1
|
Shi T, Gao J, Xu W, Liu X, Yan B, Azra MN, Baloch WA, Wang P, Gao H. The mannose-binding lectin (MBL) gene cloned from Exopalaemon carinicauda plays a key role in resisting infection by Vibrio parahaemolyticus. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111001. [PMID: 38908544 DOI: 10.1016/j.cbpb.2024.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.
Collapse
Affiliation(s)
- Tingting Shi
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayi Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wanyuan Xu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Liu
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology, University of Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wazir Ali Baloch
- Department of Freshwater Biology and Fisheries, University of Sindh, Jamshoro 76080, Pakistan
| | - Panpan Wang
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu 222005, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
2
|
Mo J, Li J, Qiu L, Wang Y, Mu L, Ye J. Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2024; 25:2508. [PMID: 38473757 DOI: 10.3390/ijms25052508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Collectin-K1 (CL-K1) is a multifunctional C-type lectin that has been identified as playing a crucial role in innate immunity. It can bind to carbohydrates on pathogens, leading to direct neutralization, agglutination, and/or opsonization, thereby inhibiting pathogenic infection. In this study, we investigated a homolog of CL-K1 (OnCL-K1) in Nile tilapia (Oreochromis niloticus) and its role in promoting the clearance of the pathogen Streptococcus agalactiae (S. agalactiae) and enhancing the antibacterial ability of the fish. Our analysis of bacterial load displayed that OnCL-K1 substantially reduced the amount of S. agalactiae in tissues of the liver, spleen, anterior kidney, and brain in Nile tilapia. Furthermore, examination of tissue sections revealed that OnCL-K1 effectively alleviated tissue damage and inflammatory response in the liver, anterior kidney, spleen, and brain tissue of tilapia following S. agalactiae infection. Additionally, OnCL-K1 was found to decrease the expression of the pro-inflammatory factor IL-6 and migration inhibitor MIF, while increasing the expression of anti-inflammatory factor IL-10 and chemokine IL-8 in the spleen, anterior kidney, and brain tissues of tilapia. Moreover, statistical analysis of survival rates demonstrated that OnCL-K1 significantly improved the survival rate of tilapia after infection, with a survival rate of 90%. Collectively, our findings suggest that OnCL-K1 plays a vital role in the innate immune defense of resisting bacterial infection in Nile tilapia. It promotes the removal of bacterial pathogens from the host, inhibits pathogen proliferation in vivo, reduces damage to host tissues caused by pathogens, and improves the survival rate of the host.
Collapse
Affiliation(s)
- Jinfeng Mo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology, Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiqing Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Ma TF, Huang JN, Wen B, Gao JZ, Chen ZZ. Genome-wide identification and expression analysis of C-type lectins in discus fish (Symphysodon aequifasciatus) during parental care. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109291. [PMID: 38104702 DOI: 10.1016/j.fsi.2023.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Discus fish (Symphysodon aequifasciatus) exhibit a unique parental care behavior: adult discus produces secretion through their skin, on which the larvae live after birth. The immune components in the skin mucus of parental discus would change during different parental care. C-type lectins (CTLs) could identify and eliminate pathogenic microorganisms and play important roles in innate immunity. Studies on CTLs of discus fish especially during parental care, however, are scarce. Here, we identified 186 CTL genes that distributed in 27 linkage groups based on discus genome. Phylogenetic analysis showed that S. aequifasciatus CTL (SaCTL) members were grouped into 14 subfamilies. A total of 80 gene replication events occurred, of which 15 pairs were subjected to segmental duplication and 65 pairs underwent tandem duplication. Ka/Ks ranged from 0.11 (SaCTL25/SaCTL158) to 0.68 (SaCTL36/SaCTL69), all undergoing purifying selection. RNA-seq analysis revealed that SaCTL members, including duplicated genes, in the skin of parental discus show distinct expression patterns in different care stages and between male and female parents. The SaCTL11 was differentially expressed in most care stages and reached the maximum after eggs spawned, but the expression of its paired SaCTL14 was low in each stage. The SaCTL39 increased first and then decreased, reaching a peak in eggs spawned, while paired SaCTL48 first decreased and then increased, reaching a peak in hatched eggs. The SaCTL50 was differentially expressed only in female fish during care, but not in male fish. These results provide new insights into the evolution and potential functional differentiation of CTLs in discus fish during parental care.
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Nikumbh S, Lenhard B. Identifying promoter sequence architectures via a chunking-based algorithm using non-negative matrix factorisation. PLoS Comput Biol 2023; 19:e1011491. [PMID: 37983292 PMCID: PMC10695386 DOI: 10.1371/journal.pcbi.1011491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/04/2023] [Accepted: 09/05/2023] [Indexed: 11/22/2023] Open
Abstract
Core promoters are stretches of DNA at the beginning of genes that contain information that facilitates the binding of transcription initiation complexes. Different functional subsets of genes have core promoters with distinct architectures and characteristic motifs. Some of these motifs inform the selection of transcription start sites (TSS). By discovering motifs with fixed distances from known TSS positions, we could in principle classify promoters into different functional groups. Due to the variability and overlap of architectures, promoter classification is a difficult task that requires new approaches. In this study, we present a new method based on non-negative matrix factorisation (NMF) and the associated software called seqArchR that clusters promoter sequences based on their motifs at near-fixed distances from a reference point, such as TSS. When combined with experimental data from CAGE, seqArchR can efficiently identify TSS-directing motifs, including known ones like TATA, DPE, and nucleosome positioning signal, as well as novel lineage-specific motifs and the function of genes associated with them. By using seqArchR on developmental time courses, we reveal how relative use of promoter architectures changes over time with stage-specific expression. seqArchR is a powerful tool for initial genome-wide classification and functional characterisation of promoters. Its use cases are more general: it can also be used to discover any motifs at near-fixed distances from a reference point, even if they are present in only a small subset of sequences.
