1
|
Chiang YR, Lin HT, Chang CW, Lin SM, Lin JHY. Dynamic expression of cathepsin L in the black soldier fly (Hermetia illucens) gut during Escherichia coli challenge. PLoS One 2024; 19:e0298338. [PMID: 38451906 PMCID: PMC10919656 DOI: 10.1371/journal.pone.0298338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22-72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.
Collapse
Affiliation(s)
- Yun-Ru Chiang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Han-Tso Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Chao-Wei Chang
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Science, National Cheng Kung University, Tainan, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Lee J, Jeong B, Kim J, Cho JH, Byeon JH, Lee BL, Kim JK. Specialized digestive mechanism for an insect-bacterium gut symbiosis. THE ISME JOURNAL 2024; 18:wrad021. [PMID: 38365249 PMCID: PMC10811733 DOI: 10.1093/ismejo/wrad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
In Burkholderia-Riptortus symbiosis, the host bean bug Riptortus pedestris harbors Burkholderia symbionts in its symbiotic organ, M4 midgut, for use as a nutrient source. After occupying M4, excess Burkholderia symbionts are moved to the M4B region, wherein they are effectively digested and absorbed. Previous studies have shown that M4B has strong symbiont-specific antibacterial activity, which is not because of the expression of antimicrobial peptides but rather because of the expression of digestive enzymes, mainly cathepsin L protease. However, in this study, inhibition of cathepsin L activity did not reduce the bactericidal activity of M4B, indicating that there is an unknown digestive mechanism that renders specifically potent bactericidal activity against Burkholderia symbionts. Transmission electron microscopy revealed that the lumen of symbiotic M4B was filled with a fibrillar matter in contrast to the empty lumen of aposymbiotic M4B. Using chromatographic and electrophoretic analyses, we found that the bactericidal substances in M4B existed as high-molecular-weight (HMW) complexes that were resistant to protease degradation. The bactericidal HMW complexes were visualized on non-denaturing gels using protein- and polysaccharide-staining reagents, thereby indicating that the HMW complexes are composed of proteins and polysaccharides. Strongly stained M4B lumen with Periodic acid-Schiff (PAS) reagent in M4B paraffin sections confirmed HMW complexes with polysaccharide components. Furthermore, M4B smears stained with Periodic acid-Schiff revealed the presence of polysaccharide fibers. Therefore, we propose a key digestive mechanism of M4B: bacteriolytic fibers, polysaccharide fibers associated with digestive enzymes such as cathepsin L, specialized for Burkholderia symbionts in Riptortus gut symbiosis.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan 48434, South Korea
| | - Bohyun Jeong
- Department of Microbiology, Kosin University College of Medicine, Busan 49267, South Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, South Korea
| | - Jae H Cho
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin H Byeon
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Bok L Lee
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jiyeun K Kim
- Department of Microbiology, Kosin University College of Medicine, Busan 49267, South Korea
| |
Collapse
|
3
|
Lee J, Cha WH, Lee DW. Multiple Precursor Proteins of Thanatin Isoforms, an Antimicrobial Peptide Associated With the Gut Symbiont of Riptortus pedestris. Front Microbiol 2022; 12:796548. [PMID: 35069496 PMCID: PMC8767025 DOI: 10.3389/fmicb.2021.796548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Thanatin is an antimicrobial peptide (AMP) generated by insects for defense against bacterial infections. In the present study, we performed cDNA cloning of thanatin and found the presence of multiple precursor proteins from the bean bug, Riptortus pedestris. The cDNA sequences encoded 38 precursor proteins, generating 13 thanatin isoforms. In the phylogenetic analysis, thanatin isoforms were categorized into two groups based on the presence of the membrane attack complex/perforin (MACPF) domain. In insect-bacterial symbiosis, specific substances are produced by the immune system of the host insect and are known to modulate the symbiont’s population. Therefore, to determine the biological function of thanatin isoforms in symbiosis, the expression levels of three AMP genes were compared between aposymbiotic insects and symbiotic R. pedestris. The expression levels of the thanatin