1
|
Zhang SM, Yan G, Lekired A, Zhong D. Genomic basis of schistosome resistance in a molluscan vector of human schistosomiasis. iScience 2025; 28:111520. [PMID: 39758819 PMCID: PMC11699755 DOI: 10.1016/j.isci.2024.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Freshwater snails are obligate intermediate hosts for the transmission of schistosomiasis, one of the world's most devastating parasitic diseases. To decipher the mechanisms underlying snail resistance to schistosomes, recombinant inbred lines (RILs) were developed from two well-defined homozygous lines (iM line and iBS90) of the snail Biomphalaria glabrata. Whole-genome sequencing (WGS) was used to scan the genomes of 46 individual RIL snails, representing 46 RILs, half of which were resistant or susceptible to Schistosoma mansoni. Genome-wide association study (GWAS) and bin marker-assisted quantitative trait loci (QTLs) analysis, aided by our chromosome-level assembled genome, were conducted. A small genomic region (∼3 Mb) on chromosome 5 was identified as being associated with schistosome resistance, designated the B. glabrata schistosome resistance region 1 (BgSRR1). This study, built on our recently developed genetic and genomic resources, provides valuable insights into anti-schistosome mechanisms and the future development of snail-targeted biocontrol programs for schistosomiasis.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Abdelmalek Lekired
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Zayed KM. Innate and putative adaptive immunological responses of schistosome-parasitized snails. Acta Trop 2024; 261:107503. [PMID: 39675412 DOI: 10.1016/j.actatropica.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by digenetic trematode from Schistosoma genus, as an etiological agent that uses snails as an intermediate host. In mollusc-trematode relationships, the miracidia attract in the aquatic media to a specific snail as an intermediate hosts, then penetrate its integument in the sporocyst form thereafter, the invasive sporocysts produce secreted/excreted products in order to survive and avoid the snails' immune system. The next larval stage is the cercariae that developed by sporocysts. Subsequently, the snail intermediate host suffers from biological, physiological, biochemical and immunological changes during the development of these parasite larval stages within their tissues. Snails and their parasites engage in an interactive innate and putative adaptive immune response that involves many immune mechanisms, such as the production of nitric oxide, lysozymes, phagocytosis, lectin formation and phenol oxidase activity. Schistosomes have developed a variety of strategies to evade and counteract these deliberate host reactions. These strategies include the secretion of many strong proteases, the use of an immune-resistant outer tegument, the molecular mimicry of host antigens, and the controlled release of certain immunomodulatory substances that influence immune cell activities. This review aims to characterize these important immune evasion mechanisms in order to comprehend the many immunological molecular determinants in the snail/schistosome interaction and to develop alternate management measures for schistosomiasis control.
Collapse
Affiliation(s)
- Khaled M Zayed
- Medical Malacology Department, Theodor Bilharz Research Institute, Kornaish El Nile St.,Warrak El-Haddar, Imbaba, Giza, 12411, Egypt.
| |
Collapse
|
3
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
4
|
Poteaux P, Ripoll C, Sarrazin A, Blanchard MP, Guillou-Duvoid A, Gourbal B, Hirbec H, Duval D. Breaking Biomphalaria black box by in situ revelation of fluorescent Schistosoma mansoni parasites. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109800. [PMID: 39096981 DOI: 10.1016/j.fsi.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Tissue clearing is an old-fashioned method developed in the 1900's and used to turn an opaque biological object into a 3D visualizable transparent structure. Developed and diversified over the last decade, this method is most of the time applied to mammals' tissues, and especially mouse and human tissues for cytological, histological and pathophysiological studies. Through autofluorescence, immunofluorescence, in situ hybridization, intercalating agents, fluorescent transfection markers or fluorescent particle uptake, optically cleared samples can be monitored to discover new biological structures and cellular interactions through 3D-visualization, which can be more challenging in some extend through classical histological methods. Most of the tissue clearing procedures have been developed for specific applications like endogenous fluorescence visualization, immunolabeling or for revealing specific organs. Thus, choosing the adapted protocol may be empirical for non-model species, especially for mollusks for which very little related literature is available. Herein, we suggest an effective optical tissue clearing procedure for the freshwater snail Biomphalaria glabrata, known as the intermediate host of the human parasite Schistosoma mansoni. This clearing procedure involves solvents with a minimal toxicity, preserves the endogenous fluorescence of labeled parasites inside snail tissues and is compatible with an immunolabeling procedure.
Collapse
Affiliation(s)
- Pierre Poteaux
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, 58 avenue Paul Alduy, 66860, Perpignan, France.
