1
|
Chen S, Fan H, Ran C, Hong Y, Feng H, Yue Z, Zhang H, Pontarotti P, Xu A, Huang S. The IL-17 pathway intertwines with neurotrophin and TLR/IL-1R pathways since its domain shuffling origin. Proc Natl Acad Sci U S A 2024; 121:e2400903121. [PMID: 38683992 PMCID: PMC11087794 DOI: 10.1073/pnas.2400903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.
Collapse
Affiliation(s)
- Shenghui Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Huiping Fan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Chenrui Ran
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Yun Hong
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Huixiong Feng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Zirui Yue
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Pierre Pontarotti
- MEPHI (Microbes, Evolution, Phylogénie et Infection), Aix Marseille Université, Marseille, France
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing100029, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
2
|
Structure of a prokaryotic SEFIR domain reveals two novel SEFIR-SEFIR interaction modes. J Struct Biol 2018; 203:81-89. [PMID: 29549035 PMCID: PMC6057156 DOI: 10.1016/j.jsb.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023]
Abstract
SEFIR domain-containing proteins are crucial for mammalian adaptive immunity. As a unique intracellular signaling domain, the SEFIR-SEFIR interactions mediate physical protein-protein interactions in the immune signaling network, especially the IL-17- and IL-25-mediated pathways. However, due to the lack of structural information, the detailed molecular mechanism for SEFIR-SEFIR assembly remains unclear. In the present study, we solved the crystal structures of a prokaryotic SEFIR domain from Bacillus cereus F65185 (BcSEFIR), where the SEFIR domain is located at the N terminus. The structure of BcSEFIR revealed two radically distinct SEFIR-SEFIR interaction modes. In the asymmetric form, the C-terminal tail of one SEFIR binds to the helix αA and βB-αB' segment of the other one, while in the symmetric form, the helices ηC and αE and the DE-segment compose the inter-protomer interface. The C-terminal tail of BcSEFIR, critical for asymmetric interaction, is highly conserved among the SEFIR domains of Act1 orthologs from different species, in particular three absolutely conserved residues that constitute an EXXXXPP motif. In the symmetric interaction mode, the most significant contacts made by residues on helix αE are highly conserved in Act1 SEFIR domains, constituted an RLI/LXE motif. The two novel SEFIR-SEFIR interaction modes might explain the structural basis for SEFIR domain-mediated complex assembly in signaling pathways.
Collapse
|
3
|
Tassia MG, Whelan NV, Halanych KM. Toll-like receptor pathway evolution in deuterostomes. Proc Natl Acad Sci U S A 2017; 114:7055-7060. [PMID: 28630328 PMCID: PMC5502590 DOI: 10.1073/pnas.1617722114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Animals have evolved an array of pattern-recognition receptor families essential for recognizing conserved molecular motifs characteristic of pathogenic microbes. One such family is the Toll-like receptors (TLRs). On pathogen binding, TLRs initiate specialized cytokine signaling catered to the class of invading pathogen. This signaling is pivotal for activating adaptive immunity in vertebrates, suggesting a close evolutionary relationship between innate and adaptive immune systems. Despite significant advances toward understanding TLR-facilitated immunity in vertebrates, knowledge of TLR pathway evolution in other deuterostomes is limited. By analyzing genomes and transcriptomes across 37 deuterostome taxa, we shed light on the evolution and diversity of TLR pathway signaling elements. Here, we show that the deuterostome ancestor possessed a molecular toolkit homologous to that which drives canonical MYD88-dependent TLR signaling in contemporary mammalian lineages. We also provide evidence that TLR3-facilitated antiviral signaling predates the origin of its TCAM1 dependence recognized in the vertebrates. SARM1, a negative regulator of TCAM1-dependent pathways in vertebrates, was also found to be present across all major deuterostome lineages despite the apparent absence of TCAM1 in invertebrate deuterostomes. Whether the presence of SARM1 is the result of its role in immunity regulation, neuron physiology, or a function of both is unclear. Additionally, Bayesian phylogenetic analyses corroborate several lineage-specific TLR gene expansions in urchins and cephalochordates. Importantly, our results underscore the need to sample across taxonomic groups to understand evolutionary patterns of the innate immunity foundation on which complex immunological novelties arose.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, AL 36849;
| | - Nathan V Whelan
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
- Warm Springs Fish Technology Center, US Fish and Wildlife Service, Warm Springs, GA 31830
| | | |
Collapse
|
4
|
Rosani U, Pallavicini A, Venier P. The miRNA biogenesis in marine bivalves. PeerJ 2016; 4:e1763. [PMID: 26989613 PMCID: PMC4793324 DOI: 10.7717/peerj.1763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova , Padova , Italy
| | | | - Paola Venier
- Department of Biology, University of Padova , Padova , Italy
| |
Collapse
|
5
|
Han Q, Das S, Hirano M, Holland SJ, McCurley N, Guo P, Rosenberg CS, Boehm T, Cooper MD. Characterization of Lamprey IL-17 Family Members and Their Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5440-51. [PMID: 26491201 PMCID: PMC4655163 DOI: 10.4049/jimmunol.1500892] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
Abstract
IL-17 is an ancient cytokine implicated in a variety of immune defense reactions. We identified five members of the sea lamprey IL-17 family (IL-17D.1, IL-17D.2, IL-17E, IL-17B, and IL-17C) and six IL-17R genes (IL-17RA.1, IL-17RA.2, IL-17RA.3, IL-17RF, IL-17RE/RC, and IL-17RD), determined their relationship with mammalian orthologs, and examined their expression patterns and potential interactions to explore their roles in innate and adaptive immunity. The most highly expressed IL-17 family member is IL-17D.1 (mammalian IL-17D like), which was found to be preferentially expressed by epithelial cells of skin, intestine, and gills and by the two types of lamprey T-like cells. IL-17D.1 binding to rIL-17RA.1 and to the surface of IL-17RA.1-expressing B-like cells and monocytes of lamprey larvae was demonstrated, and treatment of lamprey blood cells with rIL-17D.1 protein enhanced transcription of genes expressed by the B-like cells. These findings suggest a potential role for IL-17 in coordinating the interactions between T-like cells and other cells of the adaptive and innate immune systems in jawless vertebrates.