genes were significantly increased in the M4 crypt, a symbiotic organ, of symbiotic insects upon systemic bacterial injection. Further, synthetic thanatin isoforms exhibited antibacterial activity against gut-colonized Burkholderia symbionts rather than in vitro-cultured Burkholderia cells. Interestingly, the suppression of thanatin genes significantly increased the population of Burkholderia gut symbionts in the M4 crypt under systemic Escherichia coli K12 injection. Overgrown Burkholderia gut symbionts were observed in the hemolymph of host insects and exhibited insecticidal activity. Taken together, these results suggest that thanatin of R. pedestris is a host-derived symbiotic factor and an AMP that controls the population of gut-colonized Burkholderia symbionts.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea
| | - Wook Hyun Cha
- Department of Bio-Safety, Kyungsung University, Busan, South Korea
| | - Dae-Weon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea.,Department of Bio-Safety, Kyungsung University, Busan, South Korea
| |
Collapse
|
4
|
Sun YX, Chen C, Xu WJ, Abbas MN, Mu FF, Ding WJ, Zhang HJ, Li J. Functions of Bombyx mori cathepsin L-like in innate immune response and anti-microbial autophagy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103927. [PMID: 33197480 DOI: 10.1016/j.dci.2020.103927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Cathepsins belongs to the cysteine protease family, which are activated by an acidic environment. They play essential biological roles in the innate immunity and development of animals. Here, we identified a 62 kDa cathepsin L-like protease from the silkworm Bombyx mori. It contained putative conserved domains, including an I29 inhibitor domain and a peptidase C1A domain. The expression analysis revealed that cathepsin L-like was highly produced in the fat body, and 20-hydroxyecdysone (20 E) induced its expression. After challenge with three different types of heat-killed pathogens (Escherichia coli, Beauveria bassiana, and Bacillus cereus), the mRNA levels of cathepsin L-like significantly increased and displayed variable expression patterns in the immune tissues, suggesting its potential role in the innate immune response. The suppression of cathepsin L-like altered the expression of immune-related genes associated with the Toll and IMD pathway. Besides, autophagy-related genes such as Atg6, Atg8, VAMP2, Vps4, and syntaxin expression were also altered, indicating that cathepsin L-like regulates innate immunity and autophagy. Fluorescence microscopic analysis exhibited that cathepsin L-like was localized in the cytoplasm, and it was activated and dispersed throughout the cytoplasm and nucleus following the induction of anti-microbial autophagy. Altogether, our data suggest that cathepsin L-like may regulate the innate immune response and anti-microbial autophagy in the silkworm, B. mori.
Collapse
Affiliation(s)
- Yu-Xuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Wen-Jie Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fang-Fang Mu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Wen-Jing Ding
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Hai-Jun Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China.
| | - Jun Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China.
| |
Collapse
|
5
|
Boonkaew T, Mongkol W, Prasert S, Paochan P, Yoneda S, Nguitragool W, Kumpitak C, Sattabongkot J, Kubera A. Transcriptome analysis of Anopheles dirus and Plasmodium vivax at ookinete and oocyst stages. Acta Trop 2020; 207:105502. [PMID: 32320680 DOI: 10.1016/j.actatropica.2020.105502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Malaria is transmitted by Plasmodium parasites through the bite of female Anopheles mosquitoes. One of the most important mosquito vectors in the Greater Mekong Subregion is Anopheles dirus. This study reports RNA sequencing (RNA-Seq) transcriptome analysis of An. dirus at 18 hours and 7 days after a P. vivax-infected blood meal, which represent infection at the ookinete and oocyst parasite developmental stages, respectively. Following infection, 582 An. dirus transcripts were modulated. The 2,408 P. vivax transcripts could be classified into ookinete-specific, two-stage, and oocyst-specific groups. Results were validated by quantitative reverse transcription polymerase chain reaction. Gene ontology analysis of the vector and parasite revealed several biological pathways for both, providing a better understanding of Anopheles-Plasmodium interactions at the ookinete and oocyst stages.