Collapse
Affiliation(s)
- Sarvesh Nikumbh
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
5
|
Liu Y, Wang Z, Wang W, Liu B, Li C, Sun Y, Cao J, Xia K, Yang M, Yan J. Characterization and functional analysis of a novel C-type lectin in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108966. [PMID: 37482206 DOI: 10.1016/j.fsi.2023.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
C-type lectins, one of the pattern recognition receptors (PRRs), play significant roles in innate immune responses through binding to the pathogen-associated molecular patterns (PAMPs) presented on surfaces of microorganisms. Here, a novel C-type lectin (named as MaCTL) from blunt snout bream (Megalobrama amblycephala) was cloned and characterized. The open reading frame (ORF) of MaCTL is 573 bp long encoding a putative protein of 190 amino acids (aa), which contains a typical feature of signal peptide at 1-23 aa, a characteristic CRD domain at 45-178 aa and a WND/EPN motif that is required for carbohydrates-binding specificity. Phylogenetic analysis indicated that MaCTL is a novel member of CTL family and possessed the highest similarity to that of grass carp (92.11%). The qRT-PCR analysis revealed that MaCTL expressed widely in all examined normal tissues, including heart, liver, spleen, kidney, head-kidney, gill, intestine and muscle, with the higher expression in the spleen, liver and muscle. The expression of MaCTL in spleen was significantly elevated, peaking at 9 h and 6 h after LPS stimulation and Aeromonas hydrophila challenge, respectively, suggesting its association with involvement in innate immune response. The recombinant MaCTL protein (rMaCTL) agglutinated markedly both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria, including Escherichia coli, Vibrio anguillarum, Vibrio vulnificus and Aeromonas hydrophila, in a Ca2+-dependent manner. Meanwhile, rMaCTL showed the binding effects on the five bacteria and four carbohydrates, such as glucose, surose, LPS and PGN. Moreover, rMaCTL could remarkably inhibit the growth of three types of bacteria in vitro. Overall, the results obtained above demonstrated firmly that MaCTL binds to carbohydrates on the surface of diverse pathogens as a PRR and elicits antimicrobial responses, which shed new light on a better understanding of antibacterial functions of CTLs in teleost fish.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Zuzhen Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wenjun Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Bing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chunfang Li
- Department of Life Sciences, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yuandong Sun
- Department of Life Sciences, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jiri Cao
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Kuanyu Xia
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Moci Yang
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
6
|
Mu L, Yin X, Bai H, Li J, Qiu L, Zeng Q, Fu S, Ye J. Mannose-binding lectin suppresses macrophage proliferation through TGF-β1 signaling pathway in Nile tilapia. Front Immunol 2023; 14:1159577. [PMID: 37261343 PMCID: PMC10227430 DOI: 10.3389/fimmu.2023.1159577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Mannose-binding lectin (MBL) is a multifunctional pattern recognition molecule, which not only mediates the recognition of pathogenic microorganisms and their products, playing an important role in innate immune defense, but also participates in adaptive immune responses of mammalian. However, it's related immune mechanism remains limited, especially the regulation of cell proliferation in early vertebrates. In this study, OnMBL was found to bind to kidney macrophages (MФ) from Nile tilapia (Oreochromis niloticus). Interestingly, OnMBL was able to reduce the proliferation of activated-MФ by regulating the cell cycle, arresting a large number of cells in the G0/G1 phase, and increasing the probability of apoptosis. More importantly, we found that the inhibition of cell proliferation by OnMBL was closely related to the evolutionarily conserved canonical transforming growth factor-beta 1 (TGF-β1) signaling pathway. Mechanistically, OnMBL could significantly increase the expression of TGF-β1, activate and regulate the downstream Smad-dependent pathway to reduce the MФ proliferation, thereby maintaining cellular homeostasis in the body's internal environment. This study represents the first description regarding the regulatory mechanisms of the MBL on cell proliferation in teleost fish, which provides a novel perspective on the understanding of the multiple function and evolutionary origins of C-type lectins in the immune system.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Wang W, Liu MY, Fei CJ, Li CH, Chen J. Molecular and functional characterization of a ladderlectin-like molecule from ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:419-430. [PMID: 36257553 DOI: 10.1016/j.fsi.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Ladderlectin is a member of C-type lectins (CTLs) in teleost fish and involved in innate immune defense. In this study, ayu (Plecoglossus altivelis) ladderlecin-like (PaLL-like) sequence was cloned, which encodes a polypeptide of 172 amino acids that includes a signal peptide and characteristic C-type lectin-like domains (CTLDs). Phylogenetically, PaLL-like was most closely related to its teleost counterpart from shishamo smelt (Spirinchus lanceolatus). Expression analysis revealed a ubiquitous expression profile, with highest expression detected in liver and its expression was up-regulated following Vibiro anguillarum infection. Similar to canonical CTLs, PaLL-like exhibited carbohydrate-binidng capacities to a wide range of well-defined mono-/di-saccharides and likely confer PaLL-like the ability to agglutinate all tested bacterial, including three Gram-positive species (i.e., Listeria monocytogenes, Staphylococcus aureus and Streptococcus iniae) and eight Gram-negative species (i.e., Edwardsiella tarda, Aeromonas (A.) hydrophila, Escherichia coli, Vibrio (V.) harveyi, V. anguillarum, V. parahemolyticus, A. versoni and V. vulnificus), in a calcium-dependent manner. Further functional studies revealed that PaLL-like displayed immunomodulatory activities leading to enhanced bactericidal activity of serum, pathogen opsonization and macrophage activation with increased expression of pro-inflammatory cytokines (i.e., PaIL-1β and PaTNF-α). Collectively, these immunomodulatory activities of PaLL-like suppressed proliferations of V. anguillarum in targeted tissued in vivo and likely contributed to the increased survival rate of infected-fish. Overall, our results demonstrated PaLL-like is a critical component of innate immunity and provides protective effects against bacterial infection.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Mei-Yi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
8
|
Yin X, Li X, Mu L, Bai H, Yang Y, Chen N, Wu L, Fu S, Li J, Ying W, Ye J. Affinity-Driven Site-Specific High Mannose Modification Determines the Structural Polymerization and Function of Tetrameric IgM in a Primitive Vertebrate. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:593-605. [PMID: 35868636 DOI: 10.4049/jimmunol.2100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 10/17/2023]
Abstract
Teleost tetramer IgM is the predominant Ig in the immune system and plays essential roles in host defense against microbial infection. Due to variable disulfide polymerization of the monomeric subunits, tetrameric IgM possesses considerable structural diversity. Previous work indicated that the teleost IgM H chain was fully occupied with complex-type N-glycans. However, after challenge with trinitrophenyl (TNP) Ag, the complex N-glycans in the Asn-509 site of Oreochromis niloticus IgM H chain transformed into high mannose. This study, therefore, was conducted to examine the functional roles of the affinity-related high-mannose modification in tilapia IgM. The TNP-specific IgM Ab affinity maturation was revealed in tilapia over the response. A positive correlation between TNP-specific IgM affinity and its disulfide polymerization level of isomeric structure was demonstrated. Mass spectrometric analysis indicated that the relationship between IgM affinity and disulfide polymerization was associated with the Asn-509 site-specific high-mannose modification. Furthermore, the increase of high mannose content promoted the combination of IgM and mannose receptor (MR) on the surface of phagocytes. Moreover, the increased interaction of IgM and MR amplified the phagocytic ability of phagocytes to Streptococcus agalactiae. To our knowledge, this study demonstrates that site-specific high-mannose modification associates with IgM Ab affinity and its structural disulfide polymerization and amplifies the phagocytosis of phagocytes by the combination of IgM and MR. The present study provides evidence for understanding the association of IgM structure and function during the evolution of the immune system.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Hao Bai