Collapse
Affiliation(s)
- Qifeng Han
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Sabyasachi Das
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Masayuki Hirano
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Stephen J Holland
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nathanael McCurley
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Peng Guo
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Charles S Rosenberg
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Max D Cooper
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322; and
| |
Collapse
|
6
|
Rosani U, Varotto L, Gerdol M, Pallavicini A, Venier P. IL-17 signaling components in bivalves: Comparative sequence analysis and involvement in the immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:255-268. [PMID: 26026244 DOI: 10.1016/j.dci.2015.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
The recent discovery of soluble immune-regulatory molecules in invertebrates takes advantage of the rapid growth of next generation sequencing datasets. Following protein domain searches in the transcriptomes of 31 bivalve spp. and in few available mollusk genomes, we retrieved 59 domains uniquely identifying interleukin 17 (IL-17) and 96 SEFIR domains typical of IL-17 receptors and CIKS/ACT1 proteins acting downstream in the IL-17 signaling pathway. Compared to the Chordata IL-17 family members, we confirm a separate clustering of the bivalve domain sequences and a consistent conservation pattern of amino acid residues. Analysis performed at transcript and genome level allowed us to propose an updated view of the components outlining the IL-17 signaling pathway in Mytilus galloprovincialis and Crassostrea gigas (in both species, homology modeling reduced the variety of IL-17 domains to only two 3D structures). Digital expression analysis indicated more heterogeneous expression levels for the mussel and oyster IL-17 ligands than for IL-17 receptors and CIKS/CIKSL proteins. Besides, new qPCR analyses confirmed such gene expression trends in hemocytes and gills of mussels challenged with heat-killed bacteria. These results uphold the involvement of an ancient IL-17 signaling pathway in the bivalve immune responses and, likewise in humans, suggest the possibility of distinctive modulatory roles of individual IL-17s/IL-17 receptors. Overall, the common evidence of pro-inflammatory cytokines and inter-related intracellular signaling pathways in bivalves definitely adds complexity to the invertebrate immunity.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - Laura Varotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127 Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy.
| |
Collapse
|
7
|
Nakasone T, Sato T, Matsushima Y, Inoue T, Kamei C. Characteristics of scratching behavior in ADJM mice (atopic dermatitis from Japanese mice). Immunopharmacol Immunotoxicol 2015; 37:202-6. [PMID: 25578901 DOI: 10.3109/08923973.2014.1001903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to elucidate the characteristics of scratching behavior in atopic dermatitis from Japanese mice (ADJM) mice, the effects of some antagonists of pruritogens on this behavior were studied. Both male and female ADJM mice showed frequent scratching behavior around the face, abdomen and back. The number of scratching behavior around the face was greater than on the abdomen and back, and scratching behavior in female mice was significantly more frequent than in male mice. Histamine H1 antagonist, chlorpheniramine, p.o., inhibited this behavior potently and dose-dependently. Histamine H1 antagonist with serotonin 5-TH(5-hydroxytryptamine)2 antagonist, cyproheptadine, also inhibited this behavior. However, NK1 antagonist, aprepitant, p.o., had no significant inhibitory effect even at a dose of 100 mg/kg, p.o., Mu antagonist, naloxone, and kappa agonist, nalfurafine, significantly inhibited this behavior at doses of 0.3 mg/kg, s.c., and 0.01 mg/kg, p.o., respectively. Histamine contents in the skin of ADJM mice were significantly higher than in BALB/c mice. These results strongly indicate that scratching behavior in ADJM mice is related with histamine H1, opioid mu and opioid kappa receptors.
