1
|
Oluwagbenga EM, Fraley GS. Heat stress and poultry production: a comprehensive review. Poult Sci 2023; 102:103141. [PMID: 37852055 PMCID: PMC10591017 DOI: 10.1016/j.psj.2023.103141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
The impact of global warming on poultry production has gained significant attention over the years. However, our current knowledge and understanding of the mechanisms through which heat stress (HS) resulting from global warming affects the welfare, behavior, immune response, production performance, and even transgenerational effects in poultry are still incomplete. Further research is needed to delve deeper into these mechanisms to gain a comprehensive understanding. Numerous studies have investigated various biomarkers of stress in poultry, aiming to identify reliable markers that can accurately assess the physiological status and well-being of birds. However, there is a significant amount of variation and inconsistency in the results reported across different studies. This inconsistency highlights the need for more standardized methods and assays and a clearer understanding of the factors that influence these biomarkers in poultry. This review article specifically focuses on 3 main aspects: 1) the neuroendocrine and behavioral responses of poultry to HS, 2) the biomarkers of HS and 3) the impact of HS on poultry production that have been studied in poultry. By examining the neuroendocrine and behavioral changes exhibited by poultry under HS, we aim to gain insights into the physiological impact of elevated temperatures in poultry.
Collapse
Affiliation(s)
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN USA.
| |
Collapse
|
2
|
Oluwagbenga EM, Tetel V, Schober J, Fraley GS. Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F 1 Pekin Ducks Raised from Parents That Experienced Heat Stress. Animals (Basel) 2023; 13:1748. [PMID: 37889638 PMCID: PMC10251918 DOI: 10.3390/ani13111748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 10/20/2023] Open
Abstract
The effects of HS on the welfare of poultry have been reported to have a transgenerational effect on phenotype plasticity. The goal of our experiment was to determine whether parental exposure to HS would impair the performance, HPA axis response, or behavior of their offspring. We treated adult drakes and hens (n = 80 ducks/treatment) at peak lay with HS or the control temperature for 3 weeks and incubated eggs collected from the last 3 days of the experiment. We utilized 76 ducklings/parental treatment group: control (CON-F1) and HS (HS-F1). Weekly data for body weights, body condition scores (BCSs), and novel object test (NOT) were collected. At 3 weeks of age, the ducks (n = 6/treatment) were subjected to adrenocorticotropic hormone (ACTH/cosyntropin, 0.0625 mg/kg) challenge or vehicle as the control. Blood samples were collected at 0, 1, 2, 3, and 4 h relative to treatment for serum glucocorticoid and heterophil-to-lymphocyte ratio (HLR) analyses. All injected birds were euthanized with pentobarbital on the second day relative to ACTH administration, and the spleen and bursa were removed and weighed immediately. Duck level analyses were completed using one- or two-way ANOVA as appropriate. BCSs were analyzed using a chi-squared test. The HS-F1 ducks had a lower hatch weight (p < 0.05) compared with the CON-F1 ducks but no significant difference in growth rates during the 5-week period. NOT (n = 4) analyses showed that the HS-F1 ducks had a greater fear response (p < 0.001) compared with the CON-F1 ducks. Similarly, an ACTH stimulation test showed that the HS-F1 ducks had significantly (p < 0.05) heightened corticosterone and HLR responses compared with the CON-F1 ducks. The HS-F1 ducks showed altered baseline and ACTH-stimulated levels of cortisol compared with the controls. Our data suggest that parental exposure to HS impacts the HPA response and fearfulness of the F1 generation in Pekin ducks.
Collapse
Affiliation(s)
| | | | | | - Gregory S. Fraley
- Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (E.M.O.); (V.T.); (J.S.)