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Amélie Sarrazin
- MRI, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Marie-Pierre Blanchard
- MRI, BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Anne Guillou-Duvoid
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - Benjamin Gourbal
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Hélène Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 141 rue de la Cardonille, 34091, Montpellier, France
| | - David Duval
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, 58 avenue Paul Alduy, 66860, Perpignan, France
| |
Collapse
|
5
|
Bu L, Habib MR, Lu L, Mutuku MW, Loker ES, Zhang SM. Transcriptional profiling of Bulinus globosus provides insights into immune gene families in snails supporting the transmission of urogenital schistosomiasis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105150. [PMID: 38367887 PMCID: PMC10932938 DOI: 10.1016/j.dci.2024.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Schistosomiasis, urogenital and intestinal, afflicts 251 million people worldwide with approximately two-thirds of the patients suffering from the urogenital form of the disease. Freshwater snails of the genus Bulinus (Gastropoda: Planorbidae) serve as obligate intermediate hosts for Schistosoma haematobium, the etiologic agent of human urogenital schistosomiasis. These snails also act as vectors for the transmission of schistosomiasis in livestock and wildlife. Despite their crucial role in human and veterinary medicine, our basic understanding at the molecular level of the entire Bulinus genus, which comprises 37 recognized species, is very limited. In this study, we employed Illumina-based RNA sequencing (RNAseq) to profile the genome-wide transcriptome of Bulinus globosus, one of the most important intermediate hosts for S. haematobium in Africa. A total of 179,221 transcripts (N50 = 1,235) were assembled and the benchmarking universal single-copy orthologs (BUSCO) was estimated to be 97.7%. The analysis revealed a substantial number of transcripts encoding evolutionarily conserved immune-related proteins, particularly C-type lectin (CLECT) domain-containing proteins (n = 316), Toll/Interleukin 1-receptor (TIR)-containing proteins (n = 75), and fibrinogen related domain-containing molecules (FReD) (n = 165). Notably, none of the FReDs are fibrinogen-related proteins (FREPs) (immunoglobulin superfamily (IgSF) + fibrinogen (FBG)). This RNAseq-based transcriptional profile provides new insights into immune capabilities of Bulinus snails, helps provide a framework to explain the complex patterns of compatibility between snails and schistosomes, and improves our overall understanding of comparative immunology.
Collapse
Affiliation(s)
- Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mohamed R Habib
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Martin W Mutuku
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Parasitology Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
7
|
Duval D, Poteaux P, Gourbal B, Rognon A, Augusto RDC. Fluorescent non transgenic schistosoma to decipher host-parasite phenotype compatibility. Front Immunol 2023; 14:1293009. [PMID: 38106408 PMCID: PMC10721968 DOI: 10.3389/fimmu.2023.1293009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Schistosomiasis is considered as a significant public health problem, imposing a deeper understanding of the intricate interplay between parasites and their hosts. Unfortunately, current invasive methodologies employed to study the compatibility and the parasite development impose limitations on exploring diverse strains under various environmental conditions, thereby impeding progress in the field. In this study, we demonstrate the usefulness for the trematode parasite Schistosma mansoni, leveranging a fluorescence-imaging-based approach that employs fluorescein 5-chloromethylfluorescein diacetate (CMFDA) and 5-chloromethylfluorescein diacetate (CMAC) as organism tracker for intramolluscan studies involving the host snail Biomphalaria glabrata. These probes represent key tools for qualitatively assessing snail infections with unmatched accuracy and precision. By monitoring the fluorescence of parasites within the snail vector, our method exposes an unprecedented glimpse into the host-parasite compatibility landscape. The simplicity and sensitivity of our approach render it an ideal choice for evolutionary studies, as it sheds light on the intricate mechanisms governing host-parasite interactions. Fluorescent probe-based methods play a pivotal role in characterizing factors influencing parasite development and phenotype of compatibility, paving the way for innovative, effective, and sustainable solutions to enhance our understanding host-parasite immunobiological interaction and compatibility.
Collapse
Affiliation(s)
- David Duval
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Anne Rognon
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | | |
Collapse
|
8
|
Poteaux P, Gourbal B, Duval D. Time series analysis of tegument ultrastructure of in vitro transformed miracidium to mother sporocyst of the human parasite Schistosoma mansoni. Acta Trop 2023; 240:106840. [PMID: 36681315 DOI: 10.1016/j.actatropica.2023.106840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The transformation of Schistosoma mansoni miracidia into mother sporocysts is induced, either in vivo by the penetration of the free-living larval stage, the miracidium, in the snail Biomphalaria glabrata or in vitro following the incubation of the miracidium in Chernin's Balanced Salt Solution (CBSS) or Bge (B. glabrata embryonic cell line) culture medium. The in vitro development of S. mansoni miracidium into mother sporocyst was monitored by Scanning Electron Microscopy (SEM) from 2.5 h to 120 h in CBSS. The transformation starts when the miracidium ciliate plates detach due to the proliferation of the intercellular ridge associated with the degeneration of mid-body papillae of the miracidium. The loss of ciliated plates causes the appearing of scars, filled across time by the proliferation of a new tegument originating from the interplate ridge. This new tegument covers the entire body of the metamorphosing parasite and differentiates over time, allowing some exchanges (uptakes or secretion/excretion) between the parasite and its host. In contrast to the well-described development of adult and free-living larval stages of S. mansoni using SEM, the developmental transformation of intramolluscan stages, especially tegumental changes in the mother sporocyst, has been sparcely documented at the ultrastructural level. In addition, taking into account the latest literature on miracidium electron microscopy and the advances in SEM technologies over the last thirty years, the present study gathers three main objectives: (i) Fill the gap of tegument scanning electron micrographs of in vitro transforming sporocysts; (ii) Update the current bibliographic miracidia and sporocysts image bank due to rapid evolution of SEM technology; (iii) Understand and describe the critical steps and duration of the in vitro miracidium-to-sporocyst transformation process to assist in understanding the interaction between the larval surface and snail immune factors.
