The mortality, tissue bacterial load, and hemocyte reactive oxygen species level of ORI-M were significantly higher than those of WLH-M, whereas the content and activity of lysozyme were significantly lower. Gene Ontology functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that immune and metabolic pathways were enriched in Vibrio-challenged clams. The expressions of the heat shock protein 70 (Hsp70) and serine protease (SP) genes, which are involved in antibacterial immunity, were significantly upregulated in WLH-M but not in ORI-M, while the expression of the kynurenine 3-monooxygenase gene, a proinflammatory factor, was significantly downregulated in WLH-M. RNA interference experiments confirmed that Hsp70 and SP downregulation could result in increased mortality of WLH-M. Therefore, we speculate that Hsp70 and SP may be involved in the antibacterial immunity of WLH-M in vivo. Our data provided a valuable resource for further studies of the antibacterial mechanism of WLH-M and provided a foundation for the breeding of pathogen-resistant strains.
Collapse
Affiliation(s)
- Yun Zheng
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Shanjie Zha
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
| | - Weifeng Zhang
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- School of Marine Science, Ningbo University, Ningbo, 315823 China
| | - Yinghui Dong
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| | - Jing He
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| | - Zhihua Lin
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| | - Yongbo Bao
- Key Laboratory of Aquatic Germplasm Resources of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100 China
- Ninghai Marine Biological Seed Industry Research Institute, Zhejiang Wanli University, Ningbo, 315604 China
| |
Collapse
|
7
|
Moure UAE, Tan T, Sha L, Lu X, Shao Z, Yang G, Wang Y, Cui H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front Immunol 2022; 13:856457. [PMID: 35464405 PMCID: PMC9020863 DOI: 10.3389/fimmu.2022.856457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Insects are by far the most abundant and diverse living organisms on earth and are frequently prone to microbial attacks. In other to counteract and overcome microbial invasions, insects have in an evolutionary way conserved and developed immune defense mechanisms such as Toll, immune deficiency (Imd), and JAK/STAT signaling pathways leading to the expression of antimicrobial peptides. These pathways have accessory immune effector mechanisms, such as phagocytosis, encapsulation, melanization, nodulation, RNA interference (RNAi), lysis, autophagy, and apoptosis. However, pathogens evolved strategies that circumvent host immune response following infections, which may have helped insects further sophisticate their immune response mechanisms. The involvement of ncRNAs in insect immunity is undeniable, and several excellent studies or reviews have investigated and described their roles in various insects. However, the functional analyses of ncRNAs in insects upon pathogen attacks are not exhaustive as novel ncRNAs are being increasingly discovered in those organisms. This article gives an overview of the main insect signaling pathways and effector mechanisms activated by pathogen invaders and summarizes the latest findings of the immune modulation role of both insect- and pathogen-encoded ncRNAs, especially miRNAs and lncRNAs during insect–pathogen crosstalk.
Collapse
Affiliation(s)
- Ulrich Aymard Ekomi Moure
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Medical Research Institute, Southwest University, Chongqing, China
| | - Tingshan Tan
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Lin Sha
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoqin Lu
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Zhi Shao
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yi Wang
- Affiliated Hospital of Southwest University, the Ninth People's Hospital of Chongqing, Chongqing, China.,Department of Gastrointestinal Surgery, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Wu X, Xu J, Ma Q, Ahmed S, Lu X, Ling E, Zhang P. Lysozyme inhibits postharvest physiological deterioration of cassava. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:621-624. [PMID: 35195347 DOI: 10.1111/jipb.13219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 05/24/2023]
Abstract
After harvest, cassava (Manihot esculenta Crantz) storage roots undergo rapid postharvest physiological deterioration, producing blue-brown discoloration in the vasculature due to the production of polyphenolics (mainly quinones and coumarins) by enzymes such as polyphenol oxidase (PPO). Here, we report the application of hen egg-white lysozyme (HEWL), a natural PPO inhibitor, in transgenic cassava to repress the symptoms of postharvest physiological deterioration. The HEWL-expressing transgenic plants had lower levels of the two main cassava coumarins tested, scopoletin and scopolin, compared with wild type. HEWL-expressing cassava also showed increased tolerance of oxidative stress. Overall, the lysozyme-PPO system proved to be functional in plants for repressing PPO-mediated commercial product browning.
Collapse
Affiliation(s)
- Xiaoyun Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
| | - Sulaiman Ahmed
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
| | - Xinlu Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
| | - Erjun Ling
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Bruno D, Montali A, Mastore M, Brivio MF, Mohamed A, Tian L, Grimaldi A, Casartelli M, Tettamanti G. Insights Into the Immune Response of the Black Soldier Fly Larvae to Bacteria. Front Immunol 2021; 12:745160. [PMID: 34867970 PMCID: PMC8636706 DOI: 10.3389/fimmu.2021.745160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
In insects, a complex and effective immune system that can be rapidly activated by a plethora of stimuli has evolved. Although the main cellular and humoral mechanisms and their activation pathways are highly conserved across insects, the timing and the efficacy of triggered immune responses can differ among different species. In this scenario, an insect deserving particular attention is the black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae). Indeed, BSF larvae can be reared on a wide range of decaying organic substrates and, thanks to their high protein and lipid content, they represent a valuable source of macromolecules useful for different applications (e.g., production of feedstuff, bioplastics, and biodiesel), thus contributing to the development of circular economy supply chains for waste valorization. However, decaying substrates bring the larvae into contact with different potential pathogens that can challenge their health status and growth. Although these life strategies have presumably contributed to shape the evolution of a sophisticated and efficient immune system in this dipteran, knowledge about its functional features is still fragmentary. In the present study, we investigated the processes underpinning the immune response to bacteria in H. illucens larvae and characterized their reaction times. Our data demonstrate that the cellular and humoral responses in this insect show different kinetics: phagocytosis and encapsulation are rapidly triggered after the immune challenge, while the humoral components intervene later. Moreover, although both Gram-positive and Gram-negative bacteria are completely removed from the insect body within a few hours after injection, Gram-positive bacteria persist in the hemolymph longer than do Gram-negative bacteria. Finally, the activity of two key actors of the humoral response, i.e., lysozyme and phenoloxidase, show unusual dynamics as compared to other insects. This study represents the first detailed characterization of the immune response to bacteria of H. illucens larvae, expanding knowledge on the defense mechanisms of this insect among Diptera. This information is a prerequisite to manipulating the larval immune response by nutritional and environmental factors to increase resistance to pathogens and optimize health status during mass rearing.
