1
|
Aldersey JE, Lange MD, Beck BH, Abernathy JW. Single-nuclei transcriptome analysis of channel catfish spleen provides insight into the immunome of an aquaculture-relevant species. PLoS One 2024; 19:e0309397. [PMID: 39325796 PMCID: PMC11426453 DOI: 10.1371/journal.pone.0309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
The catfish industry is the largest sector of U.S. aquaculture production. Given its role in food production, the catfish immune response to industry-relevant pathogens has been extensively studied and has provided crucial information on innate and adaptive immune function during disease progression. To further examine the channel catfish immune system, we performed single-cell RNA sequencing on nuclei isolated from whole spleens, a major lymphoid organ in teleost fish. Libraries were prepared using the 10X Genomics Chromium X with the Next GEM Single Cell 3' reagents and sequenced on an Illumina sequencer. Each demultiplexed sample was aligned to the Coco_2.0 channel catfish reference assembly, filtered, and counted to generate feature-barcode matrices. From whole spleen samples, outputs were analyzed both individually and as an integrated dataset. The three splenic transcriptome libraries generated an average of 278,717,872 reads from a mean 8,157 cells. The integrated data included 19,613 cells, counts for 20,121 genes, with a median 665 genes/cell. Cluster analysis of all cells identified 17 clusters which were classified as erythroid, hematopoietic stem cells, B cells, T cells, myeloid cells, and endothelial cells. Subcluster analysis was carried out on the immune cell populations. Here, distinct subclusters such as immature B cells, mature B cells, plasma cells, γδ T cells, dendritic cells, and macrophages were further identified. Differential gene expression analyses allowed for the identification of the most highly expressed genes for each cluster and subcluster. This dataset is a rich cellular gene expression resource for investigation of the channel catfish and teleost splenic immunome.
Collapse
Affiliation(s)
- Johanna E. Aldersey
- Oak Ridge Institute for Science and Education, Agricultural Research Service Research Participation Program, Oak Ridge, TN, United States of America
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Miles D. Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| | - Jason W. Abernathy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, United States of America
| |
Collapse
|
2
|
Wang J, Belosevic M, Stafford JL. Identification of goldfish (Carassius auratus L.) leukocyte immune-type receptors shows alternative splicing as a potential mechanism for receptor diversification. Mol Immunol 2020; 125:83-94. [PMID: 32652363 DOI: 10.1016/j.molimm.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022]
Abstract
Leukocyte immune-type receptors (LITRs) are a multigene family of teleost immunoregulatory proteins that share structural, phylogenetic, and likely functional relationships with several innate immune receptor proteins in other vertebrates, including mammals. Originally discovered in channel catfish (Ictalurus punctatus), representative IpLITR-types have been shown to regulate diverse innate immune cell effector responses including phagocytosis, degranulation, and cytokine secretion. To date, IpLITRs have been primarily characterized using mammalian cell line expression systems, therefore many unanswered questions remain regarding their actual regulatory roles in fish immunity. In the present study, we report on the preliminary molecular characterization of five goldfish (Carassius auratus) CaLITR-types and the identification of several putative splice variants of these receptors cloned from various goldfish tissues and primary myeloid cell cultures. In general, CaLITR mRNA transcripts were detected in all goldfish tissues tested, and also in primary kidney macrophage and neutrophil cultures. Specifically, CaLITR1 is a functionally ambiguous receptor with no charged amino acids in its transmembrane (TM) segment and is devoid of tyrosine-based signaling motifs in its short cytoplasmic tail (CYT) region. CaLITR2 is a putative activating receptor-type that contains immunotyrosine-based activation motifs (ITAMs) within its long CYT region, and CaLITR3 has a positively charged TM segment, suggesting that it may recruit intracellular stimulatory adaptor signaling molecules. CaLITR4 and CaLITR5 appear to have diverse signaling capabilities since they contain various immunoregulatory signaling motifs within their CYT regions including putative Nck and STAT recruitment motifs as well as ITAM-like and ITIM sequences. We also identified putative CaLITR splice variants with altered extracellular Ig-like domain compositions and variable CYT regions. Interestingly, this suggests that alternative splicing-mediated diversification of CaLITRs can generate receptor forms with possible variable binding and/or intracellular signaling abilities. Overall, these findings reveal new information about the teleost LITRs and sets the stage for exploring how alternative splicing leads to the functional diversification of this complex multigene immunoregulatory receptor family.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
