1
|
Zhang F, Luo W, Liu S, Zhao L, Su Y. Protein phosphatase 2A regulates blood cell proliferation and differentiation in Drosophila larval lymph glands. FEBS J 2024; 291:4558-4580. [PMID: 39185698 DOI: 10.1111/febs.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Protein phosphatase 2A (PP2A), one of the most abundant protein phosphatases, has divergent functions in multiple types of cells. Its inactivation has been closely associated with leukemia diseases. However, the physiological function of PP2A for hematopoiesis has been poorly understood in organisms. Drosophila hematopoiesis parallels the vertebrate counterpart in developmental and functional features but involves a much simpler hematopoietic system. Here, utilizing the Drosophila major larval hematopoietic organ lymph gland, we studied the function of PP2A for hematopoiesis in vivo. By knocking down the expression of Pp2A-29B that encodes the scaffold subunit of the PP2A holoenzyme complex, we found that PP2A silencing in the differentiating hemocytes resulted in their excessive proliferation. Furthermore, this PP2A inhibition downregulated the expression of Smoothened (Smo), a crucial component in the Hedgehog pathway, and smo overexpression was able to rescue the phenotypes of PP2A depletion, indicating that Smo functions as a downstream effector of PP2A to restrict the hemocyte proliferation. PDGF/VEGF-receptor (Pvr) overexpression also restored the Smo expression and lymph gland morphology of PP2A silencing, suggesting a PP2A-Pvr-Smo axis to regulate lymph gland growth and hemocyte proliferation. Moreover, inhibiting PP2A activity in the blood progenitor cells promoted their differentiation, but which was independent with Smo. Together, our data suggested that PP2A plays a dual role in the Drosophila lymph gland by preserving the progenitor population and restraining the hemocyte proliferation, to properly regulate the hematopoietic process.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wang Luo
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sumin Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Luo F, Zhang C, Shi Z, Mao T, Jin LH. Notch signaling promotes differentiation, cell death and autophagy in Drosophila hematopoietic system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104176. [PMID: 39168254 DOI: 10.1016/j.ibmb.2024.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Notch signaling is a highly conserved pathway between mammals and Drosophila and plays a key role in various biological processes. Drosophila has emerged as a powerful model for studying hematopoiesis and leukemia. In exception to crystal cells, the strength of Notch signaling in Drosophila lymph gland cortical zone (CZ)/intermediate zone (IZ) cells is weak. However, the influence of Notch activation in the lymph gland CZ/IZ cells and circulating hemocytes on hematopoietic homeostasis maintenance is unclear. Here, we showed that Notch activation in lymph gland CZ/IZ cells induced overdifferentiation of progenitors. Moreover, Notch activation promoted lamellocyte generation via NFκB/Toll signaling activation and increased reactive oxygen species (ROS). In addition, we found that Notch activation in lymph gland CZ/IZ cells and circulating hemocytes caused caspase-independent and nonautophagic cell death. However, crystal cell autophagy was activated by upregulation of the expression of the target gene of the Hippo/Yki pathway Diap1. Moreover, we showed that Notch activation could alleviate cytokine storms and improve the survival of Rasv12 leukemia model flies. Our study revealed the various mechanisms of hematopoietic dysregulation induced by Notch activation in healthy flies and the therapeutic effect of Notch activation on leukemia model flies.
Collapse
Affiliation(s)
- Fangzhou Luo
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chengcheng Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhengqi Shi
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Mao
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
3
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Bertorello S, Cei F, Fink D, Niccolai E, Amedei A. The Future Exploring of Gut Microbiome-Immunity Interactions: From In Vivo/Vitro Models to In Silico Innovations. Microorganisms 2024; 12:1828. [PMID: 39338502 PMCID: PMC11434319 DOI: 10.3390/microorganisms12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Investigating the complex interactions between microbiota and immunity is crucial for a fruitful understanding progress of human health and disease. This review assesses animal models, next-generation in vitro models, and in silico approaches that are used to decipher the microbiome-immunity axis, evaluating their strengths and limitations. While animal models provide a comprehensive biological context, they also raise ethical and practical concerns. Conversely, modern in vitro models reduce animal involvement but require specific costs and materials. When considering the environmental impact of these models, in silico approaches emerge as promising for resource reduction, but they require robust experimental validation and ongoing refinement. Their potential is significant, paving the way for a more sustainable and ethical future in microbiome-immunity research.