| |
Collapse
|
3
|
Cyrino JC, de Figueiredo AC, Córdoba-Moreno MO, Gomes FR, Titon SCM. Day Versus Night Melatonin and Corticosterone Modulation by LPS in Distinct Tissues of Toads (Rhinella Icterica). Integr Comp Biol 2022; 62:1606-1617. [PMID: 35568500 DOI: 10.1093/icb/icac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Pathogen-associated molecular patterns modulate melatonin (MEL) production in the pineal and extra-pineal sites and corticosterone (CORT) synthesis in the adrenal/interrenal and other tissues. Both MEL and CORT play essential and complex immunomodulatory roles, controlling the inflammatory response. Given that most of what we know about these interactions is derived from mammalian studies, discovering how MEL and CORT are modulated following an immune challenge in anurans would increase understanding of how conserved these immune-endocrine interactions are in vertebrates. Herein, we investigated the modulation of MEL and CORT in plasma vs. local tissues of toads (Rhinella icterica) in response to an immune challenge with lipopolysaccharide (LPS; 2 mg/kg) at day and night. Blood samples were taken 2 hours after injection (noon and midnight), and individuals were killed for tissue collection (bone marrow, lungs, liver, and intestine). MEL and CORT were determined in plasma and tissue homogenates. LPS treatment increased MEL concentration in bone marrow during the day. Intestine MEL levels were higher at night than during the day, particularly in LPS-injected toads. Bone marrow and lungs showed the highest MEL levels among tissues. Plasma MEL levels were not affected by either the treatment or the phase. Plasma CORT levels increased in LPS-treated individuals, with an accentuated increase at night. Otherwise, CORT concentration in the tissues was not affected by LPS exposure. Modulation of MEL levels in bone marrow suggests this tissue may participate in the toad's inflammatory response assembly. Moreover, MEL and CORT levels were different in tissues, pointing to an independent modulation of hormonal concentration. Our results suggest an important role of immune challenge in modulating MEL and CORT, bringing essential insights into the hormone-immune interactions during anuran's inflammatory response.
Collapse
Affiliation(s)
- João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Marlina Olyissa Córdoba-Moreno
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo CEP 05508-090, São Paulo, Brasil
| | | |
Collapse
|
4
|
Taves MD, Ashwell JD. Effects of sex steroids on thymic epithelium and thymocyte development. Front Immunol 2022; 13:975858. [PMID: 36119041 PMCID: PMC9478935 DOI: 10.3389/fimmu.2022.975858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sex steroid hormones have major effects on the thymus. Age-related increases in androgens and estrogens and pregnancy-induced increases in progestins all cause dramatic thymic atrophy. Atrophy can also be induced by treatment with exogenous sex steroids and reversed by ablation of endogenous sex steroids. Although these observations are frequently touted as evidence of steroid lymphotoxicity, they are often driven by steroid signaling in thymic epithelial cells (TEC), which are highly steroid responsive. Here, we outline the effects of sex steroids on the thymus and T cell development. We focus on studies that have examined steroid signaling in vivo, aiming to emphasize the actions of endogenous steroids which, via TEC, have remarkable programming effects on the TCR repertoire. Due to the dramatic effects of steroids on TEC, especially thymic involution, the direct effects of sex steroid signaling in thymocytes are less well understood. We outline studies that could be important in addressing these possibilities, and highlight suggestive findings of sex steroid generation within the thymus itself.
Collapse
Affiliation(s)
- Matthew D. Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Tobiansky DJ, Long KM, Hamden JE, Brawn JD, Fuxjager MJ. Cost-reducing traits for agonistic head collisions: a case for neurophysiology. Integr Comp Biol 2021; 61:1394-1405. [PMID: 33885750 DOI: 10.1093/icb/icab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animal species have evolved extreme behaviors requiring them to engage in repeated high-impact collisions. These behaviors include mating displays like headbutting in sheep and drumming in woodpeckers. To our knowledge, these taxa do not experience any notable acute head trauma, even though the deceleration forces would cause traumatic brain injury in most animals. Previous research has focused on skeletomuscular morphology, biomechanics, and material properties in an attempt to explain how animals moderate these high-impact forces. However, many of these behaviors are understudied, and most morphological or computational studies make assumptions about the behavior without accounting for the physiology of an organism. Studying neurophysiological and immune adaptations that co-vary with these behaviors can highlight unique or synergistic solutions to seemingly deleterious behavioral displays. Here, we argue that selection for repeated, high-impact head collisions may rely on a suite of coadaptations in intracranial physiology as a cost-reducing mechanism. We propose that there are three physiological systems that could mitigate the effects of repeated head trauma: (i) the innate neuroimmune response, (ii) the glymphatic system, and (iii) the choroid plexus. These systems are interconnected yet can evolve in an independent manner. We then briefly describe the function of these systems, their role in head trauma, and research that has examined how these systems may evolve to help reduce the cost of repeated, forceful head impacts. Ultimately, we note that little is known about cost-reducing intracranial mechanisms making it a novel field of comparative study that is ripe for exploration.