Collapse
Affiliation(s)
- Tippawan Boonkaew
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Watcharakorn Mongkol
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Sureerat Prasert
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pattaweeya Paochan
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Saki Yoneda
- Department of Biotechnology, Graduate school of Engineering, Osaka University, Japan
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand; Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
6
|
Lee J, Mao X, Lee YS, Lee DJ, Kim J, Kim JK, Lee BL. Putative host-derived growth factors inducing colonization of Burkholderia gut symbiont in Riptortus pedestris insect. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103570. [PMID: 31836412 DOI: 10.1016/j.dci.2019.103570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
It is questionable that how gut symbiont can be proliferated in the host symbiotic organs, such as host midgut region, which are known to be highly stressful and nutritional depleted conditions. Since Riptortus-Burkholderia symbiosis system is a good model to study this question, we hypothesized that Burkholderia symbiont will use host-derived bacterial growth factor(s) to colonize persistently in the host midgut 4 (M4) region, which is known as symbiotic organ. In this study, we observed that although gut-colonized symbiotic Burkholderia cells did not grow in the nutrient-limited media conditions, these symbionts were able to grow dose-dependent manner by addition of host naïve M4 lysate, supporting that host-derived growth factor molecule(s) may exist in the host M4 lysate. By further experiments, a host-derived growth factor(s) did not lose its biological activity in the conditions of high temperature, treatment of phenol-chloroform or ethyl alcohol precipitation, indicating that a growth factor molecule(s) is neither a protein nor a DNA. Also, based on the biochemical analyses data, molecular weight of the host-derived bacterial growth factor(s) was turned out to be less than 3 kDa molecular mass and to give the positive chemical response to the ninhydrin reagent on thin layer chromatography. Finally, we found that one specific peak showing ninhydrin positive signal was separated by gel filtration column and induced proliferative activity for Burkholderia gut symbiont cells.
Collapse
Affiliation(s)
- Junbeom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Xinrui Mao
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - You Seon Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Dong Jung Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Junghyun Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
7
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
8
|
Lee J, Kim CH, Jang HA, Kim JK, Kotaki T, Shinoda T, Shinada T, Yoo JW, Lee BL. Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103399. [PMID: 31195052 DOI: 10.1016/j.dci.2019.103399] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have provided molecular evidence that gut symbiotic bacteria modulate host insect development, fitness and reproduction. However, the molecular mechanisms through which gut symbionts regulate these aspects of host physiology remain elusive. To address these questions, we prepared two different Riptortus-Burkholderia insect models, Burkholderia gut symbiont-colonized (Sym) Riptortus pedestris insects and gut symbiont-noncolonized (Apo) insects. Upon LC-MS analyses, juvenile hormone III skipped bisepoxide (JHSB3) was newly identified from Riptortus Apo- and Sym-female and male adults' insect hemolymph and JHSB3 titer in the Apo- and Sym-female insects were measured because JH is important for regulating reproduction in adult insects. The JHSB3 titer in the Sym-females were consistently higher compared to those of Apo-females. Since previous studies reported that Riptortus hexamerin-α and vitellogenin proteins were upregulated by the topical abdominal application of a JH-analog, chemically synthesized JHSB3 was administered to Apo-females. As expected, the hexamerin-α and vitellogenin proteins were dramatically increased in the hemolymph of JHSB3-treated Apo-females, resulting in increased egg production compared to that in Sym-females. Taken together, these results demonstrate that colonization of Burkholderia gut symbiont in the host insect stimulates biosynthesis of the heteroptera-specific JHSB3, leading to larger number of eggs produced and enhanced fitness in Riptortus host insects.