Collapse
Affiliation(s)
- Daniele Bruno
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Maristella Mastore
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Amr Mohamed
- Laboratory of Insect Biochemistry and Molecular Sciences, Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Annalisa Grimaldi
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Morena Casartelli
- Laboratory of Insect Physiology and Biotechnology, Department of Biosciences, University of Milano, Milan, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| | - Gianluca Tettamanti
- Laboratory of Invertebrate Biology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Naples, Italy
| |
Collapse
|
10
|
Zhuang XN, Luan YY, Lv TR, Ren CM, Wang L, Li Q, Li DX. PAP1 activates the prophenoloxidase system against bacterial infection in Musca domestica. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104184. [PMID: 34171367 DOI: 10.1016/j.dci.2021.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
We previously identified three putative prophenoloxidase-activating proteinase (mdPAP1, mdPAP2, and mdPAP3) genes from housefly Musca domestica by transcriptomic analysis. In this study, mdPAP1 cDNA was cloned, and the function of its encoded protein was analyzed. The cDNA of mdPAP1 was 1358 bp, and it contained a single open reading frame of 1122 bp encoding a predicted MdPAP1 protein of 373 amino acids. The estimated molecular weight of MdPAP1 was 41267.08 Da with an isoelectric point of 6.25. The deduced amino acid sequence of MdPAP1 exhibited high similarity to known PAPs of insects. mdPAP1 was detected in larvae, pupae, and adult housefly, and the expression level of mdPAP1 was upregulated in bacterial challenged larvae. The recombinant protein of MdPAP1 expressed in Escherichia coli could cleave the prophenoloxidase into phenoloxidase in M. domestica hemolymph infected by bacteria and result in a significant increase of the total phenoloxidase activity. In addition, RNA interference-mediated gene silencing of mdPAP1 significantly increased the mortality of M. domestica larvae. Results indicated that mdPAP1 was involved in the activation of the prophenoloxidase against bacterial infection in M. domestica.
Collapse
Affiliation(s)
- Xu-Na Zhuang
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China
| | - Yuan-Yuan Luan
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China
| | - Tong-Rui Lv
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China
| | - Cheng-Ming Ren
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China
| | - Lei Wang
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China
| | - Qiang Li
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China
| | - Dian-Xiang Li
- Biotechnology Department, School of Biological Sciences and Biotechnology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
11
|
Mitochondrial and Innate Immunity Transcriptomes from Spodoptera frugiperda Larvae Infected with the Spodoptera frugiperda Ascovirus. J Virol 2020; 94:JVI.01985-19. [PMID: 32075926 DOI: 10.1128/jvi.01985-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ascoviruses are large, enveloped DNA viruses that induce remarkable changes in cellular architecture during which the cell is partitioned into numerous vesicles for viral replication. Previous studies have shown that these vesicles arise from a process resembling apoptosis yet which differs after nuclear lysis in that mitochondria are not degraded but are modified by the virus, changing in size, shape, and motility. Moreover, infection does not provoke an obvious innate immune response. Thus, we used in vivo RNA sequencing to determine whether infection by the Spodoptera frugiperda ascovirus 1a (SfAV-1a) modified expression of host mitochondrial, cytoskeletal, and innate immunity genes. We show that transcripts from many mitochondrial genes were similar to those from uninfected controls, whereas others increased slightly during vesicle formation, including those for ATP6, ATP8 synthase, and NADH dehydrogenase subunits, supporting electron microscopy (EM) data that these organelles were conserved for virus replication. Transcripts from 58 of 106 cytoskeletal genes studied increased or decreased more than 2-fold postinfection. More than half coded for mitochondrial motor proteins. Similar increases occurred for innate immunity transcripts and their negative regulators, including those for Toll, melanization, and phagocytosis pathways. However, those for many antimicrobial peptides, such as moricin, increased more than 20-fold. In addition, transcripts for gloverin-3, spod_x_tox, Hdd23, and lebocin, also antimicrobial, increased more than 20-fold. Interestingly, a phenoloxidase inhibitor transcript increased 12-fold, apparently to interfere with melanization. SfAV-1a destroys most fat body cells by 7 days postinfection, so innate immunity gene transcripts apparently occur in remaining cells in this tissue and possibly other major tissues, namely, epidermis and tracheal matrix.IMPORTANCE Ascoviruses are large DNA viruses that infect insects, inducing a cellular pathology that resembles apoptosis but which differs by causing enormous cellular hypertrophy followed by cleavage of the cell into numerous viral vesicles for replication. Previous EM studies suggest that mitochondria are important for vesicle formation. Transcriptome analyses of Spodoptera frugiperda larvae infected with SfAV-1a showed that mitochondrial transcripts were similar to those from uninfected controls or increased slightly during vesicle formation, especially for ATP6, ATP8 synthase, and NADH dehydrogenase subunits. This pattern resembles that for chronic disease-inducing viruses, which conserve mitochondria, differing markedly from viruses causing short-term viral diseases, which degrade mitochondrial DNA. Though mitochondrial transcript increases were low, our results demonstrate that SfAV-1a alters host mitochondrial expression more than any other virus. Regarding innate immunity, although SfAV-1a destroys most fat body cells, certain immunity genes were highly upregulated (greater than 20-fold), suggesting that these transcripts may originate from other tissues.