Collapse
Affiliation(s)
| | - Kira M Long
- The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL USAKML
| | | | - Jeffrey D Brawn
- The University of Illinois at Urbana-Champaign, Urbana-Champaign, IL USAJDB
| | | |
Collapse
|
6
|
Himmelstein R, Spahija A, Fokidis HB. Evidence for fasting induced extra-adrenal steroidogenesis in the male brown anole, Anolis sagrei. Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110544. [PMID: 33338607 DOI: 10.1016/j.cbpb.2020.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
Glucocorticoids (GCs) and dehydroepiandrosterone (DHEA) are steroids secreted by the adrenal glands into circulation to effect distant target tissues and coordinate physiological processes. This classic systemic view of steroids has been challenged by evidence that other tissues can independently synthesize their own steroids. Little is known however regarding circumstances that can promote this extra-adrenal steroidogenesis. Here we tested if fasting can induce tissues to increase GC and DHEA synthesis in the brown anole lizard Anolis sagrei. Lizards fasted for eight days lost body mass and increased fatty acid oxidation. Fasting also increased plasma concentrations of DHEA and corticosterone, but not cortisol. Corticosterone concentration within the adrenals, heart, intestines, lungs and liver exceeded that in plasma, with the latter two increasing with fasting. Levels of DHEA in the adrenals and heart were higher than in plasma, but no significant effect of fasting was observed, expect for a noticeable increase in intestinal DHEA. Two steroidogenic genes, the steroidogenic acute regulatory (Star) protein and Cyp17a1, a cytochrome P450 enzyme, were expressed in several tissues including the liver, lungs and intestines, which were increased with fasting. Continued research should aim to test for expression of additional enzymes further along the steroidogenic pathway. Nonetheless these data document potential extra-adrenal steroidogenesis as a possible mechanism for coping with energy shortages, although much work remains to be done to determine the specific roles of locally synthesized steroids in each tissue.
Collapse
Affiliation(s)
| | - Ada Spahija
- Department of Biology, Rollins College, Winter Park, FL, USA
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL, USA.
| |
Collapse
|
7
|
Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol 2020; 21:233-243. [PMID: 33149283 DOI: 10.1038/s41577-020-00464-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Glucocorticoids (GCs) are small lipid hormones produced by the adrenals that maintain organismal homeostasis. Circadian and stress-induced changes in systemic GC levels regulate metabolism, cardiovascular and neural function, reproduction and immune activity. Our understanding of GC effects on immunity comes largely from administration of exogenous GCs to treat immune or inflammatory disorders. However, it is increasingly clear that endogenous GCs both promote and suppress T cell immunity. Examples include selecting an appropriate repertoire of T cell receptor (TCR) self-affinities in the thymus, regulating T cell trafficking between anatomical compartments, suppressing type 1 T helper (TH1) cell responses while permitting TH2 cell and, especially, IL-17-producing T helper cell responses, and promoting memory T cell differentiation and maintenance. Furthermore, in addition to functioning at a distance, extra-adrenal (local) production allows GCs to act as paracrine signals, specifically targeting activated T cells in various contexts in the thymus, mucosa and tumours. These pleiotropic effects on different T cell populations during development and immune responses provide a nuanced understanding of how GCs shape immunity.
Collapse
Affiliation(s)
- Matthew D Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Taves MD, Mittelstadt PR, Presman DM, Hager GL, Ashwell JD. Single-Cell Resolution and Quantitation of Targeted Glucocorticoid Delivery in the Thymus. Cell Rep 2020; 26:3629-3642.e4. [PMID: 30917317 DOI: 10.1016/j.celrep.2019.02.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 02/27/2019] [Indexed: 10/27/2022] Open
Abstract
Glucocorticoids are lipid-soluble hormones that signal via the glucocorticoid receptor (GR), a ligand-dependent transcription factor. Circulating glucocorticoids derive from the adrenals, but it is now apparent that paracrine glucocorticoid signaling occurs in multiple tissues. Effective local glucocorticoid concentrations and whether glucocorticoid delivery can be targeted to specific cell subsets are unknown. We use fluorescence detection of chromatin-associated GRs as biosensors of ligand binding and observe signals corresponding to steroid concentrations over physiological ranges in vitro and in vivo. In the thymus, where thymic epithelial cell (TEC)-synthesized glucocorticoids antagonize negative selection, we find that CD4+CD8+TCRhi cells, a small subset responding to self-antigens and undergoing selection, are specific targets of TEC-derived glucocorticoids and are exposed to 3-fold higher levels than other cells. These results demonstrate and quantitate targeted delivery of paracrine glucocorticoids. This approach may be used to assess in situ nuclear receptor signaling in a variety of physiological and pathological contexts.