Collapse
Affiliation(s)
- Junbeom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Chan-Hee Kim
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Ho Am Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Toyomi Kotaki
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8634, Japan
| | - Tetsuro Shinoda
- Faculty of Food and Agricultural Sciences Fukushima University, 1 Kanayagawa, Fukushima, 960-1248, Japan
| | - Tetsuro Shinada
- (e)Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Jin-Wook Yoo
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
9
|
Choi KM, Joo MS, Cho DH, Han HJ, Kim MS, Cho MY, Jung SH, Kim DH, Park CI. Functional analysis and gene expression profiling of extracellular cathepsin Z in red sea bream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2019; 93:208-215. [PMID: 31306760 DOI: 10.1016/j.fsi.2019.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Cathepsin Z (CTSZ) is a lysosomal cysteine protease that is known to be involved in the maintenance of homeostasis and the biological mechanisms of immune cells. In this study, we have confirmed the tissue specific expression of the cathepsin Z (PmCTSZ) gene in Pagrus major, and confirmed its biological function after producing recombinant protein using Escherichia coli (E. coli). Multiple sequence alignment analysis revealed that the active site of the cysteine proteases and three N-glycosylation sites of the deduced protein sequence were highly conserved among all of the organisms. Phylogenetic analysis revealed that PmCTSZ was included in the clusters of CTSZ and the cysteine proteases of other bony fish and is most closely related to Japanese flounder CTSZ. PmCTSZ was distributed in all of the tissues from healthy red sea bream that were used in the experiment and was most abundantly found in the spleen and gill. Analysis of mRNA expression after bacterial (Edwardsiella piscicida: E. piscicida and Streptococcus iniae: S. iniae) or viral (red seabream iridovirus: RSIV) challenge showed significant gene expression regulation in immune-related tissues, but they maintained relatively normal levels of expression. We produced recombinant PmCTSZ (rPmCTSZ) using an E. coli expression system and confirmed the biological function of extracellular rPmCTSZ in vitro. We found that bacterial proliferation was significantly inhibited by rPmCTSZ, and the leukocytes of red sea bream also induced apoptosis and viability reduction.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Sung Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
10
|
Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 2019; 9:2792. [PMID: 30808905 PMCID: PMC6391413 DOI: 10.1038/s41598-019-39163-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Symbioses between insects and microbes are ubiquitous, but vary greatly in terms of function, transmission mechanism, and location in the insect. Lepidoptera (butterflies and moths) are one of the largest and most economically important insect orders; yet, in many cases, the ecology and functions of their gut microbiomes are unresolved. We used high-throughput sequencing to determine factors that influence gut microbiomes of field-collected fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Fall armyworm midgut bacterial communities differed from those of corn earworm collected from the same host plant species at the same site. However, corn earworm bacterial communities differed between collection sites. Subsequent experiments using fall armyworm evaluating the influence of egg source and diet indicated that that host plant had a greater impact on gut communities. We also observed differences between regurgitant (foregut) and midgut bacterial communities of the same insect host, suggesting differential colonization. Our findings indicate that host plant is a major driver shaping gut microbiota, but differences in insect physiology, gut region, and local factors can also contribute to variation in microbiomes. Additional studies are needed to assess the mechanisms that affect variation in insect microbiomes, as well as the ecological implications of this variability in caterpillars.
Collapse
Affiliation(s)
- Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
11
|
Ohbayashi T, Futahashi R, Terashima M, Barrière Q, Lamouche F, Takeshita K, Meng XY, Mitani Y, Sone T, Shigenobu S, Fukatsu T, Mergaert P, Kikuchi Y. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME JOURNAL 2019; 13:1469-1483. [PMID: 30742016 DOI: 10.1038/s41396-019-0361-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/04/2018] [Accepted: 01/19/2019] [Indexed: 12/11/2022]
Abstract
In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola, the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola. The analyses revealed that midgut-colonizing bacteria were smaller in size and had lower DNA content, they had increased stress sensitivity, lost motility, and an altered cell surface. Transcriptomics revealed what kinds of nutrients are provided by the bean bug to the Burkholderia symbiont. Transporters and metabolic pathways of diverse sugars such as rhamnose and ribose, and sulfur compounds like sulfate and taurine were upregulated in the midgut-colonizing symbionts. Moreover, pathways enabling the assimilation of insect nitrogen wastes, i.e. allantoin and urea, were also upregulated. The data further suggested that the midgut-colonizing symbionts produced all essential amino acids and B vitamins, some of which are scarce in the soybean food of the host insect. Together, these findings suggest that the Burkholderia symbiont is fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.
Collapse
Affiliation(s)
- Tsubasa Ohbayashi
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mia Terashima
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.,Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Quentin Barrière
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Florian Lamouche
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Kazutaka Takeshita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.,Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Teruo Sone
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan. .,Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Sapporo, Japan. .,Bioproduction Research Institute, AIST, Sapporo, Japan.