Collapse
Affiliation(s)
- Pierre Poteaux
- IHPE, CNRS, IFREMER, Univ Montpellier, Univ Perpignan Via Domitia, Perpignan, France.
| | - Benjamin Gourbal
- IHPE, CNRS, IFREMER, Univ Montpellier, Univ Perpignan Via Domitia, Perpignan, France
| | - David Duval
- IHPE, CNRS, IFREMER, Univ Montpellier, Univ Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
9
|
Status Quo and Future Perspectives of Molecular and Genomic Studies on the Genus Biomphalaria-The Intermediate Snail Host of Schistosoma mansoni. Int J Mol Sci 2023; 24:ijms24054895. [PMID: 36902324 PMCID: PMC10003693 DOI: 10.3390/ijms24054895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Schistosomiasis, or also generally known as bilharzia or snail fever, is a parasitic disease that is caused by trematode flatworms of the genus Schistosoma. It is considered by the World Health Organisation as the second most prevalent parasitic disease after malaria and affects more than 230 million people in over 70 countries. People are infected via a variety of activities ranging from agricultural, domestic, occupational to recreational activities, where the freshwater snails Biomphalaria release Schistosoma cercariae larvae that penetrate the skin of humans when exposed in water. Understanding the biology of the intermediate host snail Biomphalaria is thus important to reveal the potential spread of schistosomiasis. In this article, we present an overview of the latest molecular studies focused on the snail Biomphalaria, including its ecology, evolution, and immune response; and propose using genomics as a foundation to further understand and control this disease vector and thus the transmission of schistosomiasis.
Collapse
|
10
|
Marquez J, Dinguirard N, Gonzalez A, Kane A, Joffe N, Yoshino T, Castillo M. Molecular characterization of thioester-containing proteins in Biomphalaria glabrata and their differential gene expression upon Schistosoma mansoni exposure. Front Immunol 2022; 13:903158. [PMID: 35967434 PMCID: PMC9363628 DOI: 10.3389/fimmu.2022.903158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis is a disease caused by trematode parasites of the genus Schistosoma that affects approximately 200 million people worldwide. Schistosomiasis has been a persistent problem in endemic areas as there is no vaccine available, currently used anti-helmintic medications do not prevent reinfection, and most concerning, drug resistance has been documented in laboratory and field isolates. Thus, alternative approaches to curtail this human disease are warranted. Understanding the immunobiology of the obligate intermediate host of these parasites, which include the freshwater snail Biomphalaria glabrata, may facilitate the development of novel methods to stop or reduce transmission to humans. Molecules from the thioester-containing protein (TEP) superfamily have been shown to be involved in immunological functions in many animals including corals and humans. In this study we identified, characterized, and compared TEP transcripts and their expression upon S. mansoni exposure in resistant and susceptible strains of B. glabrata snails. Results showed the expression of 11 unique TEPs in B. glabrata snails. These transcripts present high sequence identity at the nucleotide and putative amino acid levels between susceptible and resistant strains. Further analysis revealed differences in several TEPs’ constitutive expression levels between resistant and susceptible snail strains, with C3-1, C3-3, and CD109 having higher constitutive expression levels in the resistant (BS90) strain, whereas C3-2 and TEP-1 showed higher constitutive expression levels in the susceptible (NMRI) strain. Furthermore, TEP-specific response to S. mansoni miracidia exposure reiterated their differential expression, with resistant snails upregulating the expression of both TEP-4 and TEP-3 at 2 h and 48 h post-exposure, respectively. Further understanding the diverse TEP genes and their functions in invertebrate animal vectors will not only expand our knowledge in regard to this ancient family of immune proteins, but also offer the opportunity to identify novel molecular targets that could aid in the efforts to develop control methods to reduce schistosomiasis transmission.
Collapse
Affiliation(s)
- J. Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N. Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - A. Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - A.E. Kane
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - N.R. Joffe
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - T.P. Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - M.G. Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: M.G. Castillo,
| |
Collapse
|
11
|
Lu L, Bu L, Zhang SM, Buddenborg SK, Loker ES. An Overview of Transcriptional Responses of Schistosome-Susceptible (M line) or -Resistant (BS-90) Biomphalaria glabrata Exposed or Not to Schistosoma mansoni Infection. Front Immunol 2022; 12:805882. [PMID: 35095891 PMCID: PMC8791074 DOI: 10.3389/fimmu.2021.805882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Background We seek to provide a comprehensive overview of transcriptomics responses of immune-related features of the gastropod Biomphalaria glabrata (Bg) following exposure to Schistosoma mansoni (Sm), a trematode causing human schistosomiasis. Responses of schistosome-susceptible (M line, or SUS) and -resistant (BS-90, or RES) Bg strains were characterized following exposure to Sm for 0.5, 2, 8 or 40 days post-exposure (dpe). Methods RNA-Seq and differential expression analysis were undertaken on 56 snails from 14 groups. We considered 7 response categories: 1) constitutive resistance factors; 2) constitutive susceptibility factors; 3) generalized stress responses; 4) induced resistance factors; 5) resistance factors suppressed in SUS snails; 6) suppressed/manipulated factors in SUS snails; and 7) tolerance responses in SUS snails. We also undertook a gene co-expression network analysis. Results from prior studies identifying schistosome resistance/susceptibility factors were examined relative to our findings. Results A total of 792 million paired-end reads representing 91.2% of the estimated 31,985 genes in the Bg genome were detected and results for the 7 categories compiled and highlighted. For both RES and SUS snails, a single most supported network of genes with highly correlated expression was found. Conclusions 