1
|
Hao Q, Gao X, Sun M, Liu Y. Genomic insights into fibrinogen-related proteins and expression analysis in the Pacific white shrimp, Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110113. [PMID: 39788463 DOI: 10.1016/j.fsi.2025.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Fibrinogen-related domain (FReD) containing proteins are an evolutionarily conserved immune gene family characterized by the C-terminal fibrinogen (FBG) and diverse N-terminal domains. To understand the complexity of this family in crustaceans, we performed genome screening and identified 43 full-length FReDs encoding genes in Litopenaeus vannamei. Structural classification analysis revealed these putative FReDs could be divided into six types, including two reported types (LvFReDI and II) and four new types (LvFReDIII-VI). Sequence and phylogenetic analysis showed that FBG domains were highly conserved throughout and phylogeny clusters correlated strongly with gene type. We analyzed the temporal and spatial expression patterns of LvFReD genes based on the transcriptomes of developmental stages, adult tissues or pathogen infected tissues of L. vannamei. Most LvFReDs were expressed from larval in membrane stage, and exhibited tissue-specific expression patterns and immune-responsive transcription after challenge with bacteria or virus. Further time-course expression analysis suggested that LvFReDII genes with additional coiled-coil region were more sensitive to pathogens than LvFReDI genes. Our findings provided comprehensive gene sequence resources and expression profiles of FReD genes in shrimp, which give insights into clarifying the diversity and function of these genes in crustaceans.
Collapse
Affiliation(s)
- Qiang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiuyan Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingzhe Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Yuan Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| |
Collapse
|
2
|
Gorbushin A, Ruparčič M, Anderluh G. Littoporins: Novel actinoporin-like proteins in caenogastropod genus Littorina. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109698. [PMID: 38871141 DOI: 10.1016/j.fsi.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.
Collapse
Affiliation(s)
- Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| | - Matija Ruparčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
3
|
Wei Y, Lv Z, Xiao T, Du Z. The role of MASP1 in the complement system and expression characteristics in response to GCRV infection in grass carp. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109712. [PMID: 38901682 DOI: 10.1016/j.fsi.2024.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The grass carp (Ctenopharyngodon idella) constitutes a significant economic resource within the aquaculture sector of our nation, yet it has been chronically afflicted by the Grass Carp Reovirus (GCRV) disease. The complement system, a vital component of fish's innate immunity, plays a crucial role in combating viral infections. This research investigates the potential role of MASP1, a key molecule in the lectin pathway of the complement system, in the GCRV infection in grass carp. An analysis of the molecular characteristics of MASP1 in grass carp revealed that its identity and similarity percentages range from 35.10 to 91.00 % and 35.30-91.00 %, respectively, in comparison to other species. Phylogenetically, MASP1 in C. idella aligns closely with species such as Danio rerio, Cyprinus carpio, and Carassius carassius, exhibiting chromosomal collinearity with the zebrafish. Subsequent tissue analysis in both healthy and GCRV-infected grass carp indicated that MASP1's basal expression was predominantly in the liver. Post-GCRV infection, MASP1 expression in various tissues exhibited temporal variations: peaking in the liver on day 5, spleen on day 7, and kidney on day 14. Furthermore, employing Complement Component 3 (C3) as a benchmark for complement system activation, it was observed that MASP1 could activate and cleave C3 to C3b. MASP1 also demonstrated an inhibitory effect on GCRV replication (compared with the control group, VP2 and VP7 decreased by 6.82-fold and 4.37-fold) and enhanced the expression of antiviral genes, namely IRF3, IRF7 and IFN1 (compared with the control group, increased 2.25-fold, 45.38-fold and 22.37-fold, respectively). In vivo protein injection experiments substantiated MASP1's influence on the relative mRNA expression levels of C3 in various tissues and its protein expression in serum. This study also verified that C3 could modulate the expression of antiviral genes such as IFN1 and IRF3.
Collapse
Affiliation(s)
- Yuling Wei
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
6
|
Wei P, Yang W, Wang W, Li Y, Yan X, Wu W, Wang S, Sun J, Wang L, Song L. A MASP-like functions as PRR to regulate the mRNA expressions of inflammatory factors in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108829. [PMID: 37201731 DOI: 10.1016/j.fsi.2023.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Mannose-binding lectin-associated serine protease (MASP) is a type of central serine protease in the complement lectin pathway. In the present study, a MASP-like was identified from the Pacific oyster Crassostrea gigas, defined as CgMASPL-2. The cDNA sequence of CgMASPL-2 was of 3399 bp with an open reading frame of 2757 bp and encoded a polypeptide of 918 amino acids containing three CUB domains, an EGF domain, two IG domains, and a Tryp_SPC domain. In the phylogenetic tree, CgMASPL-2 was firstly clustered with Mytilus californianus McMASP-2-like, and then assigned into the invertebrate branch. CgMASPL-2 shared similar domains with M. californianus McMASP-2-like and Littorina littorea LlMReM1. CgMASPL-2 mRNA was expressed in all the tested tissues with the highest expression in haemolymph. CgMASPL-2 protein was mainly distributed in the cytoplasm of haemocytes. The mRNA expression of CgMASPL-2 increased significantly in haemocytes after Vibrio splendidus stimulation. The recombinant 3 × CUB-EGF domains of CgMASPL-2 displayed binding activities to diverse polysaccharides (lipopolysaccharide, peptidoglycan and mannose) and microbes (Staphylococcus aureus, Micrococcus luteus, Pichia pastoris, Vibrio anguillarum, V. splendidus and Escherichia coli). In anti-CgMASPL-2 treated oysters, the mRNA expressions of CgIL17-1 and CgIL17-2 in haemocytes decreased significantly after V. splendidus stimulation. The results indicated that CgMASPL-2 could directly sense microbes and regulate the mRNA expressions of inflammatory factors.