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Shengli Fu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI; and
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing, People's Republic of China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, People's Republic of China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Mu L, Yin X, Qi W, Li J, Bai H, Chen N, Yang Y, Wang B, Ye J. An l-rhamnose-binding lectin from Nile tilapia (Oreochromis niloticus) possesses agglutination activity and regulates inflammation, phagocytosis and respiratory burst of monocytes/macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104256. [PMID: 34517013 DOI: 10.1016/j.dci.2021.104256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Rhamnose-binding lectins (RBLs), a Ca2+-independent lectin family, are widely present in vertebrates and invertebrates, which involve in the innate immune response. However, the functional characterization and related regulation mechanisms of RBLs remain unclear in teleost fish. In this study, an l-rhamnose-binding lectin-like (OnRBL-L) was identified and functionally characterized from Nile tilapia (Oreochromis niloticus). The open reading frame of OnRBL-L is 678 bp encoding 225 aa. The sequence of OnRBL-L has relatively conservative characteristic peptide motifs, including YGR, DPC, and KYL-motif. Expression analysis showed that OnRBL-L was abundantly distributed in intestine tissue, and widely existed in all detected tissues. Meanwhile, the expression of OnRBL-L increased significantly in vivo (liver, spleen, head kidney, intestine, gills and peripheral blood) and in vitro (monocytes/macrophages) following challenges with two important tilapia pathogenic bacteria Streptococcus agalactiae and Aeromonas hydrophila. In addition, the recombinant OnRBL-L was found to bind and agglutinate S. agalactiae and A. hydrophila. Furthermore, OnRBL-L could participate in non-specific cellular immune defense, including reducing the expression of pro-inflammatory factors (IL-6、IL-8 and TNF-α), and enhancement of the phagocytosis and respiratory burst of MO/MФ. Overall, our results provide new insights into the understanding of RBL as an important pattern recognition molecule and regulator in non-specific cell immunity in an early vertebrate.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| | - Weiwei Qi
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jiadong Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Hao Bai
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Nuo Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
10
|
Buchan KD, van Gent M, Prajsnar TK, Ogryzko NV, de Jong NWM, Kolata J, Foster SJ, van Strijp JAG, Renshaw SA. Human-specific staphylococcal virulence factors enhance pathogenicity in a humanised zebrafish C5a receptor model. J Cell Sci 2021; 134:jcs.252205. [PMID: 33589501 DOI: 10.1242/jcs.252205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus infects ∼30% of the human population and causes a spectrum of pathologies ranging from mild skin infections to life-threatening invasive diseases. The strict host specificity of its virulence factors has severely limited the accuracy of in vivo models for the development of vaccines and therapeutics. To resolve this, we generated a humanised zebrafish model and determined that neutrophil-specific expression of the human C5a receptor conferred susceptibility to the S. aureus toxins PVL and HlgCB, leading to reduced neutrophil numbers at the site of infection and increased infection-associated mortality. These results show that humanised zebrafish provide a valuable platform to study the contribution of human-specific S. aureus virulence factors to infection in vivo that could facilitate the development of novel therapeutic approaches and essential vaccines.
Collapse
Affiliation(s)
- Kyle D Buchan
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.,The Florey Institute for Host-Pathogen Interactions, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Tomasz K Prajsnar
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Nikolay V Ogryzko
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Julia Kolata
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Simon J Foster
- The Florey Institute for Host-Pathogen Interactions, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, The Netherlands
| | - Stephen A Renshaw
- The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
11
|
Mu L, Yin X, Wu H, Lei Y, Han K, Mo J, Guo Z, Li J, Ye J. Mannose-Binding Lectin Possesses Agglutination Activity and Promotes Opsonophagocytosis of Macrophages with Calreticulin Interaction in an Early Vertebrate. THE JOURNAL OF IMMUNOLOGY 2020; 205:3443-3455. [PMID: 33199536 DOI: 10.4049/jimmunol.2000256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
The innate immune system is an ancient defense system in the process of biological evolution, which can quickly and efficiently resist pathogen infection. In mammals, mannose-binding lectin (MBL) is a key molecule in the innate immune and plays an essential role in the first line of host defense against pathogenic bacteria. However, the evolutionary origins and ancient roles of immune defense of MBL and its mechanism in clearance of microbial pathogens are still unclear, especially in early vertebrates. In this study, Oreochromis niloticus MBL (OnMBL) was successfully isolated and purified from the serum of Nile tilapia (O. niloticus). The OnMBL was able to bind and agglutinate with two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila Interestingly, the OnMBL was able to significantly inhibit the proliferation of pathogenic bacteria and reduce the inflammatory response. Upon bacterial challenge, the downregulation of OnMBL expression by RNA interference could lead to rapid proliferation of the pathogenic bacteria, ultimately resulting in tilapia death. However, the phenotype was rescued by reinjection of the OnMBL, which restored the healthy status of the knockdown tilapia. Moreover, a mechanistic analysis revealed that the OnMBL could clear pathogenic bacteria by collaborating with cell-surface calreticulin to facilitate phagocytosis in a complement activation-independent manner. To our knowledge, these results provide the first evidence on the antibacterial response mechanism of MBL performing evolutionary conserved function to promote opsonophagocytosis of macrophages in early vertebrates and reveals new insights into the understanding of the evolutionary origins and ancient roles basis of the C-type lectins in the innate immune defense.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Hairong Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Yang Lei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Kailiang Han
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Jinfeng Mo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI 49783
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong 510631, People's Republic of China; and
| |
Collapse
|
12
|
Lin J, Ning J, Lu X, Chen M, Cao W, Wang C. Transcriptomic analysis and expression of C-type lectins in response to Vibrio parahaemolyticus challenge in Scapharca subcrenata. FISH & SHELLFISH IMMUNOLOGY 2020; 106:365-373. [PMID: 32800981 DOI: 10.1016/j.fsi.2020.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Little information is available on innate immune defense mechanisms of Scapharca subcrenata. C-type lectins (CTLs) are not only pattern recognition proteins that can bind pathogen-associated molecular patterns, but also crucial maternally-derived immune factors in mollusc egg. In this study, the comparative transcriptome analysis of Vibrio parahaemolyticus-infected and untreated hepatopancreas were performed to identify the key genes involved in maternal transfer of immunity. A total of 3514 and 9327 differentially expressed genes (DEGs) were identified at 6 and 48 h post challenge compared to control groups. Gene Ontology and Cluster of Orthologous Groups analysis showed that most DEGs were classified under regulation of signal transduction, regulation of the metabolic process of carbohydrates and secondary metabolites, while the processes of posttranscriptional modification and protein translation were inhibited manifestly. The DEGs were most enriched in pathways related to lysosome, phagosome and EMC-receptor interaction. Among the DEGs, 191 maternal immune-related genes that could provide developing embryos a better protection against pathogen infection were identified according to previous studies. Additionally, five CTLs (designated as SsCTL1-5) identified from the DEGs were cloned, and their expression patterns in different tissues and post immune stimulation were analyzed. These findings would be beneficial for understanding the innate immune defense mechanisms of S. subcrenata.