1) Several constitutive differences in gene expression between SUS and RES snails were noted, the majority over-represented in RES; 2) There was little indication of a generalized stress response shared by SUS and RES snails at 0.5 or 2 dpe; 3) RES snails mounted a strong, multi-faceted response by 0.5 dpe that carried over to 2 dpe; 4) The most notable SUS responses were at 40 dpe, in snails shedding cercariae, when numerous features were either strongly down-regulated indicative of physiological distress or parasite manipulation, or up-regulated, suggestive of tolerance or survival-promoting effects; 5) Of 55 genes previously identified in genome wide mapping studies, 29 (52.7%) were responsive to Sm, as were many familiar resistance-associated genes (41.0%) identified by other means; 6) Both network analysis and remarkably specific patterns of expression of lectins and G protein-coupled receptors in categories 4, 6 and 7 were indicative of orchestrated responses of different suites of genes in SUS or RES snails following exposure to Sm.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah K Buddenborg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
12
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
13
|
Portet A, Galinier R, Lassalle D, Faille A, Gourbal B, Duval D. Hemocyte siRNA uptake is increased by 5' cholesterol-TEG addition in Biomphalaria glabrata, snail vector of schistosome. PeerJ 2021; 9:e10895. [PMID: 33665030 PMCID: PMC7908872 DOI: 10.7717/peerj.10895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Biomphalaria glabrata is one of the snail intermediate hosts of Schistosoma mansoni, the causative agent of intestinal schistosomiasis disease. Numerous molecular studies using comparative approaches between susceptible and resistant snails to S. mansoni infection have helped identify numerous snail key candidates supporting such susceptible/resistant status. The functional approach using RNA interference (RNAi) remains crucial to validate the function of such candidates. CRISPR-Cas systems are still under development in many laboratories, and RNA interference remains the best tool to study B. glabrata snail genetics. Herein, we describe the use of modified small interfering RNA (siRNA) molecules to enhance cell delivery, especially into hemocytes, the snail immune cells. Modification of siRNA with 5′ Cholesteryl TriEthylene Glycol (Chol-TEG) promotes cellular uptake by hemocytes, nearly eightfold over that of unmodified siRNA. FACS analysis reveals that more than 50% of hemocytes have internalized Chol-TEG siRNA conjugated to Cy3 fluorophores, 2 hours only after in vivo injection into snails. Chol-TEG siRNA targeting BgTEP1 (ThioEster-containing Protein), a parasite binding protein, reduced BgTEP1 transcript expression by 70–80% compared to control. The level of BgTEP1 protein secreted in the hemolymph was also decreased. However, despite the BgTEP1 knock-down at both RNA and protein levels, snail compatibility with its sympatric parasite is not affected suggesting functional redundancy among the BgTEP genes family in snail-schistosoma interaction.
Collapse
Affiliation(s)
- Anaïs Portet
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France.,Department of Medicine, Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Galinier
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Damien Lassalle
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Alexandre Faille
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Benjamin Gourbal
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - David Duval
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| |
Collapse
|
14
|
Coelho FS, Rodpai R, Miller A, Karinshak SE, Mann VH, dos Santos Carvalho O, Caldeira RL, de Moraes Mourão M, Brindley PJ, Ittiprasert W. Diminished adherence of Biomphalaria glabrata embryonic cell line to sporocysts of Schistosoma mansoni following programmed knockout of the allograft inflammatory factor. Parasit Vectors 2020; 13:511. [PMID: 33050923 PMCID: PMC7552541 DOI: 10.1186/s13071-020-04384-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Larval development in an intermediate host gastropod snail of the genus Biomphalaria is an obligatory component of the life-cycle of Schistosoma mansoni. Understanding of the mechanism(s) of host defense may hasten the development of tools that block transmission of schistosomiasis. The allograft inflammatory factor 1, AIF, which is evolutionarily conserved and expressed in phagocytes, is a marker of macrophage activation in both mammals and invertebrates. AIF enhances cell proliferation and migration. The embryonic cell line, termed Bge, from Biomphalaria glabrata is a versatile resource for investigation of the snail-schistosome relationship since Bge exhibits a hemocyte-like phenotype. Hemocytes perform central roles in innate and cellular immunity in gastropods and in some cases can kill the parasite. However, the Bge cells do not kill the parasite in vitro. METHODS Bge cells were transfected by electroporation with plasmid pCas-BgAIFx4, encoding the Cas9 nuclease and a guide RNA specific for exon 4 of the B. glabrata AIF (BgAIF) gene. Transcript levels for Cas9 and for BgAIF were monitored by reverse-transcription-PCR and, in parallel, adhesion of gene-edited Bge cells during co-culture with of schistosome sporocysts was assessed. RESULTS Gene knockout manipulation induced gene-disrupting indels, frequently 1-2 bp insertions and/or 8-30 bp deletions, at the programmed target site; a range from 9 to 17% of the copies of the BgAIF gene in the Bge population of cells were mutated. Transcript levels for BgAIF were reduced by up to 73% (49.5 ± 20.2% SD, P ≤ 0.05, n = 12). Adherence by BgAIF gene-edited (ΔBgAIF) Bge to sporocysts diminished in comparison to wild type cells, although cell morphology did not change. Specifically, as scored by a semi-quantitative cell adherence index (CAI), fewer ΔBgAIF than control wild type cells adhered to sporocysts; control CAI, 2.66 ± 0.10, ΔBgAIF, 2.30 ± 0.22 (P ≤ 0.01). CONCLUSIONS The findings supported the hypothesis that BgAIF plays a role in the adherence of B. glabrata hemocytes to sporocysts during schistosome infection in vitro. This demonstration of the activity of programmed gene editing will enable functional genomics approaches using CRISPR/Cas9 to investigate additional components of the snail-schistosome host-parasite relationship.