Collapse
|
12
|
Stączek S, Zdybicka-Barabas A, Pleszczyńska M, Wiater A, Cytryńska M. Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system. J Invertebr Pathol 2020; 171:107341. [DOI: 10.1016/j.jip.2020.107341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022]
|
13
|
King JG. Developmental and comparative perspectives on mosquito immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103458. [PMID: 31377103 DOI: 10.1016/j.dci.2019.103458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Diseases spread by mosquitoes have killed more people than those spread by any other group of arthropod vectors and remain an important factor in determining global health and economic stability. The mosquito innate immune system can act to either modulate infection with human pathogens or fight off entomopathogens and increase the fitness and longevity of infected mosquitoes. While work remains towards understanding the larval immune system and the development of the mosquito immune system, it has recently become clearer that environmental factors heavily shape the developing mosquito immune system and continue to influence the adult immune system as well. The adult immune system has been well-studied and is known to involve multiple tissues and diverse molecular mechanisms. This review summarizes and synthesizes what is currently understood about the development of the mosquito immune system and includes comparisons of immune components unique to mosquitoes among the blood-feeding arthropods as well as important distinguishing factors between the anopheline and culicine mosquitoes. An explanation is included for how mosquito immunity factors into vector competence and vectorial capacity is presented along with a model for the interrelationships between nutrition, microbiome, pathogen interactions and behavior as they relate to mosquito development, immune status, adult female fitness and ultimately, vectorial capacity. Novel discoveries in the fields of mosquito ecoimmunology, neuroimmunology, and intracellular antiviral responses are highlighted.
Collapse
Affiliation(s)
- Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Dorman 402, Mississippi State, MS 39762, USA.
| |
Collapse
|
14
|
Zhao X, Yang X, Lu Z, Wang H, He Z, Zhou G, Luo Z, Zhang Y. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ Microbiol 2019; 21:3392-3416. [PMID: 30972885 DOI: 10.1111/1462-2920.14629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/09/2019] [Indexed: 12/15/2022]
Abstract
MADS-box transcription factor Mcm1 plays crucial roles in regulating mating processes and pathogenesis in some fungi. However, its roles are varied in fungal species, and its function remains unclear in entomopathogenic fungi. Here, Mcm1 orthologue, Bbmcm1, was characterized in a filamentous entomopathogenic fungus, Beauveria bassiana. Disruption of Bbmcm1 resulted in a distinct reduction in growth with abnormal conidiogenesis, and a significant decrease in conidial viability with abnormal germination. ΔBbmcm1 displayed impaired cell integrity, with distorted cell wall structure and altered cell wall component. Abnormal cell cycle was detected in ΔBbmcm1 with longer G2 /M phase but shorter G1 /G0 and S phases in unicellular blastospores, and sparser septa in multicellular hyphae, which might be responsible for defects in development and differentiation due to the regulation of cell cycle-involved genes, as well as the corresponding cellular events-associated genes. Dramatically decreased virulence was examined in ΔBbmcm1, with impaired ability to escape haemocyte encapsulation, which was consistent with markedly reduced cuticle-degrading enzyme production by repressing their coding genes, and downregulated fungal effector protein-coding genes, suggesting a novel role of Mcm1 in interaction with host insect. These data indicate that Mcm1 is a crucial regulator of development, cell integrity, cell cycle and virulence in insect fungal pathogens.
Collapse
Affiliation(s)
- Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xingju Yang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhangjiang He
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guangyan Zhou
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
15
|
Soo TCC, Devadas S, Mohamed Din MS, Bhassu S. Differential transcriptome analysis of the disease tolerant Madagascar-Malaysia crossbred black tiger shrimp, Penaeus monodon hepatopancreas in response to acute hepatopancreatic necrosis disease (AHPND) infection: inference on immune gene response and interaction. Gut Pathog 2019; 11:39. [PMID: 31372182 PMCID: PMC6660963 DOI: 10.1186/s13099-019-0319-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background Penaeus monodon is the second most widely cultured marine shrimp species in the global shrimp aquaculture industry. However, the growth of P. monodon production has been constantly impaired by disease outbreaks. Recently, there is a lethal bacterial infection, known as acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus AHPND strain (VpAHPND), which led to mass mortalities in P. monodon. Unfortunately, there is still insufficient knowledge about the underlying immune response of P. monodon upon AHPND infection. The present study aims to provide an insight into the antibacterial immune response elicited by P. monodon hepatopancreas towards AHPND infection. Methods We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with VpAHPND. The shrimps were challenged with VpAHPND through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases. Results The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by VpAHPND or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between VpAHPND, chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response. Conclusions The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of VpAHPND colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM. Electronic supplementary material The online version of this article (10.1186/s13099-019-0319-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tze Chiew Christie Soo
- 1Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sridevi Devadas
- Selangor Fisheries Biosecurity Centre, Department of Fisheries, Malaysia, KLIA, 63000 Sepang, Selangor Malaysia.,4Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohamed Shariff Mohamed Din
- 4Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia.,5Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Subha Bhassu
- 1Department of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.,2Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Miyashita A, Lee TYM, McMillan LE, Easy R, Adamo SA. Immunity for nothing and the eggs for free: Apparent lack of both physiological trade-offs and terminal reproductive investment in female crickets (Gryllus texensis). PLoS One 2019; 14:e0209957. [PMID: 31091239 PMCID: PMC6519836 DOI: 10.1371/journal.pone.0209957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/28/2022] Open
Abstract
Should females alter their reproductive strategy when attacked by pathogens? Two hypotheses provide opposite predictions. Terminal reproductive investment theory predicts that reproduction should increase when the risk of death increases. However, physiological trade-offs between reproduction and immune function might be expected to produce a decrease in reproduction during a robust immune response. There is evidence for both hypotheses. We examine whether age determines the effect of an immune challenge on reproductive strategy in long-winged females of the Texas field cricket, Gryllus texensis, when fed an ecologically valid (i.e. limited) diet. The limited diet reduced reproductive output. However, even under resource-limited conditions, immune challenge had no effect on the reproductive output of young or middle-aged females. Both reproductive output and immune function (lysozyme-like activity and phenoloxidase (PO) activity) increased with age, which is contrary to both hypotheses. We hypothesize that PO activity is pleiotropic and represents an investment in both reproduction and immune function. Three proPO genes (identified in a published RNA-seq dataset (transcriptome)) were expressed either in the fat body or the ovaries (supporting the hypothesis that PO is bifunctional). The possible bifunctionality of PO suggests that it may not be an appropriate immune measure for studies on immune/reproductive trade-offs. This study also suggests that the threshold for terminal reproductive investment may not decrease prior to senescence in some species.