Collapse
Affiliation(s)
- Sara Bertorello
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Dorian Fink
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (S.B.); (F.C.); (D.F.); (A.A.)
- Laboratorio Congiunto MIA-LAB (Microbiome-Immunity Axis Research for a Circular Health), University of Florence, 50134 Florence, Italy
| |
Collapse
|
5
|
Baassiri A, Ghais A, Kurdi A, Rahal E, Nasr R, Shirinian M. The molecular signature of BCR::ABLP210 and BCR::ABLT315I in a Drosophila melanogaster chronic myeloid leukemia model. iScience 2024; 27:109538. [PMID: 38585663 PMCID: PMC10995885 DOI: 10.1016/j.isci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder resulting from a balanced translocation leading to BCR::ABL1 oncogene with increased tyrosine kinase activity. Despite the advancements in the development of tyrosine kinase inhibitors (TKIs), the T315I gatekeeper point mutation in the BCR::ABL1 gene remains a challenge. We have previously reported in a Drosophila CML model an increased hemocyte count and disruption in sessile hemocyte patterns upon expression of BCR::ABL1p210 and BCR::ABL1T315I in the hemolymph. In this study, we performed RNA sequencing to determine if there is a distinct gene expression that distinguishes BCR::ABL1p210 and BCR::ABL1T315I. We identified six genes that were consistently upregulated in the fly CML model and validated in adult and pediatric CML patients and in a mouse cell line expressing BCR::ABL1T315I. This study provides a comprehensive analysis of gene signatures in BCR::ABL1p210 and BCR::ABL1T315I, laying the groundwork for targeted investigations into the role of these genes in CML pathogenesis.
Collapse
Affiliation(s)
- Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
6
|
Drewell RA, Klonaros D, Dresch JM. Transcription factor expression landscape in Drosophila embryonic cell lines. BMC Genomics 2024; 25:307. [PMID: 38521929 PMCID: PMC10960990 DOI: 10.1186/s12864-024-10241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| | - Daniel Klonaros
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| |
Collapse
|
7
|
Abdisa E, Park H, Kwon J, Jin G, Esmaeily M, Kim Y. Enhancement of an entomopathogenic fungal virulence against the seedcorn maggot, Delia platura, by suppressing immune responses with a bacterial culture broth of Photorhabdus temperata subsp. temperata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22103. [PMID: 38517449 DOI: 10.1002/arch.22103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
In Korea, there are two maggot species in the Delia genus that commonly infest the roots and stems of the Welsh onion, thus causing serious economic damage on the crop at the seedling stage. In this study, the seedcorn maggot (Delia platura) was detected in onion fields in two different localities in Korea. After overwintering, maggot infestations occurred throughout the entire growing seasons from transplantation to harvest, but their specific patterns of occurrence varied in the two localities examined. Entomopathogenic fungi induced significant virulence against the maggot larvae, in which a strain of Beauveria bassiana was effective, though it exhibited limited mortality in its insecticidal activity. To enhance this insecticidal activity, a culture broth from an entomopathogenic bacterium, Photorhabdus temperata temperata (Ptt), was added to B. bassiana treatment. The addition of Ptt broth significantly increased the insecticidal activity of B. bassiana in a dose-dependent manner. To elucidate this enhancement in insecticidal activity, the immunosuppressive activity of Ptt broth was assessed by identifying the immune responses of the seedcorn maggots. The seedcorn maggots possessed at least three different hemocytes with plasmatocytes, crystal cells, and lamellocytes. These hemocytes exhibited nodule formation in response to the fungal infection. In addition to the cellular immunity, the maggots exhibited inducible expressions of antimicrobial peptide (AMP) genes such as cecropin and defensin. The addition of Ptt broth suppressed the nodule formation and the AMP expressions in response to the fungal infection. Altogether, this study demonstrated the innate immune responses in a non-model insect, D. platura, along with the application of immunosuppression to develop a highly efficient biological control by enhancing the virulence of B. bassiana.