Collapse
Affiliation(s)
- Matthew D Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Paul R Mittelstadt
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Instituto de Fisiología, Biología Molecular y Neurosciencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Will A, Wynne‐Edwards K, Zhou R, Kitaysky A. Of 11 candidate steroids, corticosterone concentration standardized for mass is the most reliable steroid biomarker of nutritional stress across different feather types. Ecol Evol 2019; 9:11930-11943. [PMID: 31695898 PMCID: PMC6822065 DOI: 10.1002/ece3.5701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
Measuring corticosterone in feathers has become an informative tool in avian ecology, enabling researchers to investigate carry-over effects and responses to environmental variability. Few studies have, however, explored whether corticosterone is the only hormone expressed in feathers and is the most indicative of environmental stress. Essential questions remain as to how to compare hormone concentrations across different types of feathers and whether preening adds steroids, applied after feather growth.We used liquid chromatography coupled to tandem mass spectrometry to quantify a suite of 11 steroid hormones in back, breast, tail, and primary feathers naturally grown at overlapping time intervals by rhinoceros auklet Cerorhinca monocerata captive-reared fledglings and wild-caught juveniles. The captive-reared birds were raised on either a restricted or control diet. Measured steroids included intermediates in the adrenal steroidogenesis pathway to glucocorticoids and the sex steroids pathway to androgens and estrogens.Corticosterone was detected in the majority of feathers of each type. We also detected cortisone in back feathers, androstenedione in breast feathers, and testosterone in primary feathers. Captive fledglings raised on a restricted diet had higher concentrations of corticosterone in all four feather types than captive fledglings raised on a control diet. Corticosterone concentrations were reliably repeatable across feather types when standardized for feather mass, but not for feather length. Of the seven hormones looked for in uropygial gland secretions, only corticosterone was detected in one out of 23 samples.We conclude that corticosterone is the best feather-steroid biomarker for detection of developmental nutritional stress, as it was the only hormone to manifest a signal of nutritional stress, and that exposure to stress can be compared among different feather types when corticosterone concentrations are standardized by feather mass.
Collapse
Affiliation(s)
- Alexis Will
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| | | | - Ruokun Zhou
- Veterinary Medicine & Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlberta
| | - Alexander Kitaysky
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaska
| |
Collapse
|
10
|
Hamden JE, Salehzadeh M, Jalabert C, O'Leary TP, Snyder JS, Gomez-Sanchez CE, Soma KK. Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: Effects of age, sex and stress. Gen Comp Endocrinol 2019; 281:173-182. [PMID: 31145891 PMCID: PMC6751571 DOI: 10.1016/j.ygcen.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/02/2019] [Accepted: 05/26/2019] [Indexed: 12/23/2022]
Abstract
Glucocorticoids (GCs) are secreted into the blood by the adrenal glands and are also locally-produced by organs such as the lymphoid organs (bone marrow, thymus, and spleen). Corticosterone is the primary circulating GC in many species, including mice, rats and birds. Within lymphoid organs, corticosterone can be locally produced from the inactive metabolite, 11-dehydrocorticosterone (DHC). However, very little is known about endogenous DHC levels, and no immunoassays are currently available to measure DHC. Here, we developed an easy-to-use and inexpensive immunoassay to measure DHC that is accurate, precise, sensitive, and specific. The DHC immunoassay was validated in multiple ways, including comparison with a mass spectrometry assay. After assay validations, we demonstrated the usefulness of this immunoassay by measuring DHC (and corticosterone) in mice, rats and song sparrows. Overall, corticosterone levels were higher than DHC levels across species. In Study 1, using mice, we measured steroids in whole blood and lymphoid organs at postnatal day (PND) 5, PND23, and PND90. Corticosterone and DHC showed distinct tissue-specific patterns across development. In Studies 2 and 3, we measured circulating corticosterone and DHC in adult rats and song sparrows, before and after restraint stress. In rats and song sparrows, restraint stress rapidly increased circulating levels of both steroids. This novel DHC immunoassay revealed major changes in DHC concentrations during development and in response to stress, which have important implications for understanding GC physiology, effects of stress on immune function, and regulation of local GC levels.