3
|
Huhle D, Hirmer S, Göbel TW. Splenic γδ T cell subsets can be separated by a novel mab specific for two CD45 isoforms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:229-240. [PMID: 28842181 DOI: 10.1016/j.dci.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
CD45 isoforms have been identified in a variety of different species and mab against various isoforms have been instrumental to define cellular subsets. In the process of generating novel mab against chicken γδ T cells two mab with specificity for CD45 were identified and characterized. The analysis of the chicken CD45 genomic structure suggested three exons being involved in alternative splicing. We cloned and expressed the full length CD45 isoform and three shorter isoforms. While the 7D12 mab reacted with all of these isoforms, the 8B1 mab selectively reacted with two short isoforms lacking either exons 3 and 5 or exons 3, 5 and 6. As expected, the reactivity of 7D12 included all leukocyte subsets, also including thrombocytes. In contrast, the 8B1 mab only reacted with lymphocytes and monocytes. 8B1 expression was found on almost all blood αβ T cells, while a γδ T cell subset and virtually all B cells lacked 8B1 reactivity. The fraction of 8B1- αβ and γδ cells was larger in splenocytes as compared to PBL and there was also a population of 8B1+ splenic B cells. CD3 stimulation of splenic T cells resulted in upregulation of the 8B1 antigen on all T cells. Three-color immunofluorescence revealed differences in CD28 expression between the 8B1⁺ and 8B1¯ γδ T cell subsets with a higher CD28 expression level on 8B1¯ cells. The CD28 antigen was upregulated upon stimulation of the cells with IL-2 and IL-12. This novel mab will be a useful tool to further analyze chicken γδ T cells in more detail.
Collapse
Affiliation(s)
- Daniela Huhle
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sieglinde Hirmer
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Thomas W Göbel
- Institute for Animal Physiology, Department of Veterinary Sciences, University of Munich, Veterinärstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
4
|
Li ZX, Li YW, Xu S, Xu Y, Mo ZQ, Dan XM, Luo XC. Grouper (Epinephelus coioides) TCR signaling pathway was involved in response against Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2017; 64:176-184. [PMID: 28286257 DOI: 10.1016/j.fsi.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
T cell activation is a complicated process accompanying with the activation of T cell receptor (TCR) signaling pathway, which is not well described in teleost fish. The initiation of this pathway depends on the interaction of membrane TCR co-receptors (e.g. CD4/8, CD3 and CD45) and a series of cytoplasmic protein tyrosine kinases (e.g. Lck, Fyn and ZAP70). Cyptocaryon irritans is a ciliate pathogen of marine fish white spot disease causing huge economic lost in marine aquaculture. This parasite can infect fish gill and skin and is considered to be a good pathogen model for fish gill and skin mucosal immunity. Our previous studies showed the locally mucosal antibody response was important for fish defense against this parasite. While how TCR signaling pathway involved in T cell activation to help B cell activation in C. irritans infected fish is still not known. In the present study, we cloned a grouper TCR co-receptor gene EcCD3ε (537 bp) and its three kinase genes, including EcLck (1512 bp), EcFyn (1605 bp) and EcZAP70 (1893 bp). Homology analysis showed that they all shared the highest identity with corresponding genes from Takifugu rubripes (EcCD3ε 41%, EcLck 88%, EcFyn 98% and EcZAP70 93%), and their conserved motifs involved in the signaling transduction were analyzed. The tissue distribution analysis showed these four genes were high expressed in thymus, and it is interesting to find their comparative high expression in skin, gill and midgut mucosal immune tissues. In C. irritans infected grouper, the expression of three TCR co-receptors (EcCD4-1, EcCD3ε and EcCD45) and three kinases (EcLck, EcFyn and EcZAP70) was tested in skin, gill, head kidney and spleen at 0, 12 h, 24 h, 2 d, 3 d, 5 d and 7 d. All six genes were significantly up-regulated in skin at most tested time points, which indicate the possibility of skin local T cell activation to support the local antibody response. Compared to three TCR co-receptors, significantly up-regulation of three kinases were seen in the spleen, and the spleen fold changes of these three kinases were much higher than head kidney, which indicates spleen maybe the major systematic immune organs for T cell activation in C. irritans infected fish.
