1
|
Altun B, Zengin K, Yayli Dabag S, Yesilyurt A, Nalcacioglu R, Demirbag Z. Characterization of an envelope protein 118L in invertebrate iridescent virus 6 (IIV6). Virus Genes 2024; 60:549-558. [PMID: 38922563 DOI: 10.1007/s11262-024-02082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic insect virus and a member of the family Iridoviridae. The IIV6 genome consists of 212,482 bp of linear dsDNA with 215 non-overlapping and putative protein-encoding ORFs. The IIV6 118L ORF is conserved in all sequenced members of the Iridoviridae and encodes a 515 amino acid protein with three predicted transmembrane domains and several N-glycosylation/N-myristoylation sites. In this study, we characterized the 118L ORF by both deleting it from the viral genome and silencing its expression with dsRNA in infected insect cells. The homologous recombination method was used to replace 118L ORF with the green fluorescent protein (gfp) gene. Virus mutants in which the 118L gene sequence had been replaced with gfp were identified by fluorescence microscopy but could not be propagated separately from the wild-type virus in insect cells. Unsuccessful attempts to isolate the mutant virus with the 118L gene deletion suggested that the protein is essential for virus replication. To support this result, we used dsRNA to target the 118L gene and showed that treatment resulted in a 99% reduction in virus titer. Subsequently, we demonstrated that 118L-specific antibodies produced against the 118L protein expressed in the baculovirus vector system were able to neutralize the virus infection. All these results indicate that 118L is a viral envelope protein that is required for the initiation of virus replication.
Collapse
Affiliation(s)
- Betul Altun
- Department of Molecular Biology and Genetic, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Kubra Zengin
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Sevde Yayli Dabag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Aydin Yesilyurt
- Tonya Vocational School, Trabzon University, Trabzon, Turkey
| | - Remziye Nalcacioglu
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
2
|
Liang M, Pan W, You Y, Qin X, Su H, Zhan Z, Weng S, Guo C, He J. Hypermethylated genome of a fish vertebrate iridovirus ISKNV plays important roles in viral infection. Commun Biol 2024; 7:237. [PMID: 38413759 PMCID: PMC10899263 DOI: 10.1038/s42003-024-05919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Iridoviruses are nucleocytoplasmic large dsDNA viruses that infect invertebrates and ectothermic vertebrates. The hypermethylated genome of vertebrate iridoviruses is unique among animal viruses. However, the map and function of iridovirus genomic methylation remain unknown. Herein, the methylated genome of Infectious spleen and kidney necrosis virus (ISKNV, a fish iridovirus), and its role in viral infection, are investigated. The methylation level of ISKNV is 23.44%. The hypermethylated genome is essential for ISKNV amplification, but there is no correlation between hypermethylation and viral gene expression. The hypomethylated ISKNV (obtained via 5-Azacytidine) activates a strong immunoreaction in vitro and reduces its pathogenicity in vivo. The unmethylated viral DNA can induce a stronger immunoreaction in vitro, whereas inactivated hypomethylated ISKNV can induce a stronger immunoreaction in vivo, suggesting ISKNV may evade from immune system by increasing its genome methylation level. Our work provides new insights into the role of genome methylation in viral infection.
Collapse
Affiliation(s)
- Mincong Liang
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlin You
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaowei Qin
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hualong Su
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Zhan
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China.