Collapse
Affiliation(s)
- Fernanda Sales Coelho
- Grupo de Pesquisa Em Helmintologia E Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG Brazil
| | - Rutchanee Rodpai
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen province, Thailand
| | - André Miller
- Schistosomiasis Resource Center, Biomedical Research Institute, Rockville, MD USA
| | - Shannon E. Karinshak
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Omar dos Santos Carvalho
- Grupo de Pesquisa Em Helmintologia E Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG Brazil
| | - Roberta Lima Caldeira
- Grupo de Pesquisa Em Helmintologia E Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG Brazil
| | - Marina de Moraes Mourão
- Grupo de Pesquisa Em Helmintologia E Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG Brazil
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| |
Collapse
|
15
|
Lu L, Loker ES, Adema CM, Zhang SM, Bu L. Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008780. [PMID: 33052953 PMCID: PMC7588048 DOI: 10.1371/journal.pntd.0008780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Achieving a deeper understanding of the factors controlling the defense responses of invertebrate vectors to the human-infecting pathogens they transmit will provide needed new leads to pursue for control. Consequently, we provide new genomic and transcriptomic insights regarding FReDs (containing a fibrinogen domain) and FREPs (fibrinogen domain and one or two IgSF domains) from the planorbid snail Biomphalaria glabrata, a Neotropical vector of Schistosoma mansoni, causative agent of human intestinal schistosomiasis. Using new bioinformatics approaches to improve annotation applied to both genome and RNA-Seq data, we identify 73 FReD genes, 39 of which are FREPs. We provide details of domain structure and consider relationships and homologies of B. glabrata FBG and IgSF domains. We note that schistosome-resistant (BS-90) snails mount complex FREP responses following exposure to S. mansoni infection whereas schistosome-susceptible (M line) snails do not. We also identify several coding differences between BS-90 and M line snails in three FREPs (2, 3.1 and 3.2) repeatedly implicated in other studies of anti-schistosome responses. In combination with other results, our study provides a strong impetus to pursue particular FREPs (2, 3.1, 3.2 and 4) as candidate resistance factors to be considered more broadly with respect to schistosome control efforts, including involving other Biomphalaria species vectoring S. mansoni in endemic areas in Africa.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
16
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
17
|
A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010069. [PMID: 31936127 PMCID: PMC7016707 DOI: 10.3390/genes11010069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.
Collapse
|
18
|
Alba A, Duval D, Sánchez J, Pérez AB, Pinaud S, Galinier R, Vázquez AA, Gourbal B. The immunobiological interplay between Pseudosuccinea columella resistant/susceptible snails with Fasciola hepatica: Hemocytes in the spotlight. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103485. [PMID: 31461636 DOI: 10.1016/j.dci.2019.103485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The Fasciola hepatica/Pseudosuccinea columella interaction in Cuba involves a unique pattern of phenotypes; while most snails are susceptible, some field populations are naturally resistant to infection and parasites are encapsulated by snail hemocytes. Thus, we investigated the hemocytes of resistant (R) and susceptible (S) P. columella, in particular morphology, abundance, proliferation and in vitro encapsulation activity following exposure to F. hepatica. Compared to susceptible P. columella, hemocytes from exposed resistant snails showed increased levels of spreading and aggregation (large adherent cells), proliferation of circulating blast-like cells and encapsulation activity of the hemocytes, along with a higher expression of the cytokine granulin. By contrast, there was evidence of a putative F. hepatica-driven inhibition of host immunity, only in susceptible snails. Additionally, (pre-)incubation of naïve hemocytes from P. columella (R and S) with different monosaccharides was associated with lower encapsulation activity of F. hepatica larvae. This suggests the involvement in this host-parasite interaction of lectins and lectins receptors (particularly related to mannose and fucose sensing) in association with hemocyte activation and/or binding to F. hepatica.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - David Duval
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Ana B Pérez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Silvain Pinaud
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Richard Galinier
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Antonio A Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Benjamin Gourbal
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
19
|
de Melo ES, Brayner FA, Junior NCP, França IRS, Alves LC. Investigation of defense response and immune priming in Biomphalaria glabrata and Biomphalaria straminea, two species with different susceptibility to Schistosoma mansoni. Parasitol Res 2019; 119:189-201. [DOI: 10.1007/s00436-019-06495-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
|
20
|
Lima MG, Montresor LC, Pontes J, Augusto RDC, da Silva JP, Thiengo SC. Compatibility Polymorphism Based on Long-Term Host-Parasite Relationships: Cross Talking Between Biomphalaria glabrata and the Trematode Schistosoma mansoni From Endemic Areas in Brazil. Front Immunol 2019; 10:328. [PMID: 31024517 PMCID: PMC6467164 DOI: 10.3389/fimmu.2019.00328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Sympatric snail populations have been kept in the laboratory since the isolation of the parasite from the field. To evaluate the influence of the intermediate host in the infectivity of S. mansoni, this allopatric strain was compared to two sympatric strains, from different geographical origins, and with different time of maintenance in the laboratory. Snail–trematode compatibility was accessed for a total of nine possible combinations (three snail populations, three schistosome strains), using different charges of parasite: 1, 5, 10, and 15 miracidia/snail. Each S. mansoni strain was characterized according to its infectivity phenotype that reflects the efficiency of their infection mechanism and all B. glabrata populations were characterized according to its (in)compatible phenotype that reflects the level of (un)susceptibility they display. For all host-parasite combinations tested the dose-response relation indicated a trend for an increase in the infectivity of S. mansoni when higher miracidial doses were used. SmRES-2 presented the highest overall infectivity rate, especially in the SmRES-2/BgRES interaction with 15 miracidia/snail. However, SmRES was more infective to BgBAR than SmRES-2, indicating that SmRES strain was more infective at the first contact with this new host than after 2 years of interaction (SmRES-2). BgBAR presented the highest susceptibility to infection. SmRES and SmRES-2 are the same parasite strains. It seems that during these 2 years of interaction, BgBAR acted like a filter and shifted the compatibility polymorphism of the strain SmRES. SmRES-2 became more infective to BgRES (sympatric) than to BgBAR (allopatric), and conversely, SmRES was more infective to BgBAR (allopatric) than to BgRES (sympatric). This interplay suggests that epigenetic mechanisms are prompting these changes. This study concerns with infection of B. glabrata snails from different Brazilian localities with S. mansoni in allopatric and sympatric associations that will partially help in understanding the natural epidemiology of schistosomiasis within natural snail populations in watercourses. This work demonstrates that there is a shift on the compatibility polymorphism profile resulting from sympatric and allopatric interactions of B. glabrata and S. mansoni that constantly change during the time of interaction.