Collapse
Affiliation(s)
- Jordan E Hamden
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy P O'Leary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Celso E Gomez-Sanchez
- Endocrine and Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA; Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Katsu Y, Oka K, Baker ME. Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: Allosteric influence on steroid specificity. Sci Signal 2018; 11:11/537/eaao1520. [DOI: 10.1126/scisignal.aao1520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Tobiansky DJ, Korol AM, Ma C, Hamden JE, Jalabert C, Tomm RJ, Soma KK. Testosterone and Corticosterone in the Mesocorticolimbic System of Male Rats: Effects of Gonadectomy and Caloric Restriction. Endocrinology 2018; 159:450-464. [PMID: 29069423 DOI: 10.1210/en.2017-00704] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023]
Abstract
Steroid hormones can modulate motivated behaviors through the mesocorticolimbic system. Gonadectomy (GDX) is a common method to determine how steroids influence the mesocorticolimbic system, and caloric restriction (CR) is often used to invigorate motivated behaviors. A common assumption is that the effects of these manipulations on brain steroid levels reflects circulating steroid levels. We now know that the brain regulates local steroid levels in a region-specific manner; however, previous studies have low spatial resolution. Using ultrasensitive liquid chromatography tandem mass spectrometry, we examined steroids in microdissected regions of the mesocorticolimbic system (ventral tegmental area, nucleus accumbens, medial prefrontal cortex). We examined whether GDX or CR influences systemic and local steroids, particularly testosterone (T) and steroidogenic enzyme transcripts. Adult male rats underwent a GDX surgery and/or CR for either 2 or 6 weeks. Levels of T, the primary steroid of interest, were higher in all brain regions than in the blood, whereas corticosterone (CORT) was lower in the brain than in the blood. Importantly, GDX completely eliminated T in the blood and lowered T in the brain. Yet, T remained present in the brain, even 6 weeks after GDX. CR decreased both T and CORT in the blood and brain. Steroidogenic enzyme (Cyp17a1, 3β-hydroxysteroid dehydrogenase, aromatase) transcripts and androgen receptor transcripts were expressed in the mesocorticolimbic system and differentially affected by GDX and CR. Together, these results suggest that T is synthesized within the mesocorticolimbic system. These results provide a foundation for future studies examining how neurosteroids influence behaviors mediated by the mesocorticolimbic system.
Collapse
Affiliation(s)
- Daniel J Tobiansky
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anastasia M Korol
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chunqi Ma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jordan E Hamden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan J Tomm
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Grindstaff JL, Merrill L. Developmental corticosterone treatment does not program immune responses in zebra finches ( Taeniopygia guttata). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:262-272. [PMID: 29202116 DOI: 10.1002/jez.2086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developmental conditions may impact the expression of immune traits throughout an individual's life. Early-life challenges may lead to immunological constraints that are mediated by endocrine-immune interactions. In particular, individual differences in the ability to mount immune responses may be programmed by exposure to stressors or glucocorticoid hormones during development. To test this hypothesis, we experimentally elevated levels of the glucocorticoid hormone corticosterone during the nestling and fledgling periods in captive zebra finches (Taeniopygia guttata). We subsequently challenged birds with the antigen lipopolysaccharide (LPS) on days 60 and 100 post-hatch to determine if developmental exposure to elevated corticosterone impacted the later response to LPS. As measures of immune function, we quantified bacteria killing ability, haptoglobin concentrations, and LPS-specific antibody responses at multiple time points. We also measured circulating corticosterone concentrations during the experimental period and on day 60 before and after endotoxin challenge. During the experimental period, corticosterone treatment elevated corticosterone levels. Corticosterone treatment did not induce programming effects on immune function or corticosterone production. Independent of treatment, individuals with higher corticosterone concentrations during the nestling period had lower bacteria killing ability on day 36 and higher baseline corticosterone concentrations on day 60 post-hatch. These results suggest a limited role for corticosterone exposure during early life to mediate immunological constraints later in life. Manipulation of cortisol may be necessary to conclusively determine if developmental glucocorticoid exposure can program immune function in birds. To determine if developmental stress can program the immune response, exposure to environmentally relevant stressors should also be manipulated.