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Laboratory of Ocean Science and Engineering (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Guangdong Province Key Laboratory of Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Gencer D, Yesilyurt A, Ozsahin E, Muratoglu H, Acar Yazici Z, Demirbag Z, Nalcacioglu R. Identification of the potential matrix protein of invertebrate iridescent virus 6 (IIV6). J Invertebr Pathol 2023; 197:107885. [PMID: 36640993 DOI: 10.1016/j.jip.2023.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Invertebrate iridescent virus 6 (IIV6) is a nucleocytoplasmic virus with a ∼212 kb linear dsDNA genome that encodes 215 putative open reading frames (ORFs). Proteomic analysis has revealed that the IIV6 virion consists of 54 virally encoded proteins. Interactions among the structural proteins were investigated using the yeast two-hybrid system, revealing that the protein of 415R ORF interacts reciprocally with the potential envelope protein 118L and the major capsid protein 274L. This result suggests that 415R might be a matrix protein that plays a role as a bridge between the capsid and the envelope proteins. To elucidate the function of 415R protein, we determined the localization of 415R in IIV6 structure and analyzed the properties of 415R-silenced IIV6. Specific antibodies produced against 415R protein were used to determine the location of the 415R protein in the virion structure. Both western blot hybridization and immunogold electron microscopy analyses showed that the 415R protein was found in virions treated with Triton X-100, which degrades the viral envelope. The 415R gene was silenced by the RNA interference (RNAi) technique. We used gene-specific dsRNA's to target 415R and showed that this treatment resulted in a significant drop in virus titer. Silencing 415R with dsRNA also reduced the transcription levels of other viral genes. These results provide important data on the role and location of IIV6 415R protein in the virion structure. Additionally, these results may also shed light on the identification of the homologs of 415R among the vertebrate iridoviruses.
Collapse
Affiliation(s)
- Donus Gencer
- Department of Property Protection and Security, Trabzon University, Trabzon, Turkey
| | - Aydın Yesilyurt
- Department of Medical Services and Techniques, Trabzon University, Trabzon, Turkey
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Hacer Muratoglu
- Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| | - Zihni Acar Yazici
- Clinical Microbiology Department, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zihni Demirbag
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | | |
Collapse
|
4
|
Ke F, Yu XD, Wang ZH, Gui JF, Zhang QY. Replication and transcription machinery for ranaviruses: components, correlation, and functional architecture. Cell Biosci 2022; 12:6. [PMID: 34991685 PMCID: PMC8734342 DOI: 10.1186/s13578-021-00742-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ranaviruses (family Iridoviridae) are promiscuous pathogens that can infect across species barriers in poikilotherms and can replicate in amphibian and fish cells and even in cultured mammalian cells. However, as nucleocytoplasmic large DNA viruses (NCLDVs), their replication and transcription mechanisms remain largely unknown. Here, we screened and uncovered the replication and transcription machinery of two ranaviruses, Andrias davidianus ranavirus (ADRV) and Rana grylio virus (RGV), by a combination of methods, including the isolation of proteins on nascent DNA, recombinant virus-based affinity, and NanoLuc complementation assay. RESULTS The ranavirus replication and transcription machinery was deeply dissected and identified as a complicated apparatus containing at least 30 viral and 6 host proteins. The viral proteins ADRV-47L/RGV-63R (DNA polymerase, vDPOL), ADRV-23L/RGV-91R (proliferating cell nuclear antigen, vPCNA), ADRV-85L/RGV-27R (single-stranded DNA binding protein, vSSB), ADRV-88L/RGV-24R (vhelicase/primase), etc., constitute the core replisome. Specifically, the core of the transcription complex, the viral RNA polymerase, contain the host RNAPII subunits Rpb3, Rpb6, and Rpb11, which was a first report in NCLDVs. Furthermore, correlations and interactions among these factors in the machinery were described. Significantly, the replisome core protein vDPOL (ADRV-47L) can interact with numerous viral and host proteins and could act as a linker and regulation center in viral DNA replication and transcription. Thus, these results depicted an architecture for ranavirus replication and transcription. CONCLUSIONS Up to 36 components from ranavirus and their host were found to form viral replisomes and transcription complexes using a series of precise methods, which further constructed an architecture for ranavirus replication and transcription in which vDPOL was a key central factor and various components correlated and cooperated. Therefore, it provides a cornerstone for further understanding the mechanisms of the replication and transcription of ranaviruses which can ensure the efficient production of progeny virus and adaptation to cross-species infection.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue-Dong Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Hao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China.,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Wuhan, 430072, China. .,The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Yi W, Zhang X, Zeng K, Xie D, Song C, Tam K, Liu Z, Zhou T, Li W. Construction of a DNA vaccine and its protective effect on largemouth bass (Micropterus salmoides) challenged with largemouth bass virus (LMBV). FISH & SHELLFISH IMMUNOLOGY 2020; 106:103-109. [PMID: 32721569 DOI: 10.1016/j.fsi.2020.06.