Collapse
Affiliation(s)
- Mariana G Lima
- Curso de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.,Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Lângia C Montresor
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Joana Pontes
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Ronaldo de C Augusto
- UMR 5244 Univ Perpignan via Domitia-CNRS-IFREMER-Univ Montpellier, Interactions Hôtes-Pathògenes-Environnements (IHPE), Université de Perpignan via Domitia, Perpignan, France
| | - Jairo Pinheiro da Silva
- Curso de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Silvana C Thiengo
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, Charriere GM, Allienne JF, Duval D, Gourbal B. Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction. PLoS Pathog 2019; 15:e1007647. [PMID: 30893368 PMCID: PMC6443186 DOI: 10.1371/journal.ppat.1007647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Julien Portela
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Guillaume M. Charriere
- Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
22
|
Powell D, Subramanian S, Suwansa-Ard S, Zhao M, O'Connor W, Raftos D, Elizur A. The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves. DNA Res 2019; 25:655-665. [PMID: 30295708 PMCID: PMC6289776 DOI: 10.1093/dnares/dsy032] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/31/2018] [Indexed: 02/01/2023] Open
Abstract
Oysters are keystone species in estuarine ecosystems and are of substantial economic value to fisheries and aquaculture worldwide. Contending with disease and environmental stress are considerable challenges to oyster culture. Here we report a draft genome of the Sydney Rock Oyster, Saccostrea glomerata, an iconic and commercially important species of edible oyster in Australia known for its enhanced resilience to harsh environmental conditions. This is the second reference genome to be reported from the family Ostreidae enabling a genus-level study of lophotrochozoan genome evolution. Our analysis of the 784-megabase S. glomerata genome shows extensive expansions of gene families associated with immunological non-self-recognition. Transcriptomic analysis revealed highly tissue-specific patterns of expression among these genes, suggesting a complex assortment of immune receptors provide this oyster with a unique capacity to recognize invading microbes. Several gene families involved in stress response are notably expanded in Saccostrea compared with other oysters, and likely key to this species’ adaptations for improved survival higher in the intertidal zone. The Sydney Rock Oyster genome provides a valuable resource for future research in molluscan biology, evolution and environmental resilience. Its close relatedness to Crassostrea will further comparative studies, advancing the means for improved oyster agriculture and conservation.
Collapse
Affiliation(s)
- Daniel Powell
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Sankar Subramanian
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Saowaros Suwansa-Ard
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Min Zhao
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Wayne O'Connor
- NSW Department of Industry, Department of Primary Industries, DPI Fisheries, Port Stephens Fisheries Institute, Taylors Beach, NSW, Australia
| | - David Raftos
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Abigail Elizur
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| |
Collapse
|
23
|
Pinaud S, Portet A, Allienne JF, Belmudes L, Saint-Beat C, Arancibia N, Galinier R, Du Pasquier L, Duval D, Gourbal B. Molecular characterisation of immunological memory following homologous or heterologous challenges in the schistosomiasis vector snail, Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:238-252. [PMID: 30529491 DOI: 10.1016/j.dci.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 05/16/2023]
Abstract
Invertebrate immune response may be primed by a current infection in a sustained manner, leading to the failure of a secondary infection with the same pathogen. The present study focuses on the Schistosomiasis vector snail Biomphalaria glabrata, in which a specific genotype-dependent immunological memory was demonstrated as a shift from a cellular to a humoral immune response. Herein, we investigate the complex molecular bases associated with this genotype-dependant immunological memory response. We demonstrate that Biomphalaria regulates a polymorphic set of immune recognition molecules and immune effector repertoires to respond to different strains of Schistosoma parasites. These results suggest a combinatorial usage of pathogen recognition receptors (PRRs) that distinguish different strains of parasites during the acquisition of immunological memory. Immunizations also show that snails become resistant after exposure to parasite extracts. Hemolymph transfer and a label-free proteomic analysis proved that circulating hemolymph compounds can be produced and released to more efficiently kill the newly encountered parasite of the same genetic lineage.