| |
Collapse
|
12
|
Lv Z, Qiu L, Liu Z, Wang W, Chen H, Jia Y, Jia Z, Jiang S, Wang L, Song L. Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:152-162. [PMID: 30144489 DOI: 10.1016/j.dci.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin L1 (CTSL1) is a lysosomal cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of immune response against pathogen infection based on the proteolytic activity. In the present study, a CTSL1 homologue (designated as CgCTSL1) was identified from Crassostrea gigas. It contained a typically single Pept_C1 domain with three conserved catalytically essential residues (Gln25, His135 and Asn178). The mRNA of CgCTSL1 was ubiquitously expressed in oyster tissues with the highest expression level in important immune tissues such as gill and hemocytes. CgCTSL1 proteins were mainly detected in gill and hepatopancreas by immunohistochemistry. Recombinant CgCTSL1 (rCgCTSL1) exhibited proteolytic activity to cleave the substrate Ac-FR-amino-4-trifluoromethyl coumarin (AFC) in a dose-dependent manner, and the inhibitor could reduce its proteolytic activity. After the interference of CgCTSL1 mRNA, the proteolytic activity of oyster hemocytes was significantly down-regulated with the released AFC fluorescence value decreasing from 375.84 to 179.21 (p < 0.05). Flow cytometry analysis revealed that the expression of CgCTSL1 protein was higher in phagocytes with the mean fluorescence intensity (MFI) value of 21,187 (4.13-fold, p < 0.01) compared to the MFI value of 5,130 in non-phagocytic hemocytes. The further confocal analysis demonstrated that the actively phagocytic hemocytes with green bead signals were co-localized with stronger CgCTSL1 positive signals. The mRNA expression levels of CgCTSL1 in phagocyte-like sub-populations of granulocytes and semi-granulocytes were 298.12-fold (p < 0.01) and 2.75-fold (p < 0.01) of that in agranulocytes, respectively. Western blotting analysis of the hemocyte proteins revealed that CgCTSL1 was relatively abundant in granulocytes and semi-granulocytes compared to that in agranulocytes. These results collectively suggested that CgCTSL1, a CTSL1 homologue highly expressed in phagocyte-like hemocytes, was possibly involved in cellular immune response dependent on its conserved proteolytic activity, which might provide clues for the divergence between phagocytes and non-phagocytic hemocytes as well as the identification of promising molecular markers for phagocytes in oyster C. gigas.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoqun Liu
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
13
|
Peyer SM, Kremer N, McFall‐Ngai MJ. Involvement of a host Cathepsin L in symbiont-induced cell death. Microbiologyopen 2018; 7:e00632. [PMID: 29692003 PMCID: PMC6182562 DOI: 10.1002/mbo3.632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
The cathepsin L gene of the host squid, Euprymna scolopes, is upregulated during the first hours of colonization by the symbiont Vibrio fischeri. At this time, the symbiotic organ begins cell death-mediated morphogenesis in tissues functional only at the onset of symbiosis. The goal of this study was to determine whether Cathepsin L, a cysteine protease associated with apoptosis in other animals, plays a critical role in symbiont-induced cell death in the host squid. Sequence analysis and biochemical characterization demonstrated that the protein has key residues and domains essential for Cathepsin L function and that it is active within the pH range typical of these proteases. With in situ hybridization and immunocytochemistry, we localized the transcript and protein, respectively, to cells interacting with V. fischeri. Activity of the protein occurred along the path of symbiont colonization. A specific Cathepsin L, nonspecific cysteine protease, and caspase inhibitor each independently attenuated activity and cell death to varying degrees. In addition, a specific antibody decreased cell death by ~50%. Together these data provide evidence that Cathepsin L is a critical component in the symbiont-induced cell death that transforms the host tissues from a colonization morphology to one that promotes the mature association.
Collapse
Affiliation(s)
- Suzanne M. Peyer
- School of Medicine and Public HealthDepartment of Medical Microbiology and ImmunologyUniversity of WisconsinMadisonWIUSA
- McPherson Eye Research InstituteUniversity of WisconsinMadisonWIUSA
| | - Natacha Kremer
- School of Medicine and Public HealthDepartment of Medical Microbiology and ImmunologyUniversity of WisconsinMadisonWIUSA
- Present address:
Laboratoire de Biométrie et Biologie EvolutiveUMR CNRS 5558Université Lyon 1Université de LyonVilleurbanneFrance
| | - Margaret J. McFall‐Ngai
- School of Medicine and Public HealthDepartment of Medical Microbiology and ImmunologyUniversity of WisconsinMadisonWIUSA
- McPherson Eye Research InstituteUniversity of WisconsinMadisonWIUSA
- Present address:
Pacific Biosciences Research CenterUniversity of Hawai'i at ManoaHonoluluHIUSA
| |
Collapse
|
14
|
Lee SA, Jang SH, Kim BH, Shibata T, Yoo J, Jung Y, Kawabata SI, Lee BL. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:116-126. [PMID: 29174605 DOI: 10.1016/j.dci.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses.