Collapse
Affiliation(s)
- Ping Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
7
|
Bai Z, Wang H, Li X, Shen X, Chen Y, Fu Y, Li W. Presence of immune factors in freshwater mussel ( Hyriopsis cumingii) entails autologous serum an essential component in the culture of mantle cells. Front Immunol 2023; 14:1173184. [PMID: 37215128 PMCID: PMC10196017 DOI: 10.3389/fimmu.2023.1173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mussel cell culture is a challenging problem and serum serves a crucial biological role in cell culture as an autologous supply and an immunizing agent. In this study, the biology (calcium ions, total protein, pH, and osmotic pressure) of fetal bovine serum (FBS) and Hyriopsis cumingii serum (HCS) was investigated, and the development of Hyriopsis cumingii (H. cumingii) mantle cells in HCS and FBS systems was examined. The results showed that total protein, calcium ions, and osmotic pressure varied significantly (p<0.05). The activity of mantle cells was superior in the HCS culture system to that in the FBS culture system. The label-free technique was used to distinguish the two serum proteins to investigate the supportive effect of autologous serum on cell culture. These were examined for 109 unique proteins and 35 particular HCS proteins. Most differentially expressed proteins (DEPs) were involved in immune response, cell differentiation, and calcium ion binding. Furthermore, immune factors such as HSP, CALR, APOB, C3 were identified with significant differences. HSP was significantly more present in HCS than in FBS as an endogenous protective protein that regulates immune system function, cell differentiation, transport, and activity regulation. Parallel reaction monitoring (PRM) analysis was carried out to validate the expression levels of 19 DEPs, indicating high reliability of the proteomic results. This study reveals the important role of immune factors in mussel cell culture, providing a theoretical basis for explaining the applicability of autologous serum in cell culture. It is also helpful in improving the cell culture conditions of mussels.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
| | - He Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
| | - Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xiaoya Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yige Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Saco A, Suárez H, Novoa B, Figueras A. A Genomic and Transcriptomic Analysis of the C-Type Lectin Gene Family Reveals Highly Expanded and Diversified Repertoires in Bivalves. Mar Drugs 2023; 21:md21040254. [PMID: 37103393 PMCID: PMC10140915 DOI: 10.3390/md21040254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Hugo Suárez
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research IIM-CSIC, 36208 Vigo, Spain
| | | |
Collapse
|
9
|
Bu L, Lu L, Laidemitt MR, Zhang SM, Mutuku M, Mkoji G, Steinauer M, Loker ES. A genome sequence for Biomphalaria pfeifferi, the major vector snail for the human-infecting parasite Schistosoma mansoni. PLoS Negl Trop Dis 2023; 17:e0011208. [PMID: 36961841 PMCID: PMC10075465 DOI: 10.1371/journal.pntd.0011208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/05/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Biomphalaria pfeifferi is the world's most widely distributed and commonly implicated vector snail species for the causative agent of human intestinal schistosomiasis, Schistosoma mansoni. In efforts to control S. mansoni transmission, chemotherapy alone has proven insufficient. New approaches to snail control offer a way forward, and possible genetic manipulations of snail vectors will require new tools. Towards this end, we here offer a diverse set of genomic resources for the important African schistosome vector, B. pfeifferi. METHODOLOGY/PRINCIPAL FINDINGS Based largely on PacBio High-Fidelity long reads, we report a genome assembly size of 772 Mb for B. pfeifferi (Kenya), smaller in size than known genomes of other planorbid schistosome vectors. In a total of 505 scaffolds (N50 = 3.2Mb), 430 were assigned to 18 large linkage groups inferred to represent the 18 known chromosomes, based on whole genome comparisons with Biomphalaria glabrata. The annotated B. pfeifferi genome reveals a divergence time of 3.01 million years with B. glabrata, a South American species believed to be similar to the progenitors of B. pfeifferi which undertook a trans-Atlantic colonization < five million years ago. CONCLUSIONS/SIGNIFICANCE The genome for this preferentially self-crossing species is less heterozygous than related species known to be preferential out-crossers; its smaller genome relative to congeners may similarly reflect its preference for selfing. Expansions of gene families with immune relevance are noted, including the FReD gene family which is far more similar in its composition to B. glabrata than to Bulinus truncatus, a vector for Schistosoma haematobium. Provision of this annotated genome will help better understand the dependencies of trematodes on snails, enable broader comparative insights regarding factors contributing to susceptibility/ resistance of snails to schistosome infections, and provide an invaluable resource with respect to identifying and manipulating snail genes as potential targets for more specific snail control programs.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martina R Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martin Mutuku
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Gerald Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michelle Steinauer