Collapse
Affiliation(s)
- Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Lucid Belmudes
- CEA-Grenoble, Exploring the Dynamics of Proteomes (EDyP), F-38054, Grenoble, Cedex 9, France.
| | - Cécile Saint-Beat
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Louis Du Pasquier
- University of Basel, Zoological Institute, Department of Zoology and Evolutionary Biology Vesalgasse 1, Basel, Switzerland.
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
24
|
A metalloprotease produced by larval Schistosoma mansoni facilitates infection establishment and maintenance in the snail host by interfering with immune cell function. PLoS Pathog 2018; 14:e1007393. [PMID: 30372490 PMCID: PMC6224180 DOI: 10.1371/journal.ppat.1007393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/08/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
Metalloproteases (MPs) have demonstrated roles in immune modulation. In some cases, these enzymes are produced by parasites to influence host immune responses such that parasite infection is facilitated. One of the best examples of parasite-mediated immune modulation is the matrix metalloprotease (MMP) leishmanolysin (Gp63), which is produced by species of the genus Leishmania to evade killing by host macrophages. Leishmanolysin-like proteins appear to be quite common in many invertebrates, however our understanding of the functions of these non-leishmania enzymes is limited. Numerous proteomic and transcriptomic screens of schistosomes, at all life cycle stages of the parasite, have identified leishmanolysin-like MPs as being present in abundance; with the highest levels being found during the intramolluscan larval stages and being produced by cercaria. This study aims to functionally characterize a Schistosoma mansoni variant of leishmanolysin that most resembles the enzyme produced by Leishmania, termed SmLeish. We demonstrate that SmLeish is an important component of S. mansoni excretory/secretory (ES) products and is produced by the sporocyst during infection. The presence of SmLeish interferes with the migration of Biomphalaria glabrata haemocytes, and causes them to present a phenotype that is less capable of sporocyst encapsulation. Knockdown of SmLeish in S. mansoni miracidia prior to exposure to susceptible B. glabrata reduces miracidia penetration success, causes a delay in reaching patent infection, and lowers cercaria output from infected snails. Parasitic flatworms, or digenetic trematodes, cause a wide range of diseases of both medical and agricultural importance. Nearly all species of digenea require specific species of snail for their larval development and transmission. The factors underpinning snail host specificity and how they dictate infection establishment and maintenance are interesting areas of research, both from the perspective of evolutionary immunology and potential application in the design of tools that aim to prevent trematode transmission. Currently, our understanding of snail-trematode associations is one-sided, being predominantly derived from studies that have focused on the snail immune response, with almost nothing known about how the parasite facilitates infection. Metalloproteases, such as leishmanolysin, are proteolytic enzymes; some of which are produced by parasites to influence host immune responses and facilitate parasite success upon encountering the host defense response. Here, we have functionally characterized a leishmanolysin-like metalloprotease (SmLeish) from Schistosoma mansoni, a causative agent of human schistosomiasis, which afflicts over 260 million people globally. We demonstrate that SmLeish is associated with developing sporocysts and is also located in S. mansoni excretory/secretory products and interferes with snail haemocyte morphology and migration. Knockdown of SmLeish in S. mansoni miracidia prior to exposure to Biomphalaria glabrata snails reduces miracidia penetration success, delays attainment of patent infections, and lowers cercaria output from infected snails.
Collapse
|
25
|
Hartman R, Pales Espinosa E, Allam B. Identification of clam plasma proteins that bind its pathogen Quahog Parasite Unknown. FISH & SHELLFISH IMMUNOLOGY 2018; 77:214-221. [PMID: 29609028 DOI: 10.1016/j.fsi.2018.03.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The hard clam (Mercenaria mercenaria) is among the most economically-important marine species along the east coast of the United States, representing the first marine resource in several Northeastern states. The species is rather resilient to infections and the only important disease of hard clams results from an infection caused by Quahog Parasite Unknown (QPX), a protistan parasite that can lead to significant mortality events in wild and aquacultured clam stocks. Though the presence of QPX disease has been documented since the 1960s, little information is available on cellular and molecular interactions between the parasite and the host. This study examined the interactions between the clam immune system and QPX cells. First, the effect of clam plasma on the binding of hemocytes to parasite cells was evaluated. Second, clam plasma proteins that bind QPX cells were identified through proteomic (LC-MS/MS) analyses. Finally, the effect of prior clam exposure to QPX on the abundance of QPX-reactive proteins in the plasma was evaluated. Results showed that plasma factors enhance the attachment of hemocytes to QPX. Among the proteins that specifically bind to QPX cells, several lectins were identified, as well as complement component proteins and proteolytic enzymes. Furthermore, results showed that some of these lectins and complement-related proteins are inducible as their abundance significantly increased following QPX challenge. These results shed light on plasma proteins involved in the recognition and binding of parasite cells and provide molecular targets for future investigations of factors involved in clam resistance to the disease, and ultimately for the selection of resistant clam stocks.
Collapse
Affiliation(s)
- Rachel Hartman
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
26
|
Portet A, Galinier R, Pinaud S, Portela J, Nowacki F, Gourbal B, Duval D. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata. Front Immunol 2018; 9:1206. [PMID: 29899746 PMCID: PMC5989330 DOI: 10.3389/fimmu.2018.01206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Insect thioester-containing protein (iTEP) is the most recently defined group among the thioester-containing protein (TEP) superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP) was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins) and schistosome parasite mucins (SmPoMuc). To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first characterization of a snail TEP. Our study also reveals that BgTEP may display an unexpected functional dual role. In addition to its previously characterized anti-protease activity, we demonstrate that BgTEP can bind to the intruder surface membrane, which supports a likely opsonin role.