Collapse
Affiliation(s)
- Seung Ah Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Byung Hyun Kim
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Toshio Shibata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jinwook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shun-Ichiro Kawabata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
15
|
Park KE, Jang SH, Lee J, Lee SA, Kikuchi Y, Seo YS, Lee BL. The roles of antimicrobial peptide, rip-thanatin, in the midgut of Riptortus pedestris. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:83-90. [PMID: 28919360 DOI: 10.1016/j.dci.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Recently, we have reported the structural determination of antimicrobial peptides (AMPs), such as riptocin, rip-defensin, and rip-thanatin, from Riptortus pedestris. However, the biological roles of AMPs in the host midgut remain elusive. Here, we compared the expression levels of AMP genes in apo-symbiotic insects with those of symbiotic insects. Interestingly, the expression level of rip-thanatin was only significantly increased in the posterior midgut region of symbiotic insects. To further determine the role of rip-thanatin, we checked antimicrobial activity in vitro. Rip-thanatin showed high antimicrobial activity and had the same structural characteristics as other reported thanatins. To find the novel function of rip-thanatin, rip-thanatin was silenced by RNA interference, and the population of gut symbionts was measured. When rip-thanatin was silenced, the symbionts' titer was increased upon bacterial infection. These results suggest that rip-thanatin functions not only as an antimicrobial peptide but also in controlling the symbionts' titer in the host midgut.
Collapse
Affiliation(s)
- Kyoung-Eun Park
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Junbeom Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seung Ah Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
16
|
Dai LS, Chu SH, Yu XM, Li YY. A role of cathepsin L gene in innate immune response of crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2017; 71:246-254. [PMID: 29032038 DOI: 10.1016/j.fsi.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Cathepsin L is one of the crucial enzyme superfamilies and involved in the immune responses. In the present study, cathepsin L gene from the red crayfish Procambarus clarkii, named PcCTSL, was cloned and characterized. The cDNA fragment of PcCTSL was 1026 bp in length, which encoded a putative protein of 341 amino acid residues with a molecular weight of 37.884 kDa. The theoretical isoelectric point was 5.218. The prepro-cathepsin L was comprised of a typical signal peptide (Met1-Ala18), a prodomain proregion peptide (Trp29-Phe89) and a mature peptide (Leu124-Leu340). Homology analysis indicated that PcCTSL exhibited 53.2%-87.1% identity to other selected species. The recombinant protein of PcCTSL was successfully expressed in Escherichia coli and rabbit anti-PcCTSL polyclonal antibodies were prepared. Real-time quantitative reverse transcription-PCR (qPCR) analysis revealed that the PcCTSL was expressed in all examined tissues, while the greatest mRNA level was observed in hepatopancreas. The expression of PcCTSL mRNA was clearly up regulated in hepatopancreas after challenge by lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid (Poly I:C). RNA interference of PcCTSL affected the gene expression of members of the Toll pathway. Our results suggest that the PcCTSL may play an important role to defend P. clarkii against the pathogens infection.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Sheng-Hui Chu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xiao-Min Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yan-Yan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| |
Collapse
|
17
|
Losvik A, Beste L, Mehrabi S, Jonsson L. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis. Int J Mol Sci 2017. [PMID: 28632160 PMCID: PMC5486138 DOI: 10.3390/ijms18061317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid (Myzus persicae Sulzer). There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.