Collapse
Affiliation(s)
- Atsushi Miyashita
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Ting Yat Marco Lee
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura E. McMillan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Russell Easy
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Shelley A. Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
17
|
Panigrahi A, Sundaram M, Saranya C, Swain S, Dash RR, Dayal JS. Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1207-1216. [PMID: 30590161 DOI: 10.1016/j.fsi.2018.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
This study aims to evaluate the influence of different carbohydrate sources on water quality, growth performance and immunomodulation in pacific white shrimp and to find an alternate for molasses in biofloc system. The experiment consists of 8 biofloc treatments with different carbon sources, C1 (maida flour), C2 (wheat flour), C3 (gram flour), C4 (millet flour), C5 (rice flour), C6 (corn flour), C7 (molasses), C8 (multigrain flour) and un-supplemented control C0 was conducted in 200 L tank system for 120 days. Shrimp juveniles of average weight 1 g were stocked at the rate of 300 nos/m3. Shrimp reared in C8, C7 and C4 treatments had similar growth, survival rate, and disease resistance and were significantly higher (P < 0.05) than other treatments including control. Immune parameters like total hemocyte count (THC) and prophenoloxidase (ProPO) activity showed significantly higher (P < 0.05) levels in biofloc treatment groups. The genes targeting the proPO cascade (PX, BGBP) and antioxidant defense systems (SOD, MnSOD, CAT) revealed significant upregulation in the transcript levels indicating an enhancement in the immune-regulatory functions in the BFT groups. The results suggest that millets and multigrain flour can effectively replace molasses as the carbohydrate source for biofloc system and the biofloc system offers higher growth, survival, and immunomodulation than control.
Collapse
Affiliation(s)
- A Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India.
| | - M Sundaram
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India
| | - C Saranya
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India
| | - Sambid Swain
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India; Department of Fisheries Science, Centurian University, Alluri Nagar, Parlakhemundi, Gajapati, 761211, India
| | - R R Dash
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India
| | - J Syama Dayal
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu, 600028, India
| |
Collapse
|
18
|
Zumaya-Estrada FA, Rodríguez MC, Rodríguez MH. Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases. SALUD PUBLICA DE MEXICO 2018; 60:77-85. [PMID: 29689660 DOI: 10.21149/8140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To analyze the current knowledge of pathogen-insect interactions amenable for the design of molecular-based control strategies of vector-borne diseases. MATERIALS AND METHODS We examined malaria, dengue, and Chagas disease pathogens and insect molecules that participate in interactions during their vectors infection. RESULTS Pathogen molecules that participate in the insect intestine invasion and induced vector immune molecules are presented, and their inclusion in transmission blocking vaccines (TBV) and in genetically modify insect (GMI) vectors or symbiotic bacteria are discussed. CONCLUSIONS Disruption of processes by blocking vector-pathogen interactions provides several candidates for molecular control strategies, but TBV and GMI efficacies are still limited and other secondary effects of GMI (improving transmission of other pathogens, affectation of other organisms) should be discarded.
Collapse
Affiliation(s)
- Federico Alonso Zumaya-Estrada
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - María Carmen Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Mario Henry Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
19
|
Panigrahi A, Saranya C, Sundaram M, Vinoth Kannan SR, Das RR, Satish Kumar R, Rajesh P, Otta SK. Carbon: Nitrogen (C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. FISH & SHELLFISH IMMUNOLOGY 2018; 81:329-337. [PMID: 30016684 DOI: 10.1016/j.fsi.2018.07.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/17/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Biofloc technology (BFT) is a novel modern aquaculture farming technique used to reduce toxic nitrogen concentration, act as in situ food source and eradicate pollutants using carbon and therefore to control C:N ratio in an aquaculture system. In this study, effect of different C:N ratios of a biofloc based system on water quality such as the level of Total ammonia nitrogen (TAN) nitrite-nitrogen (NO2--N) and nitrate nitrogen (NO3--N) were explored. Further, the growth and immunity status of shrimp L. vannamei under the influence of different C:N ratios were evaluated. Two of the C:N ratios (15 and 20) could significantly (P < 0.05) reduce TAN, NO2-N and NO3-N levels (0.456 ± 0.01, 0.145 ± 0.09, and 0.102 ± 0.02 ppm) compared to control (1.45 ± 0.1, 0.749 ± 0.14 and 0.675 ± 0.16 ppm). Large variations in the frequency distribution of operational taxonomic units (OTUs) for the bacterial community in water with different C:N ration (BFT) and control were observed. Vibrios often considered as opportunistic pathogens, where the most dominant bacterial flora of water in control (79%) and C:N5 (37%) group. In C:N10, Thauera (62%) was most represented genus. Similarly, Attheyaceae (56%), followed by Peridiniaceae (30%) were the most dominant groups in C:N15 treatment. The diversity of bacterial flora was more spread in C:N20 treatments with Psychrobacter (26%), Proteobacteria (25%) and Peridiniaceae (20%) as the major groups. The trend of Vibrio dominance decreased with the increase in C:N ratios and thus confirming the dominance of heterotrophic bacteria in high C:N ratio groups. Upon challenge with pathogens, shrimps from C:N10, C:N15 and C:N20 groups showed significantly higher survival (P < 0.05) compared to the C:N5 and control group. Similarly, better growth rate was also observed in BFT tanks compared to control both during the culture and at harvest. Comparatively higher expression of four immune-related genes (ras-related nuclear gene (RAN), serine proteinase gene (SP), prophenoloxidase activating enzyme (PPAE), and crustin were observed in different C:N ratio ponds than control and these were in increasing trend with the C:N ratio. Gene expression analysis showed that the transcripts of those immune genes were significantly increased among all C:N treatments than that of control. Overall, these findings demonstrated that with optimum C:N ratio, BFT can be used to optimize the bacterial community composition for both optimal water quality and optimal shrimp health. This study thus indicates the possibility of obtaining better performance of L. vannamei culture with proper adjustment of C:N ratio in a biofloc based system.