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Largemouth bass virus (LMBV) is the causative agent of a disease causing high mortality rates in largemouth bass during summer. However, there is little information available about the development of vaccines for LMBV disease. Hence, a DNA vaccine, named pCDNA3.1(+)-MCP-Flag, was constructed by inserting the cloned LMBV major capsid protein (MCP) gene into the pCDNA3.1(+)-Flag plasmid. The expression of the recombinant plasmid was confirmed by Western blot (WB) and RT-PCR. The WB result revealed that the MCP protein produced a band of approximately 53 kDa, consistent with the expected result. The RT-PCR results also confirmed that MCP was transcribed in the EPC cells transfected with the recombinant plasmid. The largemouth bass in the DNA vaccine group were immunized with the pCDNA3.1(+)-MCP-Flag plasmid by pectoral fin base injection, and the relative percent survival (RPS) of fish challenged with LMBV was 63%. The relative immunological analyses were as follows. Compared with the PBS and pCDNA3.1(+) groups, the DNA vaccine group showed significantly upregulated expression of IL-1β, IL-8, TNF-α and Mx in the spleen, head kidney and liver. All largemouth bass immunized with the DNA vaccine produced a high titre of LMBV-specific neutralizing antibody during the immunization period. The titre was 1:375 ± 40 and peaked at 14 days post-vaccination. The expression of the recombinant plasmid was analysed in the tissues of the DNA vaccine group by RT-PCR. The recombinant plasmid was expressed in the spleen, head kidney and liver, and MCP protein was successfully expressed after vaccination. In conclusion, the recombinant plasmid expressing LMBV MCP induced significant immune responses in largemouth bass, and might represent a potential LMBV vaccine candidate for largemouth bass.
Collapse
Affiliation(s)
- Wanying Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Xin Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Ke Zeng
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - DaoFa Xie
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Chao Song
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Kachon Tam
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - ZiJing Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China
| | - Tianhong Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China.
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
6
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus. Viruses 2017; 9:v9080195. [PMID: 28757575 PMCID: PMC5580452 DOI: 10.3390/v9080195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022] Open
Abstract
The Chinese giant salamander iridovirus (CGSIV), belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP) was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographacalifornica nucleopolyhedrosis virus (AcNPV), expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 10⁸ plaque forming units/mL (PFU/mL) and confirmed by Western blot and indirect immunofluorescence (IIF) assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9) cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.
Collapse
|
8
|
Robert J, Jancovich JK. Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates. Viruses 2016; 8:E187. [PMID: 27399758 PMCID: PMC4974522 DOI: 10.3390/v8070187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses (Iridoviridae) are large DNA viruses that are causing emerging infectious diseases at an alarming rate in both wild and captive cold blood vertebrate species all over the world. Although the general biology of these viruses that presents some similarities with poxvirus is characterized, many aspects of their replication cycles, host cell interactions and evolution still remain largely unclear, especially in vivo. Over several years, strategies to generate site-specific ranavirus recombinant, either expressing fluorescent reporter genes or deficient for particular viral genes, have been developed. We review here these strategies, the main ranavirus recombinants characterized and their usefulness for in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, USA.
| |
Collapse
|
9
|
Aron MM, Allen AG, Kromer M, Galvez H, Vigil B, Jancovich JK. Identification of essential and non-essential genes in Ambystoma tigrinum virus. Virus Res 2016; 217:107-14. [PMID: 27025572 DOI: 10.1016/j.virusres.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
Members of the genus Ranavirus (family Iridoviridae) are large double-stranded (ds) DNA viruses that are found world-wide infecting fish, amphibian and reptile ectothermic hosts. Ranavirus genomes range from 105 to 155kbp in length and they are predicted to encode around 90-125 genes. Currently, our knowledge of the function of ∼50% of these genes is known or inferred based on homology to orthologous genes characterized in other systems; however, the function of the remaining open reading frames (ORFS) is unknown. Therefore, in order to begin to uncover the function of unknown ORFs in ranaviruses we developed a standardized approach to generate a recombination cassette for any ORF in Ambystoma tigrinum virus (ATV). Our standardized approach quickly and efficiently assembles recombination cassettes and recombinant ATV. We have used this approach to identify two essential, one semi-essential and two non-essential genes in ATV.