Collapse
Affiliation(s)
- Eticha Abdisa
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Hyunje Park
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Jiyoon Kwon
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Mojtaba Esmaeily
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Korea
| |
Collapse
|
8
|
Qin B, Yu S, Chen Q, Jin LH. Atg2 Regulates Cellular and Humoral Immunity in Drosophila. INSECTS 2023; 14:706. [PMID: 37623416 PMCID: PMC10455222 DOI: 10.3390/insects14080706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Autophagy is a process that promotes the lysosomal degradation of cytoplasmic proteins and is highly conserved in eukaryotic organisms. Autophagy maintains homeostasis in organisms and regulates multiple developmental processes, and autophagy disruption is related to human diseases. However, the functional roles of autophagy in mediating innate immune responses are largely unknown. In this study, we sought to understand how Atg2, an autophagy-related gene, functions in the innate immunity of Drosophila melanogaster. The results showed that a large number of melanotic nodules were produced upon inhibition of Atg2. In addition, inhibiting Atg2 suppressed the phagocytosis of latex beads, Staphylococcus aureus and Escherichia coli; the proportion of Nimrod C1 (one of the phagocytosis receptors)-positive hemocytes also decreased. Moreover, inhibiting Atg2 altered actin cytoskeleton patterns, showing longer filopodia but with decreased numbers of filopodia. The expression of AMP-encoding genes was altered by inhibiting Atg2. Drosomycin was upregulated, and the transcript levels of Attacin-A, Diptericin and Metchnikowin were decreased. Finally, the above alterations caused by the inhibition of Atg2 prevented flies from resisting invading pathogens, showing that flies with low expression of Atg2 were highly susceptible to Staphylococcus aureus and Erwinia carotovora carotovora 15 infections. In conclusion, Atg2 regulated both cellular and humoral innate immunity in Drosophila. We have identified Atg2 as a crucial regulator in mediating the homeostasis of immunity, which further established the interactions between autophagy and innate immunity.
Collapse
Affiliation(s)
| | | | | | - Li Hua Jin
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.Q.); (S.Y.); (Q.C.)
| |
Collapse
|
9
|
Klonaros D, Dresch JM, Drewell RA. Transcriptome profile in Drosophila Kc and S2 embryonic cell lines. G3 (BETHESDA, MD.) 2023; 13:jkad054. [PMID: 36869676 PMCID: PMC10151398 DOI: 10.1093/g3journal/jkad054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Drosophila melanogaster cell lines are an important resource for a range of studies spanning genomics, molecular genetics, and cell biology. Amongst these valuable lines are Kc167 (Kc) and Schneider 2 (S2) cells, which were originally isolated in the late 1960s from embryonic sources and have been used extensively to investigate a broad spectrum of biological activities including cell-cell signaling and immune system function. Whole-genome tiling microarray analysis of total RNA from these two cell types was performed as part of the modENCODE project over a decade ago and revealed that they share a number of gene expression features. Here, we expand on these earlier studies by using deep-coverage RNA-sequencing approaches to investigate the transcriptional profile in Kc and S2 cells in detail. Comparison of the transcriptomes reveals that ∼75% of the 13,919 annotated genes are expressed at a detectable level in at least one of the cell lines, with the majority of these genes expressed at high levels in both cell lines. Despite the overall similarity of the transcriptional landscape in the two cell types, 2,588 differentially expressed genes are identified. Many of the genes with the largest fold change are known only by their "CG" designations, indicating that the molecular control of Kc and S2 cell identity may be regulated in part by a cohort of relatively uncharacterized genes. Our data also indicate that both cell lines have distinct hemocyte-like identities, but share active signaling pathways and express a number of genes in the network responsible for dorsal-ventral patterning of the early embryo.
Collapse
Affiliation(s)
- Daniel Klonaros
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| |
Collapse
|
10
|
Zhang W, Wang D, Si J, Jin L, Hao Y. Gbb Regulates Blood Cell Proliferation and Differentiation through JNK and EGFR Signaling Pathways in the Drosophila Lymph Gland. Cells 2023; 12:cells12040661. [PMID: 36831328 PMCID: PMC9954825 DOI: 10.3390/cells12040661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The Drosophila lymph gland is an ideal model for studying hematopoiesis, and unraveling the mechanisms of Drosophila hematopoiesis can improve our understanding of the pathogenesis of human hematopoietic malignancies. Bone morphogenetic protein (BMP) signaling is involved in a variety of biological processes and is highly conserved between Drosophila and mammals. Decapentaplegic (Dpp)/BMP signaling is known to limit posterior signaling center (PSC) cell proliferation by repressing the protooncogene dmyc. However, the role of two other TGF-β family ligands, Glass bottom boat (Gbb) and Screw (Scw), in Drosophila hematopoiesis is currently largely unknown. Here, we showed that the loss of Gbb in the cortical zone (CZ) induced lamellocyte differentiation by overactivation of the EGFR and JNK pathways and caused excessive differentiation of plasmatocytes, mainly by the hyperactivation of EGFR. Furthermore, we found that Gbb was also required for preventing the hyperproliferation of the lymph glands by inhibiting the overactivation of the Epidermal Growth Factor Receptor (EGFR) and c-Jun N-terminal Kinase (JNK) pathways. These results further advance our understanding of the roles of Gbb protein and the BMP signaling in Drosophila hematopoiesis and the regulatory relationship between the BMP, EGFR, and JNK pathways in the proliferation and differentiation of lymph gland hemocytes.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Dongmei Wang
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
| | - Jingjing Si
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
| | - Lihua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: (L.J.); (Y.H.)