Collapse
Affiliation(s)
- A Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India.
| | - C Saranya
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India
| | - M Sundaram
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India
| | - S R Vinoth Kannan
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India
| | - Rasmi R Das
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India
| | - R Satish Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - P Rajesh
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India
| | - S K Otta
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, #75, Santhome High Road, Raja Annamalai Puram, Chennai, Tamil Nadu 600028, India
| |
Collapse
|
20
|
Wang ZZ, Zhan LQ, Chen XX. Two types of lysozymes from the whitefly Bemisia tabaci: Molecular characterization and functional diversification. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:252-261. [PMID: 29247722 DOI: 10.1016/j.dci.2017.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Lysozyme is well-known as an immune effector in the immune system. Here we identified three genes including one c-type lysozyme, Btlysc, and two i-type lysozymes, Btlysi1 and Btlysi2, from the whitefly Bemisia tabaci. All three lysozymes were constitutively expressed in different tissues and developmental stages, but the two types of lysozymes showed different expression patterns. The expression levels of Btlysi1 and Btlysi2 were dramatically induced after the whitefly fed with different host plants while the expression level of Btlysc kept unchanged. After fungal infection and begomovirus acquisition, Btlysc expression was significantly upregulated while Btlysi1 and Btlysi2 expression were basically not induced. Furthermore, we found that Btlysc showed muramidase and antibacterial activities. Altogether, our results suggest that the two types of lysozymes act in two different ways in B. tabaci, that is, Btlysc is involved in the whitefly immune system while Btlysi1 and Btlysi2 may play a role in digestion or nutrition absorption.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Le-Qing Zhan
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
21
|
Yang L, Lin Z, Fang Q, Wang J, Yan Z, Zou Z, Song Q, Ye G. The genomic and transcriptomic analyses of serine proteases and their homologs in an endoparasitoid, Pteromalus puparum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:56-68. [PMID: 28713011 DOI: 10.1016/j.dci.2017.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
In insects, serine proteases (SPs) and serine protease homologs (SPHs) constitute a large family of proteins involved in multiple physiological processes such as digestion, development, and immunity. Here we identified 145 SPs and 38 SPHs in the genome of an endoparasitoid, Pteromalus puparum. Gene duplication and tandem repeats were observed in this large SPs/SPHs family. We then analyzed the expression profiles of SP/SPH genes in response to different microbial infections (Gram-positive bacterium Micrococcus luteus, Gram-negative bacterium Escherichia coli, and entomopathogenic fungus Beauveria bassiana), as well as in different developmental stages and tissues. Some SPs/SPHs also displayed distinct expression patterns in venom gland, suggesting their specific physiological functions as venom proteins. Our finding lays groundwork for further research of SPs and SPHs expressed in the venom glands.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Czerwinski MA, Sadd BM. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:273-283. [DOI: 10.1002/jez.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - Ben Michael Sadd
- School of Biological Sciences; Illinois State University; Normal Illinois
| |
Collapse
|
23
|
Meister H, Tammaru T, Sandre SL, Freitak D. Sources of variance in immunological traits: evidence of congruent latitudinal trends across species. ACTA ACUST UNITED AC 2017; 220:2606-2615. [PMID: 28495866 DOI: 10.1242/jeb.154310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/04/2017] [Indexed: 11/20/2022]
Abstract
Among-population differences in immunological traits allow assessment of both evolutionary and plastic changes in organisms' resistance to pathogens. Such knowledge also provides information necessary to predict responses of such traits to environmental changes. Studies on latitudinal trends in insect immunity have so far yielded contradictory results, suggesting that multispecies approaches with highly standardised experimental conditions are needed. Here, we studied among-population differences of two parameters reflecting constitutive immunity-phenoloxidase (PO) and lytic activity, using common-garden design on three distantly related moth species represented by populations ranging from northern Finland to Georgia (Caucasus). The larvae were reared at different temperatures and on different host plants under a crossed factors experimental design. Haemolymph samples for measurement of immune status were taken from the larvae strictly synchronously. Clear among-population differences could be shown only for PO activity in one species (elevated activity in the northern populations). There was some indication that the cases of total absence of lytic activity were more common in southern populations. The effects of temperature, host and sex on the immunological traits studied remained highly species specific. Some evidence was found that lytic activity may be involved in mediating trade-offs between immunity and larval growth performance. In contrast, PO activity rarely covaried with fitness-related traits, and neither were the values of PO and lytic activity correlated with each other. The relatively inconsistent nature of the detected patterns suggests that studies on geographic differences in immunological traits should involve multiple species, and rely on several immunological indices if general trends are a point of interest.
Collapse
Affiliation(s)
- Hendrik Meister
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Siiri-Lii Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
24
|
Hillyer JF. Insect immunology and hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:102-18. [PMID: 26695127 PMCID: PMC4775421 DOI: 10.1016/j.dci.2015.12.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA.
| |
Collapse
|
25
|
Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression. Toxins (Basel) 2016; 8:52. [PMID: 26907346 PMCID: PMC4773805 DOI: 10.3390/toxins8020052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022] Open
Abstract
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom.
Collapse
|
26
|
Teng ZW, Xu G, Gan SY, Chen X, Fang Q, Ye GY. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:46-56. [PMID: 26685058 DOI: 10.1016/j.jinsphys.2015.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone.