Collapse
MESH Headings
- Animals
- Bass
- Ciliophora/physiology
- Ciliophora Infections/genetics
- Ciliophora Infections/immunology
- Ciliophora Infections/parasitology
- Ciliophora Infections/veterinary
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Fish Diseases/genetics
- Fish Diseases/immunology
- Fish Diseases/parasitology
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Immunity, Mucosal
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Sequence Analysis, DNA/veterinary
- Signal Transduction
Collapse
Affiliation(s)
- Ze-Xiang Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Shun Xu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yang Xu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ze-Quan Mo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xue-Ming Dan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Kountikov EI, Poe JC, Maclver NJ, Rathmell JC, Tedder TF. A spontaneous deletion within the desmoglein 3 extracellular domain of mice results in hypomorphic protein expression, immunodeficiency, and a wasting disease phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:617-30. [PMID: 25542773 DOI: 10.1016/j.ajpath.2014.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 01/03/2023]
Abstract
Desmoglein 3 is a transmembrane component of desmosome complexes that mediate epidermal cell-to-cell adhesion and tissue integrity. Antibody blockade of desmoglein 3 function in pemphigus vulgaris patients leads to skin blistering (acantholysis) and oral mucosa lesions. Desmoglein 3 deficiency in mice leads to a phenotype characterized by cyclic alopecia in addition to the dramatic skin and mucocutaneous acantholysis observed in pemphigus patients. In this study, mice that developed an overt squeaky (sqk) phenotype were identified with obstructed airways, cyclic hair loss, and severe immunodeficiency subsequent to the development of oral lesions and malnutrition. Single-nucleotide polymorphism-based quantitative trait loci mapping revealed a genetic deletion that resulted in expression of a hypomorphic desmoglein 3 protein with a truncation of an extracellular cadherin domain. Because hypomorphic expression of a truncated desmoglein 3 protein led to a spectrum of severe pathology not observed in mice deficient in desmoglein 3, similar human genetic alterations may also disrupt desmosome function and induce a disease course distinct from pathogenesis of pemphigus vulgaris.
Collapse
Affiliation(s)
- Evgueni I Kountikov
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jonathan C Poe
- Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Nancie J Maclver
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey C Rathmell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
6
|
Marozzi C, Bertoni F, Randelli E, Buonocore F, Timperio AM, Scapigliati G. A monoclonal antibody for the CD45 receptor in the teleost fish Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:342-353. [PMID: 22504161 DOI: 10.1016/j.dci.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation in vertebrate species. In this study we describe some molecular and functional features of the CD45 receptor molecule from the European sea bass Dicentrarchus labrax. Following immunization with fixed sea bass thymocytes, we obtained a murine monoclonal antibody (mAb) able to stain fish leucocytes both alive, by immunofluorescence of thymus and mucosal tissues, and fixed, by in situ immunohistochemistry of tissue sections. The selected IgG(2) mAb (DLT22) was able to recognise by western blots polypeptides mainly at 180 kDa and 130 kDa in thymus, spleen, intestine and gill leucocyte. Accordingly, a 130 kDa polypeptide immunoprecipitated with DLT22 from thymocytes and analysed by nano-RP-HPLC-ESI-MS/MS, gave peptide sequences homologous to Fugu CD45, that were employed for the homology cloning of a partial sea bass CD45 cDNA sequence. This cDNA sequence was employed to measure by quantitative PCR the transcription of the CD45 gene both in unstimulated and in in vitro stimulated leucocytes, showing that the gene transcription was specifically modulated by LPS, ConA, PHA, IL-1, and poly I:C. When splenocytes were stimulated in vitro with ConA and PHA, a cell proliferation paralleled by an increase of DLT22-positive leucocytes was also observed. These data indicate that the DLT22 mAb recognizes a putative CD45 molecule in sea bass, documenting the presence of CD45-like developing lymphocytes in thymus and CD45-associated functional stages of lymphocytes in this species, thus dating back to teleost fish the functional activities of these cell populations in vertebrates.
Collapse
Affiliation(s)
- Catia Marozzi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
8
|
Maisey K, Imarai M. Diversity of teleost leukocyte molecules: role of alternative splicing. FISH & SHELLFISH IMMUNOLOGY 2011; 31:663-672. [PMID: 20723604 DOI: 10.1016/j.fsi.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Alternative splicing is an important mechanism of gene expression control that also produces a large proteome from a limited number of genes. In the immune system of mammals, numerous relevant genes have been found to undergo alternative splicing that contributes to the complexity of immune response. An increasing number of reports have recently indicated that alternative splicing also occurs in other vertebrates, such as fish. In this review we summarize the general features of such molecular events in cytokines and leukocyte co-receptors and their contribution to diversity and regulation of fish leukocytes.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola (CBA), Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Correo 40, Casilla 33, Santiago, Chile.
| | | |
Collapse
|