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
- Correspondence: (L.J.); (Y.H.)
| |
Collapse
|
11
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
12
|
Yang L, Qiu LM, Fang Q, Stanley DW, Ye GY. Cellular and humoral immune interactions between Drosophila and its parasitoids. INSECT SCIENCE 2021; 28:1208-1227. [PMID: 32776656 DOI: 10.1111/1744-7917.12863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila-wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps' side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Morin-Poulard I, Tian Y, Vanzo N, Crozatier M. Drosophila as a Model to Study Cellular Communication Between the Hematopoietic Niche and Blood Progenitors Under Homeostatic Conditions and in Response to an Immune Stress. Front Immunol 2021; 12:719349. [PMID: 34484226 PMCID: PMC8415499 DOI: 10.3389/fimmu.2021.719349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called "niche". Drosophila melanogaster is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila. The first wave takes place during embryogenesis. The second wave occurs at larval stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic pockets and a specialized hematopoietic organ called the lymph gland. In both sites, hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons of the peripheral nervous system provide a microenvironment that promotes embryonic hemocyte expansion and differentiation. In the lymph gland blood cells are produced from hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC) and the vascular system, along which the lymph gland develops, act collectively as a niche, under homeostatic conditions, to control the balance between maintenance and differentiation of lymph gland progenitors. In response to an immune stress such as wasp parasitism, lymph gland hematopoiesis is drastically modified and shifts towards emergency hematopoiesis, leading to increased progenitor proliferation and their differentiation into lamellocyte, a specific blood cell type which will neutralize the parasite. The PSC is essential to control this emergency response. In this review, we summarize Drosophila cellular and molecular mechanisms involved in the communication between the niche and hematopoietic progenitors, both under homeostatic and stress conditions. Finally, we discuss similarities between mechanisms by which niches regulate hematopoietic stem/progenitor cells in Drosophila and mammals.
Collapse
Affiliation(s)
| | - Yushun Tian
- MCD/UMR5077, Centre de Biologie Intégrative (CBI), Toulouse, France
| | - Nathalie Vanzo
- MCD/UMR5077, Centre de Biologie Intégrative (CBI), Toulouse, France
| | | |
Collapse
|
14
|
Nguyen TTN, Shim J, Song YH. Chk2-p53 and JNK in irradiation-induced cell death of hematopoietic progenitors and differentiated cells in Drosophila larval lymph gland. Biol Open 2021; 10:271116. [PMID: 34328173 PMCID: PMC8411456 DOI: 10.1242/bio.058809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation (IR) induces DNA double-strand breaks that activate the DNA damage response (DDR), which leads to cell cycle arrest, senescence, or apoptotic cell death. Understanding the DDR of stem cells is critical to tissue homeostasis and the survival of the organism. Drosophila hematopoiesis serves as a model system for sensing stress and environmental changes; however, their response to DNA damage remains largely unexplored. The Drosophila lymph gland is the larval hematopoietic organ, where stem-like progenitors proliferate and differentiate into mature blood cells called hemocytes. We found that apoptotic cell death was induced in progenitors and hemocytes after 40 Gy irradiation, with progenitors showing more resistance to IR-induced cell death compared to hemocytes at a lower dose. Furthermore, we found that Drosophila ATM (tefu), Chk2 (lok), p53, and reaper were necessary for IR-induced cell death in the progenitors. Notably, IR-induced cell death in mature hemocytes required tefu, Drosophila JNK (bsk), and reaper, but not lok or p53. In summary, we found that DNA damage induces apoptotic cell death in the late third instar larval lymph gland and identified lok/p53-dependent and -independent cell death pathways in progenitors and mature hemocytes, respectively.