Collapse
Affiliation(s)
| | - Loren Merrill
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, Illinois
| |
Collapse
|
14
|
Wein Y, Geva Z, Bar-Shira E, Friedman A. Transport-related stress and its resolution in turkey pullets: activation of a pro-inflammatory response in peripheral blood leukocytes. Poult Sci 2017; 96:2601-2613. [DOI: 10.3382/ps/pex076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
|
15
|
Bodnar TS, Taves MD, Lavigne KM, Woodward TS, Soma KK, Weinberg J. Differential activation of endocrine-immune networks by arthritis challenge: Insights from colony-specific responses. Sci Rep 2017; 7:698. [PMID: 28386080 PMCID: PMC5428775 DOI: 10.1038/s41598-017-00652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/08/2017] [Indexed: 11/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition with variable clinical presentation and disease progression. Importantly, animal models of RA are widely used to examine disease pathophysiology/treatments. Here, we exploited known vendor colony-based differences in endocrine/immune responses to gain insight into inflammatory modulators in arthritis, utilizing the adjuvant-induced arthritis (AA) model. Our previous study found that Sprague-Dawley (SD) rats from Harlan develop more severe AA, have lower corticosteroid binding globulin, and have different patterns of cytokine activation in the hind paw, compared to SD rats from Charles River. Here, we extend these findings, demonstrating that Harlan rats show reduced hypothalamic cytokine responses to AA, compared to Charles River rats, and identify colony-based differences in cytokine profiles in hippocampus and spleen. To go beyond individual measures, probing for networks of variables underlying differential responses, we combined datasets from this and the previous study and performed constrained principal component analysis (CPCA). CPCA revealed that with AA, Charles River rats show activation of chemokine and central cytokine networks, whereas Harlan rats activate peripheral immune/hypothalamic-pituitary-adrenal networks. These data suggest differential underlying disease mechanism(s), highlighting the power of evaluating multiple disease biomarkers, with potential implications for understanding differential disease profiles in individuals with RA.
Collapse
Affiliation(s)
- Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Matthew D Taves
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Katie M Lavigne
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Translational Research Unit, BC Mental Health and Addictions Research Institute, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Taves MD, Hamden JE, Soma KK. Local glucocorticoid production in lymphoid organs of mice and birds: Functions in lymphocyte development. Horm Behav 2017; 88:4-14. [PMID: 27818220 DOI: 10.1016/j.yhbeh.2016.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Circulating glucocorticoids (GCs) are powerful regulators of immunity. Stress-induced GC secretion by the adrenal glands initially enhances and later suppresses the immune response. GC targets include lymphocytes of the adaptive immune system, which are well known for their sensitivity to GCs. Less appreciated, however, is that GCs are locally produced in lymphoid organs, such as the thymus, where GCs play a critical role in selection of the T cell antigen receptor (TCR) repertoire. Here, we review the roles of systemic and locally-produced GCs in T lymphocyte development, which has been studied primarily in laboratory mice. By antagonizing TCR signaling in developing T cells, thymus-derived GCs promote selection of T cells with stronger TCR signaling. This results in increased T cell-mediated immune responses to a range of antigens. We then compare local and systemic GC patterns in mice to those in several bird species. Taken together, these studies suggest that a combination of adrenal and lymphoid GC production might function to adaptively regulate lymphocyte development and selection, and thus antigen-specific immune reactivity, to optimize survival under different environmental conditions. Future studies should examine how lymphoid GC patterns vary across other vertebrates, how GCs function in B lymphocyte development in the bone marrow, spleen, and the avian bursa of Fabricius, and whether GCs adaptively program immunity in free-living animals.
Collapse
Affiliation(s)
- Matthew D Taves
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, Canada.
| | - Jordan E Hamden
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada.
| | - Kiran K Soma
- Dept of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Dept of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
17
|
Abstract
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.