Collapse
Affiliation(s)
- Zi-Wen Teng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Yu Gan
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xuan Chen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Adamo SA, Davies G, Easy R, Kovalko I, Turnbull KF. Reconfiguration of the immune system network during food limitation in the caterpillar Manduca sexta. ACTA ACUST UNITED AC 2016; 219:706-18. [PMID: 26747906 DOI: 10.1242/jeb.132936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022]
Abstract
Dwindling resources might be expected to induce a gradual decline in immune function. However, food limitation has complex and seemingly paradoxical effects on the immune system. Examining these changes from an immune system network perspective may help illuminate the purpose of these fluctuations. We found that food limitation lowered long-term (i.e. lipid) and short-term (i.e. sugars) energy stores in the caterpillar Manduca sexta. Food limitation also: altered immune gene expression, changed the activity of key immune enzymes, depressed the concentration of a major antioxidant (glutathione), reduced resistance to oxidative stress, reduced resistance to bacteria (Gram-positive and -negative bacteria) but appeared to have less effect on resistance to a fungus. These results provide evidence that food limitation led to a restructuring of the immune system network. In severely food-limited caterpillars, some immune functions were enhanced. As resources dwindled within the caterpillar, the immune response shifted its emphasis away from inducible immune defenses (i.e. those responses that are activated during an immune challenge) and increased emphasis on constitutive defenses (i.e. immune components that are produced consistently). We also found changes suggesting that the activation threshold for some immune responses (e.g. phenoloxidase) was lowered. Changes in the configuration of the immune system network will lead to different immunological strengths and vulnerabilities for the organism.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Gillian Davies
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Russell Easy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Kurtis F Turnbull
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
28
|
Javar S, Mohamed R, Sajap AS, Lau WH. Expression profiles of lysozyme- and prophenoloxidase-encoding genes inSpodopteraspecies challenged with entomopathogenic fungus,Metarhizium anisopliae(Metchnikoff) Sorokin using qRT-PCR. INVERTEBR REPROD DEV 2015. [DOI: 10.1080/07924259.2015.1108934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Kim MS, Min E, Kim JH, Koo JK, Kang JC. Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in bio-floc culture system using probiotics. FISH & SHELLFISH IMMUNOLOGY 2015; 47:141-146. [PMID: 26342403 DOI: 10.1016/j.fsi.2015.08.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
Chinese shrimp Fennerpenaeus chinensis (mean length 1.86 ± 0.15 cm, and weight 137.4 ± 12.7 mg) were reared in the different concentrations of bio-floc (control, 60, 80, 100, 120, and 140%) for 90 days. The growth rate was significantly increased over 100% bio-floc concentrations. In the immunological parameters, the gene expression of proPO and lysozyme was considerably increased over 120% bio-floc concentrations. The gene expression of SP was notably elevated at 140% bio-floc concentration. In the antioxidant enzymes, the activity of SOD was considerably decreased over 80% bio-floc concentrations. A notable decline in the activity of CAT was observed over 120% bio-floc concentrations. The results indicate that rearing of Chinese shrimp in bio-floc system can induce the increase of growth performance, enhancement of immune responses, and reduction of oxidative stress.
Collapse
Affiliation(s)
- Min-Su Kim
- Incheon Fisheries Research Institute, Incheon 409-871, Republic of Korea
| | - EunYoung Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea
| | - Ja-Keun Koo
- Incheon Fisheries Research Institute, Incheon 409-871, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
30
|
Transcriptomic Analysis of Musca domestica to Reveal Key Genes of the Prophenoloxidase-Activating System. G3-GENES GENOMES GENETICS 2015; 5:1827-41. [PMID: 26156588 PMCID: PMC4555219 DOI: 10.1534/g3.115.016899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The proPO system regulates melanization in arthropods. However, the genes that are involved in the proPO system in housefly Musca domestica remain unclear. Thus, this study analyzed the combined transcriptome obtained from M. domestica larvae, pupae, and adults that were either normal or bacteria-challenged by an Escherichia coli and Staphylococcus aureus mixture. A total of 54,821,138 clean reads (4.93 Gb) were yielded by Illumina sequencing, which were de novo assembled into 89,842 unigenes. Of the 89,842 unigenes, based on a similarity search with known genes in other insects, 24 putative genes related to the proPO system were identified. Eight of the identified genes encoded for peptidoglycan recognition receptors, two encoded for prophenoloxidases, three encoded for prophenoloxidase-activating enzymes, and 11 encoded for serine proteinase inhibitors. The expression levels of these identified genes were investigated by qRT-PCR assay, which were consistent with expected activation process of the proPO system, and their activation functions were confirmed by the measurement of phenoloxidase activity in bacteria-infected larvae after proPO antibody blockage, suggesting these candidate genes might have potentially different roles in the activation of proPO system. Collectively, this study has provided the comprehensive transcriptomic data of an insect and some fundamental basis toward achieving understanding of the activation mechanisms and immune functions of the proPO system in M. domestica.
Collapse
|
31
|
He Y, Cao X, Li K, Hu Y, Chen YR, Blissard G, Kanost MR, Jiang H. A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:23-37. [PMID: 25662101 PMCID: PMC4476920 DOI: 10.1016/j.ibmb.2015.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 05/09/2023]
Abstract
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.
Collapse
Affiliation(s)
- Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kai Li
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA; Institute of Biological Sciences, Donghua University, Songjiang, Shanghai 310029, China
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
32
|
Elmogy M, Bassal TTM, Yousef HA, Dorrah MA, Mohamed AA, Duvic B. Isolation, characterization, kinetics, and enzymatic and nonenzymatic microbicidal activities of a novel c-type lysozyme from plasma of Schistocerca gregaria (Orthoptera: Acrididae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev038. [PMID: 25972507 PMCID: PMC4535491 DOI: 10.1093/jisesa/iev038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/15/2015] [Indexed: 05/24/2023]
Abstract
A protein, designated as Sgl, showing a muramidase lytic activity to the cell wall of the Gram-positive bacterium Micrococcus lysodeikticus was isolated for the first time from plasma of Escherichia coli-immunized fifth instar Schistocerca gregaria. The isolated Sgl was detected as a single protein band, on both native- and SDS-PAGE, has a molecular weight of ∼15.7 kDa and an isoelectric point (pI) of ca 9.3 and its antiserum has specifically recognized its isolated form. Fifty-nine percentage of Sgl lytic activity was recovered in the isolated fractions and yielded ca 126-fold increase in specific activity than that of the crude. The partial N-terminal amino acid sequence of the Sgl has 55 and 40% maximum identity with Bombyx mori and Gallus gallus c-type lysozymes, respectively. The antibacterial activity against the Gram-positive and the Gram-negative bacteria were comparatively stronger than that of the hen egg white lysozyme (HEWL). The detected Sgl poration to the inner membrane that reach a maximum ability after 3 h was suggested to operate as a nonenzymatic mechanism for Gram-negative bacterial cell lysis, as tested in a permease-deficient E. coli, ML-35 strain. Sgl showed a maximal muramidase activity at pH 6.2, 30-50°C, and 0.05 M Ca(2+) or Mg(2+); and has a Km of 0.5 μg/ml and a Vmax of 0.518 with M. lysodeikticus as a substrate. The Sgl displayed a chitinase activity against chitin with a Km of 0.93 mg/ml and a Vmax of 1.63.