Collapse
Affiliation(s)
- Tram Thi Ngoc Nguyen
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Han Song
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.,Ilsong Institute of Life Science, Hallym University, Seoul 07247, Republic of Korea
| |
Collapse
|
15
|
Kanwal A, Joshi PV, Mandal S, Mandal L. Ubx-Collier signaling cascade maintains blood progenitors in the posterior lobes of the Drosophila larval lymph gland. PLoS Genet 2021; 17:e1009709. [PMID: 34370733 PMCID: PMC8376192 DOI: 10.1371/journal.pgen.1009709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/19/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Drosophila larval hematopoiesis occurs in a specialized multi-lobed organ called the lymph gland. Extensive characterization of the organ has provided mechanistic insights into events related to developmental hematopoiesis. Spanning from the thoracic to the abdominal segment of the larvae, this organ comprises a pair of primary, secondary, and tertiary lobes. Much of our understanding arises from the studies on the primary lobe, while the secondary and tertiary lobes have remained mostly unexplored. Previous studies have inferred that these lobes are composed of progenitors that differentiate during pupation; however, the mechanistic basis of this extended progenitor state remains unclear. This study shows that posterior lobe progenitors are maintained by a local signaling center defined by Ubx and Collier in the tertiary lobe. This Ubx zone in the tertiary lobe shares several markers with the niche of the primary lobe. Ubx domain regulates the homeostasis of the posterior lobe progenitors in normal development and an immune-challenged scenario. Our study establishes the lymph gland as a model to tease out how the progenitors interface with the dual niches within an organ during development and disorders.
Collapse
Affiliation(s)
- Aditya Kanwal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Pranav Vijay Joshi
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
16
|
Yu S, Luo F, Jin LH. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. eLife 2021; 10:60870. [PMID: 33560224 PMCID: PMC7891935 DOI: 10.7554/elife.60870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
The hematopoietic system of Drosophila is a powerful genetic model for studying hematopoiesis, and vesicle trafficking is important for signal transduction during various developmental processes; however, its interaction with hematopoiesis is currently largely unknown. In this article, we selected three endosome markers, Rab5, Rab7, and Rab11, that play a key role in membrane trafficking and determined whether they participate in hematopoiesis. Inhibiting Rab5 or Rab11 in hemocytes or the cortical zone (CZ) significantly induced cell overproliferation and lamellocyte formation in circulating hemocytes and lymph glands and disrupted blood cell progenitor maintenance. Lamellocyte formation involves the JNK, Toll, and Ras/EGFR signaling pathways. Notably, lamellocyte formation was also associated with JNK-dependent autophagy. In conclusion, we identified Rab5 and Rab11 as novel regulators of hematopoiesis, and our results advance the understanding of the mechanisms underlying the maintenance of hematopoietic homeostasis as well as the pathology of blood disorders such as leukemia.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Destalminil-Letourneau M, Morin-Poulard I, Tian Y, Vanzo N, Crozatier M. The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling. eLife 2021; 10:64672. [PMID: 33395389 PMCID: PMC7781598 DOI: 10.7554/elife.64672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In adult mammals, hematopoiesis, the production of blood cells from hematopoietic stem and progenitor cells (HSPCs), is tightly regulated by extrinsic signals from the microenvironment called 'niche'. Bone marrow HSPCs are heterogeneous and controlled by both endosteal and vascular niches. The Drosophila hematopoietic lymph gland is located along the cardiac tube which corresponds to the vascular system. In the lymph gland, the niche called Posterior Signaling Center controls only a subset of the heterogeneous hematopoietic progenitor population indicating that additional signals are necessary. Here we report that the vascular system acts as a second niche to control lymph gland homeostasis. The FGF ligand Branchless produced by vascular cells activates the FGF pathway in hematopoietic progenitors. By regulating intracellular calcium levels, FGF signaling maintains progenitor pools and prevents blood cell differentiation. This study reveals that two niches contribute to the control ofDrosophila blood cell homeostasis through their differential regulation of progenitors.