Collapse
Affiliation(s)
- Jiliang Lin
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Junhao Ning
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xia Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Weian Cao
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunde Wang
- Qingdao Agricultural University, Qingdao, 266109, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
13
|
Wu H, Mu L, Yin X, Han K, Yan F, Zhou E, Han B, Guo Z, Ye J. A microfibril-associated glycoprotein 4 (MFAP4) from Nile tilapia (Oreochromis niloticus) possesses agglutination and opsonization ability to bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2020; 104:182-191. [PMID: 32531331 DOI: 10.1016/j.fsi.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Microfibril-associated glycoprotein 4 (MFAP4), a pattern recognition-like molecule with a fibrinogen-like domain (FBG), has the ability to combine and agglutinate pathogens, playing an essential role in the first line of innate immune defense. In this study, the sequence of Nile tilapia (Oreochromis niloticus) microfibril-associated glycoprotein 4 (OnMFAP4) open reading frame (ORF) was amplified and identified. The ORF of OnMFAP4 is 720 bp of nucleotides and codes for 239 amino acids. Spatial mRNA encoding analysis indicated that OnMFAP4 was highly produced in liver, intestine and head kidney in healthy tilapia, and with the lowest expression in muscle. After challenges with Streptococcus agalactiae (S. agalactiae) and Aeromonas hydrophila (A. hydrophila), the expression of OnMFAP4 mRNA was prominently produced in the liver, spleen and head kidney. The up-regulation of OnMFAP4 expression was also presented in head kidney monocytes/macrophages (MO/MΦ) and hepatocytes. Recombinant OnMFAP4 ((r)OnMFAP4) could bind and agglutinate both bacterial pathogens. Moreover, (r)OnMFAP4 could take part in the modulation of inflammation and phagocytosis. In conclusion, this study revealed that OnMFAP4 might take effect in host defense against bacterial infection in Nile tilapia, with agglutination and opsonization capability to bacterial pathogens.
Collapse
Affiliation(s)
- Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Fangfang Yan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Enxu Zhou
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Biao Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
14
|
Mu L, Yin X, Wu H, Han K, Guo Z, Ye J. MAp34 Regulates the Non-specific Cell Immunity of Monocytes/Macrophages and Inhibits the Lectin Pathway of Complement Activation in a Teleost Fish. Front Immunol 2020; 11:1706. [PMID: 32903484 PMCID: PMC7435015 DOI: 10.3389/fimmu.2020.01706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
The lectin pathway of the complement system is one of the main components of innate immunity, which plays a pivotal role in the defense against infectious microorganisms and maintains immune homeostasis. However, its control mechanisms remain unclear in teleost fish. In this study, we described the identification and functional characterization of a mannose-binding lectin associated protein MAp34 (OnMAp34) from Nile tilapia (Oreochromis niloticus) at molecular, cellular, and protein levels. The open reading frame (ORF) of OnMAp34 is 918 bp of nucleotide sequence encoding a polypeptide of 305 amino acids. The deduced amino acid sequence has three characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB) and one epidermal growth factor domain (EGF). Expression analysis revealed that the OnMAp34 was highly expressed in the liver and widely existed in other examined tissues. In addition, the mRNA and protein expression levels of OnMAp34 were remarkably altered upon infection with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro. Further, we found that the OnMAp34 could participate in the non-specific cellular immune defense, including the regulation of inflammation, migration, and enhancement of phagocytosis of monocytes/macrophages. Moreover, the OnMAp34 could compete with OnMASPs to combine OnMBL and inhibit the lectin pathway of complement activation. Overall, our results provide new insights into the understanding of MAp34 as a potent regulator in the lectin complement pathway and non-specific cell immunity in an early vertebrate.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Hairong Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Kailiang Han
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Kong L, Wu L, Guo Z, Mu L, Yang Y, Bian X, Li B, Pan X, Fu S, Ye J. A Siglec-1-like lectin from Nile tilapia (Oreochromis niloticus) possesses functions of agglutination and mediation of macrophage phagocytic activity. FISH & SHELLFISH IMMUNOLOGY 2020; 102:203-210. [PMID: 32330627 DOI: 10.1016/j.fsi.2020.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Siglec-1, one of the sialic acid-binding immunoglobulin-type lectins, is closely related to the recognition of host-pathogen and cell-cell interactions in the adaptive and innate immune systems. In this communication, a Siglec-1-like gene (OnSiglec-1-like) from Nile tilapia (Oreochromis niloticus) was analyzed. Relative expression revealed that the OnSiglec-1-like was expressed in all tested tissues, and the highest expression was found in the anterior kidney. Upon Streptococcus agalactiae (S. agalactiae) infection, the expression of OnSiglec-1-like was up-regulated in anterior kidney and spleen significantly in vivo. Additionally, the same phenomenon was observed in anterior kidney leukocytes upon LPS and S. agalactiae challenges as well in vitro. Western-blotting and ELISA analyses revealed that recombinant OnSiglec-1-like protein possessed high binding activity to LTA, LPS and S. agalactiae. Further, the recombinant OnSiglec-1-like was able to agglutinate S. agalactiae. Moreover, with the digestion of specific sialidase, the phagocytic ability of macrophages to S. agalactiae was greatly enhanced. Taken together, these results indicated that the Siglec-1-like possesses conserved functions of agglutination and promotion of macrophage phagocytic activity in Nile tilapia.