Collapse
Affiliation(s)
- Mariah M Aron
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States
| | - Alexander G Allen
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States
| | - Mathew Kromer
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States
| | - Hector Galvez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States
| | - Brianna Vigil
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096, United States.
| |
Collapse
|
10
|
Characterization of Frog Virus 3 knockout mutants lacking putative virulence genes. Virology 2015; 485:162-70. [PMID: 26264970 DOI: 10.1016/j.virol.2015.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 01/03/2023]
Abstract
To identify ranavirus virulence genes, we engineered Frog Virus 3 (FV3) knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD) protein (Δ64R-FV3) and a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3). Compared to wild type (WT) FV3, infection of Xenopus tadpoles with Δ64R- or Δ52L-FV3 resulted in significantly lower levels of mortality and viral replication. We further characterized these and two earlier KO mutants lacking the immediate-early18kDa protein (FV3-Δ18K) or the truncated viral homolog of eIF-2α (FV3-ΔvIF-2α). All KO mutants replicated as well as WT-FV3 in non-amphibian cell lines, whereas in Xenopus A6 kidney cells replication of ΔvCARD-, ΔvβHSD- and ΔvIF-2α-FV3 was markedly reduced. Furthermore, Δ64R- and ΔvIF-2α-FV3 were more sensitive to interferon than WT and Δ18-FV3. Notably, Δ64R-, Δ18K- and ΔvIF-2α- but not Δ52L-FV3 triggered more apoptosis than WT FV3. These data suggest that vCARD (64R) and vβ-HSD (52L) genes contribute to viral pathogenesis.
Collapse
|
11
|
Virion-associated viral proteins of a Chinese giant salamander (Andrias davidianus) iridovirus (genus Ranavirus) and functional study of the major capsid protein (MCP). Vet Microbiol 2014; 172:129-39. [DOI: 10.1016/j.vetmic.2014.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 01/04/2023]
|
12
|
Xie JF, Lai YX, Huang LJ, Huang RQ, Yang SW, Shi Y, Weng SP, Zhang Y, He JG. Genome-wide analyses of proliferation-important genes of Iridovirus-tiger frog virus by RNAi. Virus Res 2014; 189:214-25. [DOI: 10.1016/j.virusres.2014.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023]
|
13
|
Lei XY, Ou T, Zhang QY. Rana grylio virus (RGV) 50L is associated with viral matrix and exhibited two distribution patterns. PLoS One 2012; 7:e43033. [PMID: 22912781 PMCID: PMC3418244 DOI: 10.1371/journal.pone.0043033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The complete genome of Rana grylio virus (RGV) was sequenced and analyzed recently, which revealed that RGV 50 L had homologues in many iridoviruses with different identities; however, the characteristics and functions of 50 L have not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS We cloned and characterized RGV50L, and revealed 50 L functions in virus assembly and gene regulation. 50 L encoded a 499-amino acid structural protein of about 85 kDa in molecular weight and contained a nuclear localization signal (NLS) and a helix- extension-helix motif. Drug inhibition assay demonstrated that 50 L was an immediate-early (IE) gene. Immuno-fluorescence assay revealed that 50 L appeared early and persisted in RGV-infected cells following two distribution patterns. One pattern was that 50 L exhibited a cytoplasm-nucleus- viromatrix distribution pattern, and mutagenesis of the NLS motif revealed that localization of 50 L in the nucleus was NLS-dependent; the other was that 50 L co-localized with viral matrix which plays important roles in virus assembly and the life circle of viruses. CONCLUSIONS/SIGNIFICANCE RGV 50L is a novel iridovirus IE gene encoded structural protein which plays important roles in virus assembly.