Collapse
Affiliation(s)
- Mohamed Elmogy
- Department of Entomology, Faculty of Science, Cairo University, P. O. Box 12613, Giza, Egypt Department of Biology, Faculty of Applied Science, Umm AlQura University, P.O. Box 673, Makkah, KSA
| | - Taha T M Bassal
- Department of Entomology, Faculty of Science, Cairo University, P. O. Box 12613, Giza, Egypt
| | - Hesham A Yousef
- Department of Entomology, Faculty of Science, Cairo University, P. O. Box 12613, Giza, Egypt
| | - Moataza A Dorrah
- Department of Entomology, Faculty of Science, Cairo University, P. O. Box 12613, Giza, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, P. O. Box 12613, Giza, Egypt
| | - Bernard Duvic
- Institut National de la Recherche Agronomique (INRA), UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), 34095 Montpellier Cedex 05, France Université Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), 34095 Montpellier Cedex 05, France
| |
Collapse
|
33
|
Zdybicka-Barabas A, Mak P, Jakubowicz T, Cytryńska M. Lysozyme and defense peptides as suppressors of phenoloxidase activity in Galleria mellonella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 87:1-12. [PMID: 25044335 DOI: 10.1002/arch.21175] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The prophenoloxidase (proPO) cascade supplies quinones and other reactive compounds for melanin formation, protein cross-linking, hemolymph coagulation, and killing of microbial invaders as well as parasites. The high cytotoxicity of the generated compounds requires a strict control of the activation of the proPO system and phenoloxidase (PO) activity to minimize damage to host tissues and cells. The PO activity in hemolymph of Escherichia coli challenged Galleria mellonella larvae increased, with a temporal drop 1 h after the challenge, reaching the highest level 24 h after the challenge. In the present study, a potential role of G. mellonella defense peptides and lysozyme in controlling the proPO system was investigated. The effects of purified defense peptides (anionic peptides 1 and 2, cecropin D-like peptide, Galleria defensin, proline-rich peptides 1 and 2) and lysozyme were analyzed. Four compounds, namely lysozyme, Galleria defensin, proline-rich peptide 1, and anionic peptide 2, decreased the hemolymph PO activity considerably, whereas the others did not affect the enzyme activity level. Our results indicate that these hemolymph factors could play multiple and distinct roles in the insect immune response.
Collapse
Affiliation(s)
- Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | | | | | | |
Collapse
|
34
|
Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E. Insect prophenoloxidase: the view beyond immunity. Front Physiol 2014; 5:252. [PMID: 25071597 PMCID: PMC4092376 DOI: 10.3389/fphys.2014.00252] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review.
Collapse
Affiliation(s)
- Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Xie
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
35
|
Prophenoloxidase system, lysozyme and protease inhibitor distribution in the common cuttlefish Sepia officinalis. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:96-104. [DOI: 10.1016/j.cbpb.2014.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/26/2022]
|
36
|
Adamo SA. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior. Integr Comp Biol 2014; 54:419-26. [PMID: 24691569 DOI: 10.1093/icb/icu005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
37
|
Reavey CE, Warnock ND, Vogel H, Cotter SC. Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav Ecol 2014. [DOI: 10.1093/beheco/art127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
38
|
Povey S, Cotter SC, Simpson SJ, Wilson K. Dynamics of macronutrient self-medication and illness-induced anorexia in virally infected insects. J Anim Ecol 2013; 83:245-55. [PMID: 24033221 PMCID: PMC4217384 DOI: 10.1111/1365-2656.12127] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/19/2013] [Indexed: 12/01/2022]
Abstract
Some animals change their feeding behaviour when infected with parasites, seeking out substances that enhance their ability to overcome infection. This ‘self-medication’ is typically considered to involve the consumption of toxins, minerals or secondary compounds. However, recent studies have shown that macronutrients can influence the immune response and that pathogen-challenged individuals can self-medicate by choosing a diet rich in protein and low in carbohydrates. Infected individuals might also reduce food intake when infected (i.e. illness-induced anorexia). Here, we examine macronutrient self-medication and illness-induced anorexia in caterpillars of the African armyworm (Spodoptera exempta) by asking how individuals change their feeding decisions over the time course of infection with a baculovirus. We measured self-medication behaviour across several full-sib families to evaluate the plasticity of diet choice and underlying genetic variation. Larvae restricted to diets high in protein (P) and low in carbohydrate (C) were more likely to survive a virus challenge than those restricted to diets with a low P: C ratio. When allowed free choice, virus-challenged individuals chose a higher protein diet than controls. Individuals challenged with either a lethal or sublethal dose of virus increased the P: C ratio of their chosen diets. This was mostly due to a sharp decline in carbohydrate intake, rather than an increased intake of protein, reducing overall food intake, consistent with an illness-induced anorexic response. Over time the P: C ratio of the diet decreased until it matched that of controls. Our study provides the clearest evidence yet for dietary self-medication using macronutrients and shows that the temporal dynamics of feeding behaviour depends on the severity and stage of the infection. The strikingly similar behaviour shown by different families suggests that self-medication is phenotypically plastic and not a consequence of genetically based differences in diet choice between families.