Collapse
Affiliation(s)
- Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xunbin Pan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
16
|
Liu L, Dang Y. Antimicrobial activity of mannose binding lectin in grass carp (Ctenopharyngodon idella) in vivo and in vitro. FISH & SHELLFISH IMMUNOLOGY 2020; 98:25-33. [PMID: 31904539 DOI: 10.1016/j.fsi.2019.12.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Mannose-binding lectin (MBL) is a crucial pattern recognition receptor in the host innate immune system. Previously, we reported the biological function of Ctenopharyngodon idella MBL (CiMBL) in initiating the lectin pathway of the complement system. In the present study, we further explored its biological function including the agglutinating ability, binding capacity and protective role in vitro and in vivo. After Aeromonas hydrophila infection, western blot analysis revealed that the CiMBL were fluctuated and expressed in the serum and major immune-related tissues. The result of quantitative PCR (qPCR) showed that the recombinant CiMBL (rCiMBL) significantly inhibited the mRNA expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in liver, spleen and hepatic cells. Due to rCiMBL bound to d-mannose, d-galactose, d-glucose, N-acetyl-d-glucosamine (GlcNAc), lipopolysaccharide (LPS), peptidoglycan (PGN) and Agar in the presence of Ca2+, herein gram-positive (Staphylococcus aureus and Micrococcus luteus) and gram-negative (A. hydrophila and Vibrio anguillarum) bacteria were agglutinated by rCiMBL in a Ca2+-dependent manner. More importantly, rCiMBL enhanced the survival rate of grass carp following bacterial infection. Overall, the results provide an evidence that CiMBL can protect grass carp against A. hydrophila infection in aquaculture.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Yunfei Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
17
|
Dang Y, Nie L, Chen J. Molecular and functional characterisation of a mannose-binding lectin-like gene from Japanese sea bass (Lateolabrax japonicus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103558. [PMID: 31751630 DOI: 10.1016/j.dci.2019.103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Mannose-binding lectin (MBL) plays an important role in host immune responses against pathogens. LjMBL-like-1 was identified from Japanese sea bass (Lateolabrax japonicas), which has selectivity for galactose. Herein, this lectin might be better designated as galactose-binding lectin (LjGalBL-1). LjGalBL-1 transcripts were detected in all tested tissues, with highest expression in liver. Upon Vibrio harveyi infection, LjGalBL-1 mRNA expression was increased in major immune-related tissues, and protein levels in serum were also upregulated. Recombinant LjGalBL-1 (rLjGalBL-1) bound to monosaccharides and polysaccharides, and both rLjGalBL-1 and native LjGalBL-1 (nLjGalBL-1) agglutinated three Gram-positive bacteria (Staphylococcus aureus, Streptococcus iniae and Micrococcus luteus) and four Gram-negative bacteria (Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum and V. harveyi) in a Ca2+-dependent manner in vitro. Moreover, rLjGalBL-1 increased the survival rate of V. harveyi-infected fish and decreased bacterial load in liver, spleen, kidney and blood. Thus, LjGalBL-1 protects L. japonicas against V. harveyi infection.
Collapse
Affiliation(s)
- Yunfei Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
18
|
Mu L, Wu H, Han K, Wu L, Bian X, Li B, Guo Z, Yin X, Ye J. Molecular and functional characterization of a mannose-binding lectin/ficolin-associated protein (MAp44) from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103438. [PMID: 31299190 DOI: 10.1016/j.dci.2019.103438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. Mannose-binding lectin/ficolin-associated protein (MAp44), a multifunctional complement regulator, regulates the complement activation by competing with MASP-1, MASP-2 and MASP-3 for MBL and ficolin binding sites. In this study, we described the identification and functional characterization of a MAp44 homologue (OnMAp44) from Nile tilapia (Oreochromis niloticus) at molecular, cellular and protein levels. The open reading frame (ORF) of OnMAp44 is 1140 bp of nucleotide sequence encoding a polypeptide of 379 amino acids. The deduced amino acids sequence has four characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB), one epidermal growth factor domain (EGF) and one complement control protein domains (CCP). Expression analysis revealed that the OnMAp44 was highly expressed in liver, and widely existed in other examined tissues. In addition, the OnMAp44 expression was significantly up-regulated in spleen and head kidney following challenges with Streptococcus agalactiae and Aeromonas hydrophila. The up-regulations of OnMAp44 mRNA and protein expression were also observed in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnMAp44 protein was able to participate in the regulation of inflammation and migration reaction. Taken together, the results indicated that OnMAp44 was likely to involve in the immune response to bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
19
|
Dang Y, Meng X, Lu J, Liu L, Li J. Role of mannose-binding lectin in regulating monocytes/macrophages functions during Aeromonas hydrophila infection in grass carp, Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103408. [PMID: 31173786 DOI: 10.1016/j.dci.2019.103408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin (MBL) is a vital component in host's innate immune system and the initiator of the lectin pathway of complement cascade. However, its opsonic role has rarely been reported. In this study, we revealed the biological function of Ctenopharyngodon idella MBL (CiMBL) in regulating monocytes/macrophages (MO/MФ) in the grass carp (C. idella). Flow cytometry results indicated that recombinant CiMBL (rCiMBL) significantly enhanced the phagocytotic activity of MO/MФ. Recombinant CiMBL also enhanced bactericidal activity and respiratory burst capacity in Aeromonas hydrophila-infected MO/MФ, regulated A. hydrophila-induced polarization of MO/MФ including down- and up-regulated pro- and anti-inflammatory cytokines, respectively, suppressed the inducible nitric oxide synthase activity, and enhanced the arginase activity. In addition, rCiMBL suppressed the bacteria burden in tissues and blood in vivo and enhanced the survival rate of juvenile A. hydrophila-infected grass carp. We provide evidence that CiMBL was synthesized by MO/MФ, regulating the biological function of MO/MФ against A. hydrophila infection.