Collapse
Affiliation(s)
- Manon Destalminil-Letourneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismaël Morin-Poulard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yushun Tian
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michele Crozatier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
18
|
P P, Tomar A, Madhwal S, Mukherjee T. Immune Control of Animal Growth in Homeostasis and Nutritional Stress in Drosophila. Front Immunol 2020; 11:1528. [PMID: 32849518 PMCID: PMC7416612 DOI: 10.3389/fimmu.2020.01528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
A large body of research implicates the brain and fat body (liver equivalent) as central players in coordinating growth and nutritional homeostasis in multicellular animals. In this regard, an underlying connection between immune cells and growth is also evident, although mechanistic understanding of this cross-talk is scarce. Here, we explore the importance of innate immune cells in animal growth during homeostasis and in conditions of nutrient stress. We report that Drosophila larvae lacking blood cells eclose as small adults and show signs of insulin insensitivity. Moreover, when exposed to dietary stress of a high-sucrose diet (HSD), these animals are further growth retarded than normally seen in regular animals raised on HSD. In contrast, larvae carrying increased number of activated macrophage-like plasmatocytes show no defects in adult growth when raised on HSD and grow to sizes almost comparable with that seen with regular diet. These observations imply a central role for immune cell activity in growth control. Mechanistically, our findings reveal a surprising influence of immune cells on balancing fat body inflammation and insulin signaling under conditions of homeostasis and nutrient overload as a means to coordinate systemic metabolism and adult growth. This work integrates both the cellular and humoral arm of the innate immune system in organismal growth homeostasis, the implications of which may be broadly conserved across mammalian systems as well.
Collapse
Affiliation(s)
- Preethi P
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ajay Tomar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
19
|
Tiwari SK, Toshniwal AG, Mandal S, Mandal L. Fatty acid β-oxidation is required for the differentiation of larval hematopoietic progenitors in Drosophila. eLife 2020; 9:53247. [PMID: 32530419 PMCID: PMC7347386 DOI: 10.7554/elife.53247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-intrinsic and extrinsic signals regulate the state and fate of stem and progenitor cells. Recent advances in metabolomics illustrate that various metabolic pathways are also important in regulating stem cell fate. However, our understanding of the metabolic control of the state and fate of progenitor cells is in its infancy. Using Drosophila hematopoietic organ: lymph gland, we demonstrate that Fatty Acid Oxidation (FAO) is essential for the differentiation of blood cell progenitors. In the absence of FAO, the progenitors are unable to differentiate and exhibit altered histone acetylation. Interestingly, acetate supplementation rescues both histone acetylation and the differentiation defects. We further show that the CPT1/whd (withered), the rate-limiting enzyme of FAO, is transcriptionally regulated by Jun-Kinase (JNK), which has been previously implicated in progenitor differentiation. Our study thus reveals how the cellular signaling machinery integrates with the metabolic cue to facilitate the differentiation program. Stem cells are special precursor cells, found in all animals from flies to humans, that can give rise to all the mature cell types in the body. Their job is to generate supplies of new cells wherever these are needed. This is important because it allows damaged or worn-out tissues to be repaired and replaced by fresh, healthy cells. As part of this renewal process, stem cells generate pools of more specialized cells, called progenitor cells. These can be thought of as half-way to maturation and can only develop in a more restricted number of ways. For example, so-called myeloid progenitor cells from humans can only develop into a specific group of blood cell types, collectively termed the myeloid lineage. Fruit flies, like many other animals, also have several different types of blood cells. The fly’s repertoire of blood cells is very similar to the human myeloid lineage, and these cells also develop from the fly equivalent of myeloid progenitor cells. These progenitors are found in a specialized organ in fruit fly larvae called the lymph gland, where the blood forms. These similarities between fruit flies and humans mean that flies are a good model to study how myeloid progenitor cells mature. A lot is already known about the molecules that signal to progenitor cells how and when to mature. However, the role of metabolism – the chemical reactions that process nutrients and provide energy inside cells – is still poorly understood. Tiwari et al. set out to identify which metabolic reactions myeloid progenitor cells require and how these reactions might shape the progenitors’ development into mature blood cells. The experiments in this study used fruit fly larvae that had been genetically altered so that they could no longer perform key chemical reactions needed for the breakdown of fats. In these mutant larvae, the progenitors within the lymph gland could not give rise to mature blood cells. This showed that myeloid progenitor cells need to be able to break down fats in order to develop properly. These results highlight a previously unappreciated role for metabolism in controlling the development of progenitor cells. If this effect also occurs in humans, this knowledge could one day help medical researchers engineer replacement tissues in the lab, or even increase our own bodies’ ability to regenerate blood, and potentially other organs.