Collapse
Affiliation(s)
- Sonia Povey
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | | | | |
Collapse
|
39
|
Contreras E, Rausell C, Real MD. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J Invertebr Pathol 2013; 113:209-13. [DOI: 10.1016/j.jip.2013.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
|
40
|
Zhong X, Xu XX, Yi HY, Lin C, Yu XQ. A Toll-Spätzle pathway in the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:514-24. [PMID: 22516181 PMCID: PMC3361650 DOI: 10.1016/j.ibmb.2012.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 05/03/2023]
Abstract
Insects synthesize a battery of antimicrobial peptides (AMPs) and expression of AMP genes is regulated by the Toll and Imd (immune deficiency) pathways in Drosophila melanogaster. Drosophila Toll pathway is activated after Spätzle (Spz) is cleaved by Spätzle processing enzyme (SPE) to release the active C-terminal C106 domain (DmSpz-C106), which then binds to the Toll receptor to initiate the signaling pathway and regulate expression of AMP genes such as drosomycin. Toll and Spz genes have been identified in other insects, but interaction between Toll and Spz and direct evidence for a Toll-Spz pathway in other insect species have not been demonstrated. Our aim is to investigate a Toll-Spz pathway in Manduca sexta, and compare M. sexta and D. melanogaster Toll-Spz pathways. Co-immunoprecipitation (Co-IP) assays showed that MsToll(ecto) (the ecto-domain of M. sexta Toll) could interact with MsSpz-C108 (the active C-terminal C108 domain of M. sexta Spz) but not with full-length MsSpz, and DmToll(ecto) could interact with DmSpz-C106 but not DmSpz, suggesting that Toll receptor only binds to the active C-terminal domain of Spz. Co-expression of MsToll-MsSpz-C108, but not MsToll-MsSpz, could up-regulate expression of drosomycin gene in Drosophila S2 cells, indicating that MsToll-MsSpz-C108 complex can activate the Toll signaling pathway. In vivo assays showed that activation of AMP genes, including cecropin, attacin, moricin and lebocin, in M. sexta larvae by purified recombinant MsSpz-C108 could be blocked by pre-injection of antibody to MsToll, further confirming a Toll-Spz pathway in M. sexta, a lepidopteran insect.
Collapse
Affiliation(s)
- Xue Zhong
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiao-Xia Xu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- College of Natural Resources and Environments, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Hui-Yu Yi
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- College of Animal Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Christopher Lin
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Send correspondence to: Xiao-Qiang Yu, PhD, Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|
41
|
Ardia DR, Gantz JE, Schneider, Strebel S. Costs of immunity in insects: an induced immune response increases metabolic rate and decreases antimicrobial activity. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.01989.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Abstract
Lepidopteran insects provide important model systems for innate immunity of insects, particularly for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are also among the most serious agricultural pests, and understanding of their immune systems has potential practical significance. An early response to infection in lepidopteran larvae is the activation of hemocyte adhesion, leading to phagocytosis, nodule formation, or encapsulation. Plasmatocytes and granular cells are the hemocyte types involved in these responses. Infectious microorganisms are recognized by binding of hemolymph plasma proteins to microbial surface components. This "pattern recognition" triggers phagocytosis and nodule formation, activation of prophenoloxidase and melanization and the synthesis of antimicrobial proteins that are secreted into the hemolymph. Many hemolymph proteins that function in such innate immune responses of insects were first discovered in lepidopterans. Microbial proteinases and nucleic acids released from lysed host cells may also activate lepidopteran immune responses. Hemolymph antimicrobial peptides and proteins can reach high concentrations and may have activity against a broad spectrum of microorganisms, contributing significantly to clearing of infections. Serine proteinase cascade pathways triggered by microbial components interacting with pattern recognition proteins stimulate activation of the cytokine Spätzle, which initiates the Toll pathway for expression of antimicrobial peptides. A proteinase cascade also results inproteolytic activation of phenoloxidase and production of melanin coatings that trap and kill parasites and pathogens. The proteinases in hemolymph are regulated by specific inhibitors, including members of the serpin superfamily. New developments in lepidopteran functional genomics should lead to much more complete understanding of the immune systems of this insect group.
Collapse
|
43
|
Charoensapsri W, Amparyup P, Hirono I, Aoki T, Tassanakajon A. PmPPAE2, a new class of crustacean prophenoloxidase (proPO)-activating enzyme and its role in PO activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:115-124. [PMID: 20837056 DOI: 10.1016/j.dci.2010.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 05/29/2023]
Abstract
The prophenoloxidase (proPO) activating system plays an important role in the defense against microbial invasion in invertebrates. In the present study, we report a second proPO-activating enzyme (designated PmPPAE2) from the hemocytes of the black tiger shrimp, Penaeus monodon. PmPPAE2 contained the structural features of the clip domain serine proteinase family and exhibited 51% amino acid sequence similarity to the insect Manduca sexta PAP-1. Amino acid sequence alignment with the available arthropod PPAE sequences demonstrated that PmPPAE2 is a new class of crustacean PPAE. Transcript expression analysis revealed that PmPPAE2 transcripts were mainly expressed in hemocytes. Double-stranded RNA-mediated suppression of PmPPAE2 transcript levels resulted in a significant decrease in the total hemolymph PO activity (41%) and also increased the shrimp's susceptibility to Vibrio harveyi infection. Genomic organization analysis revealed that PmPPAE1 and PmPPAE2 are encoded by different genomic loci. The PmPPAE1 gene consists of ten exons and nine introns, whilst PmPPAE2 comprises of eight exons interrupted by seven introns. Analysis of the larval developmental stage expression of the four key genes in the shrimp proPO system (PmPPAE1, PmPPAE2, PmproPO1 and PmproPO2) revealed that PmPPAE1 and PmproPO2 transcripts were expressed in all larval stages (nauplius, protozoea, mysis and post-larvae), whilst PmPPAE2 and PmproPO1 transcripts were mainly presented in the late larval developmental stages (mysis and post-larvae). These results suggest that the PmPPAE2 functions as a shrimp PPAE and possibly mediates the activation of PmproPO1.
Collapse
Affiliation(s)
- Walaiporn Charoensapsri
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|