Collapse
Affiliation(s)
- Yunfei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Xinzhan Meng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianfei Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
20
|
Mu L, Yin X, Wu H, Han K, Wu L, Ding M, Bian X, Li B, Fu S, Liang F, Guo Z, Ye J. Expression and functional characterization of a mannose-binding lectin-associated serine protease-1 (MASP-1) from Nile tilapia (Oreochromis niloticus) in host defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 91:68-77. [PMID: 31096060 DOI: 10.1016/j.fsi.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin-associated serine protease-1 (MASP-1), a multifunctional serine protease, plays an important role in innate immunity which is capable of activating the lectin pathway of the complement system and also triggering coagulation cascade system. In this study, a MASP-1 homolog (OnMASP-1) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and inflammation functional levels. The open reading frame (ORF) of OnMASP-1 is 2187 bp of nucleotide sequence encoding a polypeptide of 728 amino acids. The deduced amino acid sequence has 6 characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB), one epidermal growth factor domain (EGF), two complement control protein domains (CCP) and a catalytic serine protease domain (SP). Expression analysis revealed that the OnMASP-1 was highly expressed in the liver, and widely exhibited in other tissues containing intestine, spleen and kidney. In addition, the OnMASP-1 expression was significantly up-regulated in spleen and head kidney following challenges with Streptococcus agalactiae and Aeromonas hydrophila. The up-regulations of OnMASP-1 mRNA and protein expression were also demonstrated in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnMASP-1 protein was likely to participate in the regulation of inflammatory and migration reaction by monocytes/macrophages. These results indicated that OnMASP-1, playing an important role in innate immunity, was likely to involve in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Mingmei Ding
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
21
|
Yin X, Yang Y, Han K, Wu L, Wu H, Bian X, Wei X, Guo Z, Mu L, Ye J. Purification and functional characterization of serum transferrin from Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2019; 88:36-46. [PMID: 30831243 DOI: 10.1016/j.fsi.2019.02.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Transferrin (TF), an iron-binding multifunctional protein, could participate in the iron-withholding strategy, an effective antimicrobial defense mechanism in innate immunity, and is involved in host defense against pathogenic infection. In this study, a TF homologue (OnTF) was purified from serum of Nile tilapia (Oreochromis niloticus) through a two-step affinity chromatography, and characterized its antibacterial function and the role in inflammatory response. The identification by mass spectrometry showed that peptide sequence of the purified OnTF was highly consistent with its amino acids sequence, containing two conserved iron binding lobes: N-lobe and C-lobe. The native OnTF was able to bond iron ions, and possessed capability to inhibit the growth of both bacterial pathogens (Streptococcus agalactiae and Aeromonas hydrophila) in vitro. Upon infections of S. agalactiae and A. hydrophila, the expression of OnTF protein was significantly up-regulated in vivo and in vitro. In addition, the OnTF participated in the regulation of inflammation, migration, and enhancement of phagocytosis and respiratory burst activity in head kidney macrophages/monocytes. Taken together, the results of this study indicated that OnTF is likely to involve in innate immunity to play a role in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Kailiang Han
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Hairong Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xia Bian
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xiufang Wei
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
22
|
Mu L, Yin X, Yang Y, Wu L, Wu H, Li B, Guo Z, Ye J. Functional characterization of a mannose-binding lectin (MBL) from Nile tilapia (Oreochromis niloticus) in non-specific cell immunity and apoptosis in monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 87:265-274. [PMID: 30654028 DOI: 10.1016/j.fsi.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Mannose-binding lectin (MBL), a soluble pattern recognition receptor, is able to recognize antigen and participate in non-specific cell immunity, such as regulation of inflammation, migration, opsonization, phagocytosis and killing, which plays an important role in innate immunity. In this study, we have investigated the contributing mechanisms and effects of MBL on the cell immunity of Nile tilapia (Oreochromis niloticus) monocytes/macrophages. The mRNA expression level of OnMBL was significantly up-regulated in monocytes/macrophages after in vitro bacterial infection (Streptococcus agalactiae and Aeromonas hydrophila). Recombinant OnMBL ((r)OnMBL) protein could participate in the regulation of inflammation, migration, and enhancement of phagocytosis and respiratory burst activity in monocytes/macrophages. Moreover, the (r)OnMBL could induce the apoptosis of monocytes/macrophages. Taken together, the results of this study indicated that OnMBL is likely to involve in immune regulation, which may play an important role in host defense of innate immunity in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Hairong Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Bingxi Li
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| |
Collapse
|
23
|
Yin X, Mu L, Li Y, Wu L, Yang Y, Bian X, Li B, Liao S, Miao Y, Ye J. Identification and characterization of a B-type mannose-binding lectin from Nile tilapia (Oreochromis niloticus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:91-99. [PMID: 30273652 DOI: 10.1016/j.fsi.2018.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Lectins are a group of carbohydrate-binding proteins, which play an important role in innate immune system against pathogen infection. In this study, a B-type mannose-binding lectin (OnBML) was identified from Nile tilapia (Oreochromis niloticus), and characterized at expression patterns against bacterial infection and capability to promote phagocytosis by macrophages. The open reading frame of OnBML is 354 bp of nucleotide sequence encoding polypeptides of 117 amino acids. The deduced protein is highly homologous to other teleost BMLs, containing two repeats of the conserved mannose-binding motif QXDXNXVXY. Expression of OnBML was widely exhibited in all examined tissues, with the most abundance in spleen and following gill, peripheral blood, and head kidney. The OnBML expressions were significantly up-regulated following two major bacterial infections including a Gram-positive bacterium (Streptococcus agalactiae) and a Gram-negative bacterium (Aeromonas hydrophila) in vivo and in vitro. Recombinant OnBML protein possessed capacities of mannose-binding and calcium-dependent agglutination to S. agalactiae and A. hydrophila, and promoted the phagocytosis by macrophages. Taken together, the present study indicated that OnBML is likely to get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Bingxi Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shaoan Liao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yutao Miao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
24
|
Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Mol Immunol 2018; 103:21-34. [PMID: 30189385 DOI: 10.1016/j.molimm.2018.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Collectin-K1 (CL-K1), a multifunctional Ca2+-dependent lectin, is able to bind carbohydrates on pathogens and inhibit infection by direct neutralization, agglutination, opsonization and killing, which plays an important role in innate immunity. In this study, a CL-K1 homolog (OnCL-K1) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and agglutination functional levels. The open reading frame of OnCL-K1 is 720 bp of nucleotide sequence encoding a polypeptide of 239 amino acids. The deduced amino acid sequence has two characteristic structures, containing a collagen-like region and a carbohydrate recognition domain. Expression analysis revealed that the OnCL-K1 was highly expressed in the liver, and widely exhibited in other tissues including kidney, intestine and spleen. In addition, the OnCL-K1 expression was significantly up-regulated in spleen and anterior kidney following challenges with a Gram-positive bacterial pathogen (Streptococcus agalactiae) and a Gram-negative bacterial pathogen (Aeromonas hydrophila). The up-regulation of OnCL-K1 expression was also demonstrated in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnCL-K1 protein was able to agglutinate both S. agalactiae and A. hydrophila in vitro, and participate in the regulation of inflammatory, migration reaction and promote the phagocytosis by monocytes/macrophages. Taken together, the results of this study indicated that OnCL-K1, possessing apparent agglutination, opsonization and killing ability to bacterial pathogens and participating in the regulation mechanisms of the non-specific cellular immune, might be involved in host defense of innate immunity against bacterial infection in Nile tilapia.