Collapse
Affiliation(s)
- Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior - Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Taves MD, Plumb AW, Korol AM, Van Der Gugten JG, Holmes DT, Abraham N, Soma KK. Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors. Brain Behav Immun 2016; 57:271-281. [PMID: 27165988 DOI: 10.1016/j.bbi.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/22/2016] [Accepted: 05/07/2016] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) are circulating adrenal steroid hormones that coordinate physiology, especially the counter-regulatory response to stressors. While systemic GCs are often considered immunosuppressive, GCs in the thymus play a critical role in antigen-specific immunity by ensuring the selection of competent T cells. Elevated thymus-specific GC levels are thought to occur by local synthesis, but the mechanism of such tissue-specific GC production remains unknown. Here, we found metyrapone-blockable GC production in neonatal and adult bone marrow, spleen, and thymus of C57BL/6 mice. This production was primarily via regeneration of adrenal metabolites, rather than de novo synthesis from cholesterol, as we found high levels of gene expression and activity of the GC-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), but not the GC-synthetic enzyme CYP11B1. Furthermore, incubation with physiological concentrations of GC metabolites (11-dehydrocorticosterone, prednisone) induced 11β-HSD1- and GC receptor-dependent apoptosis (caspase activation) in both T and B cells, showing the functional relevance of local GC regeneration in lymphocyte GC signaling. Local GC production in bone marrow and spleen raises the possibility that GCs play a key role in B cell selection similar to their role in T cell selection. Our results also indicate that local GC production may amplify changes in adrenal GC signaling, rather than buffering against such changes, in the immune system.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada.
| | - Adam W Plumb
- Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada.
| | - Anastasia M Korol
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada.
| | | | - Daniel T Holmes
- Department of Laboratory Medicine, St Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada.
| | - Ninan Abraham
- Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada.
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 4200-6270 University Blvd, Vancouver V6T 1Z4, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
19
|
Strange MS, Bowden RM, Thompson CF, Sakaluk SK. Pre- and Postnatal Effects of Corticosterone on Fitness-Related Traits and the Timing of Endogenous Corticosterone Production in a Songbird. ACTA ACUST UNITED AC 2016; 325:347-59. [PMID: 27279255 DOI: 10.1002/jez.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Maternally derived corticosterone in the egg and corticosterone produced endogenously by altricial nestling birds play essential roles during development. Although persistently high corticosterone levels can be harmful, moderately elevated levels above baseline can lead to reallocation of resources between growth and maintenance to ensure immediate survival or to enhance the development of fitness-related traits. We tested two hypotheses concerning the fitness consequences of elevated corticosterone during prenatal and postnatal development in altricial house wrens: (1) elevated corticosterone shifts resources away from growth and immune function and (2) elevated corticosterone serves as a signal to allocate resources to fitness-related traits. We also explored the development of the stress response, hypothesizing that early-stage nestlings have little endogenously produced corticosterone, but that their baseline and stress-induced corticosterone levels increase with age. Nestlings hatching from corticosterone-injected eggs were lighter at hatching, but through compensatory growth, ended up heavier than controls near the time of fledging, an important, fitness-related trait. Nestlings that hatched from corticosterone-injected eggs and those given oral doses of corticosterone did not differ from controls in three other fitness-related traits: immunoresponsiveness, size, or haematocrit. Early- and late-stage nestlings had similar baseline corticosterone levels, and all nestlings increased their plasma corticosterone levels in response to a capture-and-restraint protocol, with older nestlings mounting a stronger stress-induced response than younger nestlings. These results suggest that prenatal exposure to corticosterone is important in shaping offspring phenotype and are consistent with the hypothesis that maternally derived corticosterone in the egg can have long-term, fitness-related effects on offspring phenotype.
Collapse
Affiliation(s)
- Meghan S Strange
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Rachel M Bowden
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Charles F Thompson
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois
| |
Collapse
|
20
|
Sex steroid profiles and pair-maintenance behavior of captive wild-caught zebra finches (Taeniopygia guttata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:35-44. [PMID: 26610331 DOI: 10.1007/s00359-015-1050-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
Here, we studied the life-long monogamous zebra finch, to examine the relationship between circulating sex steroid profiles and pair-maintenance behavior in pairs of wild-caught zebra finches (paired in the laboratory for >1 month). We used liquid chromatography-tandem mass spectrometry to examine a total of eight androgens and progestins [pregnenolone, progesterone, dehydroepiandrosterone (DHEA), androstenediol, pregnan-3,17-diol-20-one, androsterone, androstanediol, and testosterone]. In the plasma, only pregnenolone, progesterone, DHEA, and testosterone were above the limit of quantification. Sex steroid profiles were similar between males and females, with only circulating progesterone levels significantly different between the sexes (female > male). Circulating pregnenolone levels were high in both sexes, suggesting that pregnenolone might serve as a circulating prohormone for local steroid synthesis in zebra finches. Furthermore, circulating testosterone levels were extremely low in both sexes. Additionally, we found no correlations between circulating steroid levels and pair-maintenance behavior. Taken together, our data raise several interesting questions about the neuroendocrinology of zebra finches.
Collapse
|