Collapse
Affiliation(s)
| | | | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
18
|
Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect–microbe symbiotic associations. Res Microbiol 2017; 168:175-187. [DOI: 10.1016/j.resmic.2016.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 01/06/2023]
|
19
|
Lee JB, Park KE, Lee SA, Jang SH, Eo HJ, Jang HA, Kim CH, Ohbayashi T, Matsuura Y, Kikuchi Y, Futahashi R, Fukatsu T, Lee BL. Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:12-22. [PMID: 27932027 DOI: 10.1016/j.dci.2016.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 05/24/2023]
Abstract
Recent studies have suggested that gut symbionts modulate insect development and reproduction. However, the mechanisms by which gut symbionts modulate host physiologies and the molecules involved in these changes are unclear. To address these questions, we prepared three different groups of the insect Riptortus pedestris: Burkholderia gut symbiont-colonized (Sym) insects, Burkholderia-non-colonized (Apo) insects, and Burkholderia-depleted (SymBurk-) insects, which were fed tetracycline. When the hemolymph proteins of three insects were analyzed by SDS-PAGE, the hexamerin-α, hexamerin-β and vitellogenin-1 proteins of Sym-adults were highly expressed compared to those of Apo- and SymBurk--insects. To investigate the expression patterns of these three genes during insect development, we measured the transcriptional levels of these genes. The hexamerin-β gene was specifically expressed at all nymphal stages, and its expression was detected 4-5 days earlier in Sym-insect nymphs than that in Apo- and SymBurk--insects. However, the hexamerin-α and vitellogenin-1 genes were only expressed in adult females, and they were also detected 6-7 days earlier and were 2-fold higher in Sym-adult females than those in the other insects. Depletion of hexamerin-β by RNA interference in 2nd instar Sym-nymphs delayed adult emergence, whereas hexamerin-α and vitellogenin-1 RNA interference in 5th instar nymphs caused loss of color of the eggs of Sym-insects. These results demonstrate that the Burkholderia gut symbiont modulates host development and egg production by regulating production of these three hemolymph storage proteins.
Collapse
Affiliation(s)
- Jun Beom Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Kyoung-Eun Park
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seung Ah Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Ho Jeong Eo
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Chan-Hee Kim
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Tsubasa Ohbayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara 903-0213, Japan
| | - Yoshitomo Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo 062-8517, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
20
|
Jang HA, Seo ES, Seong MY, Lee BL. A midgut lysate of the Riptortus pedestris has antibacterial activity against LPS O-antigen-deficient Burkholderia mutants. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:97-106. [PMID: 27825951 DOI: 10.1016/j.dci.2016.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
Riptortus pedestris, a common pest in soybean fields, harbors a symbiont Burkholderia in a specialized posterior midgut region of insects. Every generation of second nymphs acquires new Burkholderia cells from the environment. We compared in vitro cultured Burkholderia with newly in vivo colonized Burkholderia in the host midgut using biochemical approaches. The bacterial cell envelope of in vitro cultured and in vivo Burkholderia differed in structure, as in vivo bacteria lacked lipopolysaccharide (LPS) O-antigen. The LPS O-antigen deficient bacteria had a reduced colonization rate in the host midgut compared with that of the wild-type Burkholderia. To determine why LPS O-antigen-deficient bacteria are less able to colonize the host midgut, we examined in vitro survival rates of three LPS O-antigen-deficient Burkholderia mutants and lysates of five different midgut regions. The LPS O-antigen-deficient mutants were highly susceptible when cultured with the lysate of a specific first midgut region (M1), indicating that the M1 lysate contains unidentified substance(s) capable of killing LPS O-antigen-deficient mutants. We identified a 17 kDa protein from the M1 lysate, which was enriched in the active fractions. The N-terminal sequence of the protein was determined to be a soybean Kunitz-type trypsin inhibitor. These data suggest that the 17 kDa protein, which was originated from a main soybean source of the R. pedestris host, has antibacterial activity against the LPS O-antigen deficient (rough-type) Burkholderia.
Collapse
Affiliation(s)
- Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Eun Sil Seo
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min Young Seong
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
21
|
Kim JK, Lee JB, Jang HA, Han YS, Fukatsu T, Lee BL. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:75-81. [PMID: 26774501 DOI: 10.1016/j.dci.2016.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut.
Collapse
Affiliation(s)
- Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan 602-703, South Korea
| | - Jun Beom Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, South Korea
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|
22
|
Lee JB, Byeon JH, Jang HA, Kim JK, Yoo JW, Kikuchi Y, Lee BL. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut. FEBS Lett 2015; 589:2784-90. [PMID: 26318755 DOI: 10.1016/j.febslet.2015.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont.
Collapse
Affiliation(s)
- Jun Beom Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jin Hee Byeon
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Ho Am Jang
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan 602-703, South Korea
| | - Jin Wook Yoo
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, Hokkaido Center, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, College of Pharmacy, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|