Collapse
Affiliation(s)
- Tasuku Nakasone
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Yasuda Women's University , Yasuhigashi, Asaminami-Ku, Hiroshima , Japan
| | | | | | | | | |
Collapse
|
8
|
Wu B, Gong J, Yuan S, Zhang Y, Wei T. Patterns of evolutionary selection pressure in the immune signaling protein TRAF3IP2 in mammals. Gene 2013; 531:403-10. [PMID: 24021976 DOI: 10.1016/j.gene.2013.08.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 01/08/2023]
Abstract
TRAF3 interacting protein 2 (TRAF3IP2) is important for immune responses to pathogens, inflammatory signals and autoimmunity in mammals. In the present study, we collected 19 mammalian TRAF3IP2 sequences and investigated the various types of selection pressure acting on them. Maximum likelihood estimations of nonsynonymous (dN) to synonymous (dS) substitution (dN/dS) ratios for the aligned coding sequences indicated that, as a whole, TRAF3IP2 has been subject to purifying selection. However, the N-terminus of the protein has been subject to higher selection pressure than the C-terminal domain. While eight amino acid residues within the N-terminus appear to have evolved under positive selection, no evidence for such selection was found in the C-terminus. The positively selected residues, which fall outside the currently known functional sites within TRAF3IP2, may have novel functions. The different selection pressures acting on the N- and C-terminal regions are consistent with their protein structures: the C-terminal structure is an ordered structure, whereas the N-terminus is disordered. Taken together with the results of previous studies, it is plausible that positive selection on the N-terminus of TRAF3IP2 may have occurred by competitive coevolution between mammalian hosts and viruses.
Collapse
Affiliation(s)
- Baojun Wu
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
9
|
Ryzhakov G, Blazek K, Lai CCK, Udalova IA. IL-17 receptor adaptor protein Act1/CIKS plays an evolutionarily conserved role in antiviral signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:4852-8. [PMID: 23066157 DOI: 10.4049/jimmunol.1200428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Double-stranded RNA-induced antiviral gene expression in mammalian cells requires activation of IFN regulatory factor 3 (IRF3). In this study, we show that the IL-17R adaptor protein Act1/CIKS is involved in this process. Small interfering RNA-mediated knockdown of Act1 in primary human skin fibroblasts specifically attenuates expression of IFN-β and IFN-stimulated antiviral genes induced by a synthetic viral mimic, polyinosinic-polycytidylic acid. Ectopic expression of Act1 potentiates the IRF3-driven expression of a synthetic reporter construct as well as the induction of antiviral genes. We demonstrate that this effect is dependent on the ability of Act1 to functionally and physically interact with IκB kinase ε (IKKε), a known IRF3 kinase, and IRF3: 1) Act1 binds IKKε and IRF3; 2) Act1-induced IRF3 activation can be blocked specifically by coexpression of a catalytically inactive mutant of IKKε; and 3) mutants of IRF3, either lacking the C terminus or mutated at the key phosphorylation sites, important for its activation by IKKε, do not support Act1-dependent IRF3 activation. We also show that a zebrafish Act1 protein is able to trigger antiviral gene expression in human cells, which suggests an evolutionarily conserved function of vertebrate Act1 in the host defense against viruses. On the whole, our study demonstrates that Act1 is a component of antiviral signaling.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Dishaw LJ, Haire RN, Litman GW. The amphioxus genome provides unique insight into the evolution of immunity. Brief Funct Genomics 2012; 11:167-76. [PMID: 22402506 DOI: 10.1093/bfgp/els007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, University of South Florida, Children's Research Institute, USA
| | | | | |
Collapse
|
11
|
Wu B, Gong J, Liu L, Li T, Wei T, Bai Z. Evolution of prokaryotic homologues of the eukaryotic SEFIR protein domain. Gene 2011; 492:160-6. [PMID: 22037611 DOI: 10.1016/j.gene.2011.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/01/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
SEF/IL17 receptor (SEFIR) domains are mainly found in IL17 receptors (IL17Rs) and their adaptor proteins CIKS (connection to IKK and SAPK/JNK), which exert a host defense role in numbers of infectious diseases and promote inflammatory pathology in autoimmunity. Exploring the evolutionary pathway of SEFIR domains will provide further insight into their functions. Here, we have identified 84 SEFIR domain-containing proteins from more than 1400 prokaryotic genomes. As most SEFIR domain-containing bacterial genomes possess a single SEFIR encoding gene and the SEFIR protein domain forms homodimeric complexes like the Toll/IL1 receptor (TIR) domain, the single bacterial SEFIR proteins may receive binding partners from other organisms. Through comparative and phylogenetic sequence analyses, we show that bacterial SEFIR domain is more similar to that of vertebrate CIKS than IL17R, and it possibly emerges via a lateral gene transfer (LGT) from animals. In addition, our secondary and three-dimensional structural predictions of SEFIR domains reveal that human and pathogenic bacterial SEFIR domains share similar structural and electrostatic features. Our findings provide important clues for further experimental researches on determining the functions of SEFIR proteins in pathogenic prokaryotes.
Collapse
Affiliation(s)
- Baojun Wu
- Laboratory of Developmental Immunology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|