Collapse
Affiliation(s)
- Anaïs Portet
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Richard Galinier
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Silvain Pinaud
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Julien Portela
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Fanny Nowacki
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| | - David Duval
- Université de Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Université de Montpellier, Perpignan, France
| |
Collapse
|
27
|
Liang Y, Xie SB, Wu CH, Hu Y, Zhang Q, Li S, Fan YG, Leng RX, Pan HF, Xiong HB, Ye DQ. Coagulation cascade and complement system in systemic lupus erythematosus. Oncotarget 2017; 9:14862-14881. [PMID: 29599912 PMCID: PMC5871083 DOI: 10.18632/oncotarget.23206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become 'partners in crime', contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | | | - Chang-Hao Wu
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yuan Hu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hua-Bao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| |
Collapse
|
28
|
Tetreau G, Pinaud S, Portet A, Galinier R, Gourbal B, Duval D. Specific Pathogen Recognition by Multiple Innate Immune Sensors in an Invertebrate. Front Immunol 2017; 8:1249. [PMID: 29051762 PMCID: PMC5633686 DOI: 10.3389/fimmu.2017.01249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Detection of pathogens by all living organisms is the primary step needed to implement a coherent and efficient immune response. This implies a mediation by different soluble and/or membrane-anchored proteins related to innate immune receptors called PRRs (pattern-recognition receptors) to trigger immune signaling pathways. In most invertebrates, their roles have been inferred by analogy to those already characterized in vertebrate homologs. Despite the induction of their gene expression upon challenge and the presence of structural domains associated with the detection of pathogen-associated molecular patterns in their sequence, their exact role in the induction of immune response and their binding capacity still remain to be demonstrated. To this purpose, we developed a fast interactome approach, usable on any host–pathogen couple, to identify soluble proteins capable of directly or indirectly detecting the presence of pathogens. To investigate the molecular basis of immune recognition specificity, different pathogens (Gram-positive bacterium, Micrococcus luteus; Gram-negative, Escherichia coli; yeast, Saccharomyces cerevisiae; and metazoan parasites, Echinostoma caproni or Schistosoma mansoni) were exposed to hemocyte-free hemolymph from the gastropod Biomphalaria glabrata. Twenty-three different proteins bound to pathogens were identified and grouped into three different categories based on their primary function. Each pathogen was recognized by a specific but overlapping set of circulating proteins in mollusk’s hemolymph. While known PRRs such as C-type lectins were identified, other proteins not known to be primarily involved in pathogen recognition were found, including actin, tubulin, collagen, and hemoglobin. Confocal microscopy and specific fluorescent labeling revealed that extracellular actin present in snail hemolymph was able to bind to yeasts and induce their clotting, a preliminary step for their elimination by the snail immune system. Aerolysin-like proteins (named biomphalysins) were the only ones involved in the recognition of all the five pathogens tested, suggesting a sentinel role of these horizontally acquired toxins. These findings highlight the diversity and complexity of a highly specific innate immune sensing system. It paves the way for the use of such approach on a wide range of host–pathogen systems to provide new insights into the specificity and diversity of immune recognition by innate immune systems.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Silvain Pinaud
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
29
|
Buddenborg SK, Bu L, Zhang SM, Schilkey FD, Mkoji GM, Loker ES. Transcriptomic responses of Biomphalaria pfeifferi to Schistosoma mansoni: Investigation of a neglected African snail that supports more S. mansoni transmission than any other snail species. PLoS Negl Trop Dis 2017; 11:e0005984. [PMID: 29045404 PMCID: PMC5685644 DOI: 10.1371/journal.pntd.0005984] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/14/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is highly compatible with the widespread human-infecting blood fluke Schistosoma mansoni and transmits more cases of this parasite to people than any other snail species. For these reasons, B. pfeifferi is the world's most important vector snail for S. mansoni, yet we know relatively little at the molecular level regarding the interactions between B. pfeifferi and S. mansoni from early-stage sporocyst transformation to the development of cercariae. METHODOLOGY/PRINCIPAL FINDINGS We sought to capture a portrait of the response of B. pfeifferi to S. mansoni as it occurs in nature by undertaking Illumina dual RNA-Seq on uninfected control B. pfeifferi and three intramolluscan developmental stages (1- and 3-days post infection and patent, cercariae-producing infections) using field-derived west Kenyan specimens. A high-quality, well-annotated de novo B. pfeifferi transcriptome was assembled from over a half billion non-S. mansoni paired-end reads. Reads associated with potential symbionts were noted. Some infected snails yielded fewer normalized S. mansoni reads and showed different patterns of transcriptional response than others, an indication that the ability of field-derived snails to support and respond to infection is variable. Alterations in transcripts associated with reproduction were noted, including for the oviposition-related hormone ovipostatin and enzymes involved in metabolism of bioactive amines like dopamine or serotonin. Shedding snails exhibited responses consistent with the need for tissue repair. Both generalized stress and immune factors immune factors (VIgLs, PGRPs, BGBPs, complement C1q-like, chitinases) exhibited complex transcriptional responses in this compatible host-parasite system. SIGNIFICANCE This study provides for the first time a large sequence data set to help in interpreting the important vector role of the neglected snail B. pfeifferi in transmission of S. mansoni, including with an emphasis on more natural, field-derived specimens. We have identified B. pfeifferi targets particularly responsive during infection that enable further dissection of the functional role of these candidate molecules.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, KEN
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|