Collapse
|
25
|
Guardiola FA, Saraiva-Fraga M, Cuesta A, Esteban MA. Changes in natural haemolytic complement activity induced by stress in gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2018; 78:317-321. [PMID: 29704553 DOI: 10.1016/j.fsi.2018.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
In aquaculture, animals can be continually exposed to environmental stress factors that put their health and even survival at risk. Two experiments were performed to evaluate the impact of different stress conditions (acute crowding and anaesthetic) on the natural haemolytic complement activity in serum and skin mucus of gilthead seabream (Sparus aurata L.). In the first experiment, fish were subjected to 10 kg m-3 (low density, control group) and 50 kg m-3 (high density, crowding group) during 2, 24 and 48 h. In the second experiment, fish were unexposed (control) or exposed to 40 ppm of MS-222 or 5 ppm or 10 ppm of clove oil for 1 h. In fish maintained in acute crowding conditions only an increase of the haemolytic complement activity was observed in the skin mucus after 24 h of exposure. However, a similar statistically significant increase was observed in serum and skin mucus of fish exposed for 1 h to the lowest concentration of clove oil (5 ppm) tested. The results point to a new and alternative way to assess stress in farmed fish by using skin mucus instead of blood serum and confirm that the measurement of natural haemolytic complement activity serves as an indicator of stress in fish.
Collapse
Affiliation(s)
- Francisco A Guardiola
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
| | - Miguel Saraiva-Fraga
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
26
|
Mu L, Yin X, Xiao Y, Bian X, Yang Y, Wu L, Ye J. A C-type lectin (CL11X1-like) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:230-240. [PMID: 29481905 DOI: 10.1016/j.dci.2018.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Collectins, a subfamily of the C-type lectins, are able to bind non-self glycoconjugates on the surface of microorganisms and inhibit infection by direct neutralization, agglutination and/or opsonization, which play important roles in innate immunity. In this study, a CL11X1-like collectin (OnCL11X1) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and agglutination functional levels. The open reading frame of OnCL11X1 is 840 bp of nucleotide sequence encoding polypeptides of 279 amino acids. The deduced amino acid sequence is highly homology to teleost and similar to mammalian CL11X1, containing a canonical collagen-like region, a carbohydrate recognition domain and a neck region. Expression analysis revealed that the OnCL11X1 was highly expressed in the liver, and widely exhibited in other tissues including kidney, intestines and spleen. In addition, the OnCL11X1 expression was significantly up-regulated in spleen and anterior kidney following challenges with a Gram-positive bacterial pathogen (Streptococcus agalactiae) and a Gram-negative bacterial pathogen (Aeromonas hydrophila). The up-regulation of OnCL11X1 expression was also demonstrated in hepatocytes and macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnCL11X1 protein was able to agglutinate both S. agalactiae and A. hydrophila in vitro and promote the phagocytosis by macrophages. Taken together, the results of this study indicated that OnCL11X1, possessing apparent agglutination and opsonization ability to bacterial pathogens, might be involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Yanhui Xiao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China.
| |
Collapse
|
27
|
Kwon DAH, Jeong JW, Choi EO, Lee HW, Lee KW, Kim KY, Kim SG, Hong SH, Kim GY, Park C, Hwang HJ, Son CG, Choi YH. Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide-stimulated macrophages and zebrafish. AN ACAD BRAS CIENC 2018; 89:661-674. [PMID: 28562828 DOI: 10.1590/0001-3765201720160836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 01/02/2023] Open
Abstract
Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.
Collapse
Affiliation(s)
- DA Hye Kwon
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Jin Woo Jeong
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Eun Ok Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ki Won Lee
- Marine Bio-industry Development Center, Bio-Port Korea INC, Gijang-gun, Republic of Korea
| | - Ki Young Kim
- Marine Bio-industry Development Center, Bio-Port Korea INC, Gijang-gun, Republic of Korea
| | - Sung Goo Kim
- Marine Bio-industry Development Center, Bio-Port Korea INC, Gijang-gun, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, South Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University, Busan, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Natural Sciences & Human Ecology, Dongeui University, Busan, Republic of Korea
| | - Chang-Gue Son
- Daejeon Oriental Hospital, Oriental Medical College, Daejeon University, Daejeon, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| |
Collapse
|
28
|
Jeong JW, Cha HJ, Han MH, Hwang SJ, Lee DS, Yoo JS, Choi IW, Kim S, Kim HS, Kim GY, Hong SH, Park C, Lee HJ, Choi YH. Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish. Biomol Ther (Seoul) 2018; 26:146-156. [PMID: 28365977 PMCID: PMC5839493 DOI: 10.4062/biomolther.2016.272] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines including tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of NF-κB p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Ho Han
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Su Jung Hwang
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Dae-Sung Lee
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jong Su Yoo
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University, Busan 47340, Republic of Korea
| | - Hyo-Jong Lee
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
29
|
Jeong JW, Hwang SJ, Han MH, Lee DS, Yoo JS, Choi IW, Cha HJ, Kim S, Kim HS, Kim GY, Jeon YJ, Lee HJ, Park HT, Yoo YH, Choi YH. Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Mu L, Yin X, Liu J, Wu L, Bian X, Wang Y, Ye J. Identification and characterization of a mannose-binding lectin from Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2017; 67:244-253. [PMID: 28602737 DOI: 10.1016/j.fsi.2017.06.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Mannose-binding lectin (MBL) is a pattern recognition protein that plays an important role in innate immunity capable of activating the lectin pathway of the complement system. In this study, a MBL homologue (OnMBL) was identified from Nile tilapia (Oreochromis niloticus) and characterized at expression and agglutination functional levels. The open reading frame of OnMBL is 687 bp of nucleotide sequence encoding polypeptides of 228 amino acids. The deduced amino acid sequence is highly homology to teleost and similar to mammalian MBL, containing a canonical collagen-like region, a carbohydrate recognition domain and a neck region. Expression analysis revealed that the OnMBL was highly expressed in the liver, and also exhibited in other tissues including hind kidney, intestines, head kidney and spleen. In addition, the OnMBL expression was significantly up-regulated in spleen and head kidney following challenges with a Gram-positive bacterial pathogen (Streptococcus agalactiae) and a Gram-negative bacterial pathogen (Aeromonas hydrophila). Recombinant OnMBL ((r)OnMBL) protein was able to agglutinate both S. agalactiae and A. Hydrophila in vitro. Taken together, the results of this study indicated that OnMBL, possessing apparent agglutination ability to bacterial pathogens, might be involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Yuhong Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong 510631, PR China.