Collapse
Affiliation(s)
- Xiao-Ying Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | - Tong Ou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
14
|
Grayfer L, Andino FDJ, Chen G, Chinchar GV, Robert J. Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. Viruses 2012; 4:1075-92. [PMID: 22852041 PMCID: PMC3407895 DOI: 10.3390/v4071075] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/29/2022] Open
Abstract
Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mechanisms. Indeed, while some of the 95–100 predicted ranavirus genes encode putative evasion proteins (e.g., vIFα, vCARD), roughly two-thirds of them do not share significant sequence identity with known viral or eukaryotic genes. Accordingly, the investigation of ranaviral virulence and immune evasion strategies is promising for elucidating potential antiviral targets. In this regard, recombination-based technologies are being employed to knock out gene candidates in the best-characterized RV member, Frog Virus (FV3). Concurrently, by using animal infection models with extensively characterized immune systems, such as the African clawed frog, Xenopus laevis, it is becoming evident that components of innate immunity are at the forefront of virus-host interactions. For example, cells of the macrophage lineage represent important combatants of RV infections while themselves serving as targets for viral infection, maintenance and possibly dissemination. This review focuses on the recent advances in the understanding of the RV immune evasion strategies with emphasis on the roles of the innate immune system in ranaviral infections.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (L.G.); (F.D.J.A.); (G.C.)
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (L.G.); (F.D.J.A.); (G.C.)
| | - Guangchun Chen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (L.G.); (F.D.J.A.); (G.C.)
| | - Gregory V. Chinchar
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA; (L.G.); (F.D.J.A.); (G.C.)
- Author to whom correspondence should be addressed; ; Tel.: +1-585-275-1722; Fax: +1-585-473-9573
| |
Collapse
|
15
|
Ecopathology of ranaviruses infecting amphibians. Viruses 2011; 3:2351-2373. [PMID: 22163349 PMCID: PMC3230856 DOI: 10.3390/v3112351] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/03/2011] [Accepted: 11/10/2011] [Indexed: 12/19/2022] Open
Abstract
Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.
Collapse
|
16
|
Antiviral immunity in amphibians. Viruses 2011; 3:2065-2086. [PMID: 22163335 PMCID: PMC3230842 DOI: 10.3390/v3112065] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/20/2011] [Accepted: 10/22/2011] [Indexed: 01/27/2023] Open
Abstract
Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.
Collapse
|
17
|
Chinchar VG, Yu KH, Jancovich JK. The molecular biology of frog virus 3 and other iridoviruses infecting cold-blooded vertebrates. Viruses 2011; 3:1959-85. [PMID: 22069524 PMCID: PMC3205390 DOI: 10.3390/v3101959] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 01/01/2023] Open
Abstract
Frog virus 3 (FV3) is the best characterized member of the family Iridoviridae. FV3 study has provided insights into the replication of other family members, and has served as a model of viral transcription, genome replication, and virus-mediated host-shutoff. Although the broad outlines of FV3 replication have been elucidated, the precise roles of most viral proteins remain unknown. Current studies using knock down (KD) mediated by antisense morpholino oligonucleotides (asMO) and small, interfering RNAs (siRNA), knock out (KO) following replacement of the targeted gene with a selectable marker by homologous recombination, ectopic viral gene expression, and recombinant viral proteins have enabled researchers to systematically ascertain replicative- and virulence-related gene functions. In addition, the application of molecular tools to ecological studies is providing novel ways for field biologists to identify potential pathogens, quantify infections, and trace the evolution of ecologically important viral species. In this review, we summarize current studies using not only FV3, but also other iridoviruses infecting ectotherms. As described below, general principles ascertained using FV3 served as a model for the family, and studies utilizing other ranaviruses and megalocytiviruses have confirmed and extended our understanding of iridovirus replication. Collectively, these and future efforts will elucidate molecular events in viral replication, intrinsic and extrinsic factors that contribute to disease outbreaks, and the role of the host immune system in protection from disease.
Collapse
Affiliation(s)
- V Gregory Chinchar
- Department of Microbiology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA.
| | | | | |
Collapse
|