Collapse
Affiliation(s)
- Satish Kumar Tiwari
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Ashish Ganeshlalji Toshniwal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
20
|
Luo F, Yu S, Jin LH. The Posterior Signaling Center Is an Important Microenvironment for Homeostasis of the Drosophila Lymph Gland. Front Cell Dev Biol 2020; 8:382. [PMID: 32509789 PMCID: PMC7253591 DOI: 10.3389/fcell.2020.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a necessary process for development and immune defense in Drosophila from the embryonic period to adulthood. There are two main stages in this process: the first stage occurs in the head mesoderm during the embryonic stage, and the second occurs in a specialized hematopoietic organ along the dorsal vessel, the lymph gland, during the larval stage. The lymph gland consists of paired lobes, each of which has distinct regions: the cortical zone (CZ), which contains mature hemocytes; the medullary zone (MZ), which contains hematopoietic progenitors; and the posterior signaling center (PSC), which specifically expresses the early B-cell factor (EBF) transcription factor Collier (Col) and the HOX factor Antennapedia (Antp) to form a microenvironment similar to that of the mammalian bone marrow hematopoietic stem cell niche. The PSC plays a key role in regulating hematopoietic progenitor differentiation. Moreover, the PSC contributes to the cellular immune response to wasp parasitism triggered by elevated ROS levels. Two recent studies have revealed that hematopoietic progenitor maintenance is directly regulated by Col expressed in the MZ and is independent of the PSC, challenging the traditional model. In this review, we summarize the regulatory networks of PSC cell proliferation, the controversy regarding PSC-mediated regulation of hematopoietic progenitor differentiation, and the wasp egg infection response. In addition, we discuss why the PSC is an ideal model for investigating mammalian hematopoietic stem cell niches and leukemia.
Collapse
Affiliation(s)
| | | | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
21
|
Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in Drosophila. Genetics 2019; 212:1279-1300. [PMID: 31138608 PMCID: PMC6707476 DOI: 10.1534/genetics.119.302209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The actomyosin network is involved in crucial cellular processes including morphogenesis, cell adhesion, apoptosis, proliferation, differentiation, and collective cell migration in Drosophila, Caenorhabditiselegans, and mammals. Here, we demonstrate that Drosophila larval blood stem-like progenitors require actomyosin activity for their maintenance. Genetic loss of the actomyosin network from progenitors caused a decline in their number. Likewise, the progenitor population increased upon sustained actomyosin activation via phosphorylation by Rho-associated kinase. We show that actomyosin positively regulates larval blood progenitors by controlling the maintenance factor Cubitus interruptus (Ci). Overexpression of the maintenance signal via a constitutively activated construct (ci.HA) failed to sustain Ci-155 in the absence of actomyosin components like Zipper (zip) and Squash (sqh), thus favoring protein kinase A (PKA)-independent regulation of Ci activity. Furthermore, we demonstrate that a change in cortical actomyosin assembly mediated by DE-cadherin modulates Ci activity, thereby determining progenitor status. Thus, loss of cell adhesion and downstream actomyosin activity results in desensitization of the progenitors to Hh signaling, leading to their differentiation. Our data reveal how cell adhesion and the actomyosin network cooperate to influence patterning, morphogenesis, and maintenance of the hematopoietic stem-like progenitor pool in the developing Drosophila hematopoietic organ.
Collapse
|
22
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes (Basel) 2019; 10:genes10030173. [PMID: 30841641 PMCID: PMC6470581 DOI: 10.3390/genes10030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.
Collapse
|
24
|
From Drosophila Blood Cells to Human Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:195-214. [PMID: 29951821 DOI: 10.1007/978-981-13-0529-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hematopoietic system plays a critical role in establishing the proper response against invading pathogens or in removing cancerous cells. Furthermore, deregulations of the hematopoietic differentiation program are at the origin of numerous diseases including leukemia. Importantly, many aspects of blood cell development have been conserved from human to Drosophila. Hence, Drosophila has emerged as a potent genetic model to study blood cell development and leukemia in vivo. In this chapter, we give a brief overview of the Drosophila hematopoietic system, and we provide a protocol for the dissection and the immunostaining of the larval lymph gland, the most studied hematopoietic organ in Drosophila. We then focus on the various paradigms that have been used in fly to investigate how conserved genes implicated in leukemogenesis control blood cell development. Specific examples of Drosophila models for leukemia are presented, with particular attention to the most translational ones. Finally, we discuss some limitations and potential improvements of Drosophila models for studying blood cell cancer.
Collapse
|