| |
Collapse
|
31
|
Nicola F, Loriano B. Morula cells as key hemocytes of the lectin pathway of complement activation in the colonial tunicate Botryllus schlosseri. FISH & SHELLFISH IMMUNOLOGY 2017; 63:157-164. [PMID: 28189764 DOI: 10.1016/j.fsi.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
The complement system is deeply rooted in the evolution of humoral mechanism of innate immunity. In addition to the alternative pathway of complement activation, lectins and associated serine proteases exert important roles in the recognition of non-self and activation of the effectors. In the colonial tunicate Botryllus schlosseri, we identified, characterized and studied the expression of three orthologues of genes involved in the lectin pathway of complement activation of vertebrates, i.e., genes for a mannose-binding lectin (MBL), a ficolin and a mannose-associated serine protease 1 (MASP1). All the genes are transcribed by hemocytes, and specifically by morula cells, the same immunocytes responsible for the transcription of C3 and Bf orthologues. The transcription levels of MASP1 and ficolin orthologues are not affected by zymosan challenge, indicating a constitutive expression of complement system associated serine proteases, whereas the MBL orthologue is up-regulated after 15 min of zymosan exposure. Collectively, our data suggest the presence of a complete lectin activation pathway in Botryllus.
Collapse
Affiliation(s)
- Franchi Nicola
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy.
| | - Ballarin Loriano
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35100, Padova, Italy
| |
Collapse
|
32
|
Masud S, Torraca V, Meijer AH. Modeling Infectious Diseases in the Context of a Developing Immune System. Curr Top Dev Biol 2016; 124:277-329. [PMID: 28335862 DOI: 10.1016/bs.ctdb.2016.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
33
|
Mallick EM, Bergeron AC, Jones SK, Newman ZR, Brothers KM, Creton R, Wheeler RT, Bennett RJ. Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Front Microbiol 2016; 7:780. [PMID: 27303374 PMCID: PMC4880793 DOI: 10.3389/fmicb.2016.00780] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Phenotypic diversity is critical to the lifestyles of many microbial species, enabling rapid responses to changes in environmental conditions. In the human fungal pathogen Candida albicans, cells exhibit heritable switching between two phenotypic states, white and opaque, which yield differences in mating, filamentous growth, and interactions with immune cells in vitro. Here, we address the in vivo virulence properties of the two cell states in a zebrafish model of infection. Multiple attributes were compared including the stability of phenotypic states, filamentation, virulence, dissemination, and phagocytosis by immune cells, and phenotypes equated across three different host temperatures. Importantly, we found that both white and opaque cells could establish a lethal systemic infection. The relative virulence of the two cell types was temperature dependent; virulence was similar at 25°C, but at higher temperatures (30 and 33°C) white cells were significantly more virulent than opaque cells. Despite the difference in virulence, fungal burden, and dissemination were similar between cells in the two states. Additionally, both white and opaque cells exhibited robust filamentation during infection and blocking filamentation resulted in decreased virulence, establishing that this program is critical for pathogenesis in both cell states. Interactions between C. albicans cells and immune cells differed between white and opaque states. Macrophages and neutrophils preferentially phagocytosed white cells over opaque cells in vitro, and neutrophils showed preferential phagocytosis of white cells in vivo. Together, these studies distinguish the properties of white and opaque cells in a vertebrate host, and establish that the two cell types demonstrate both important similarities and key differences during infection.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Molecular Microbiology and Immunology, Brown University Providence, RI, USA
| | - Audrey C Bergeron
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Stephen K Jones
- Department of Molecular Microbiology and Immunology, Brown University Providence, RI, USA
| | - Zachary R Newman
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Kimberly M Brothers
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University Providence, RI, USA
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine Orono, ME, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University Providence, RI, USA
| |
Collapse
|
34
|
Wang Y, Bu L, Yang L, Li H, Zhang S. Identification and functional characterization of fish-egg lectin in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2016; 52:23-30. [PMID: 26975412 DOI: 10.1016/j.fsi.2016.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Fish-egg lectins (FELs) are identified in several species of fishes, but their activity and mode of action remain largely unknown in early life stages. Here we showed that zebrafish FEL (zFEL) was a maternal factor, which was capable of interacting with Gram-negative and Gram-positive bacteria and enhancing the phagocytosis of the bacteria by macrophages. Interestingly, microinjection of purified native zFEL into the embryos (resulting in the increase of zFEL in the embryos) markedly promoted the resistance of the embryos to the pathogenic Aeromonas hydrophila. Taken together, zFEL appears a maternal immune-relevant molecule capable of defending the developing embryos/larvae from pathogenic attacks.
Collapse
Affiliation(s)
- Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lingzhen Bu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lili Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
35
|
Zhang S, Dong Y, Cui P. Vitellogenin is an immunocompetent molecule for mother and offspring in fish. FISH & SHELLFISH IMMUNOLOGY 2015; 46:710-715. [PMID: 26282682 DOI: 10.1016/j.fsi.2015.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
Our understanding of the function of vitellogenin (Vg) in reproduction has undergone a transformation over the past decade in parallel with new insights into the role of Vg in immunity. Initially, Vg was regarded as a female-specific reproductive protein, which is cleaved into yolk proteins such as phosvitin (Pv) and lipovitellin (Lv), stored in egg, providing the nutrients for developing embryos. Recently, Vg is shown to be an immune-relevant molecule involved in the defense of the host against the microbes including bacterium and virus. Furthermore, Pv and Lv, that both are proteolytically cleaved products of Vg, play a defense role in developing embryos. Importantly, yolk protein-derived small peptides also display antimicrobial activity. These data together indicate that Vg, in addition to being involved in yolk protein formation, plays a non-reproductive role via functioning as an immune-relevant molecule in both parent fishes and their offspring. It also shows that yolk proteins and their degraded peptides are novel players in maternal immunity, opening a new avenue to study the functions of reproductive proteins.
Collapse
Affiliation(s)
- Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Yuan Dong
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|