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
| | - Eric S Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
10
|
Orlov IA, Ataev GL, Gourbal B, Tokmakova AS, Bobrovskaya AV, Prokhorova EE. The transcriptomic analysis of Planorbarius corneus hemocytes (Gastropoda) naturally infected with Bilharziella polonica (Schistosomatidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104607. [PMID: 36473549 DOI: 10.1016/j.dci.2022.104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The study of molluscan innate immunity is essential for understanding the evolution of the immune system. An advance in the knowledge of their immune system can be achieved by increasing the number of model species. Our study focuses on the immunity of Planorbarius corneus, a pulmonate snail widely distributed in Eurasia. These snails are intermediate hosts of many trematodes, including Bilharziella polonica (Schistosomatidae). In this paper we obtained and analyzed transcriptomes of hemocytes of uninfected snails Planorbarius corneus and snails naturally infected with Bilharziella polonica. The transcriptomes were found to contain transcripts encoding all major groups of immune factors previously described for other gastropods. Pathogen-recognition molecules were the most diverse group of immune factors. Comparison of the transcriptomes of the infected and the uninfected molluscs showed that the expression of some genes changed during infection. Our results extend the knowledge of immune responses of pulmonate snails to trematode invasion and promote P. corneus as a new model for the study of molluscan defence reactions.
Collapse
Affiliation(s)
- I A Orlov
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - G L Ataev
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - B Gourbal
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - A S Tokmakova
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - A V Bobrovskaya
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia
| | - E E Prokhorova
- Laboratory of Experimental Zoology, Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, Russia.
| |
Collapse
|
11
|
Orús-Alcalde A, Børve A, Hejnol A. The localization of Toll and Imd pathway and complement system components and their response to Vibrio infection in the nemertean Lineus ruber. BMC Biol 2023; 21:7. [PMID: 36635688 PMCID: PMC9835746 DOI: 10.1186/s12915-022-01482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Innate immunity is the first line of defense against pathogens. In animals, the Toll pathway, the Imd pathway, the complement system, and lectins are well-known mechanisms involved in innate immunity. Although these pathways and systems are well understood in vertebrates and arthropods, they are understudied in other invertebrates. RESULTS To shed light on immunity in the nemertean Lineus ruber, we performed a transcriptomic survey and identified the main components of the Toll pathway (e.g., myD88, dorsal/dif/NFκB-p65), the Imd pathway (e.g., imd, relish/NFκB-p105/100), the complement system (e.g., C3, cfb), and some lectins (FreD-Cs and C-lectins). In situ hybridization showed that TLRβ1, TLRβ2, and imd are expressed in the nervous system; the complement gene C3-1 is expressed in the gut; and the lectins are expressed in the nervous system, the blood, and the gut. To reveal their potential role in defense mechanisms, we performed immune challenge experiments, in which Lineus ruber specimens were exposed to the gram-negative bacteria Vibrio diazotrophicus. Our results show the upregulation of specific components of the Toll pathway (TLRα3, TLRβ1, and TLRβ2), the complement system (C3-1), and lectins (c-lectin2 and fred-c5). CONCLUSIONS Therefore, similarly to what occurs in other invertebrates, our study shows that components of the Toll pathway, the complement system, and lectins are involved in the immune response in the nemertean Lineus ruber. The presence of these pathways and systems in Lineus ruber, but also in other spiralians; in ecdysozoans; and in deuterostomes suggests that these pathways and systems were involved in the immune response in the stem species of Bilateria.
Collapse
Affiliation(s)
- Andrea Orús-Alcalde
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway
| | - Aina Børve
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway
| | - Andreas Hejnol
- grid.7914.b0000 0004 1936 7443Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ,grid.7914.b0000 0004 1936 7443Department of Biological Sciences, University of Bergen, Thormøhlensgate 53A, 5006 Bergen, Norway ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
12
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
13
|
Stanovova MV, Gazizova GR, Gorbushin AM. Transcriptomic profiling of immune-associated molecules in the coelomocytes of lugworm Arenicola marina (Linnaeus, 1758). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:34-55. [PMID: 35438249 DOI: 10.1002/jez.b.23135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Organization and functioning of immune system remain unevenly studied in different taxa of lophotrochozoan animals. We analyzed transcriptomic data on coelomocytes of the lugworm Arenicola marina (Linnaeus, 1758; Annelida, Polychaeta) to gain insights into the molecular mechanisms involved in polychaete immunity. Coelomocytes are specialized motile cells populating coelomic fluid of annelids, responsible for cellular defense reactions and providing humoral immune factors. The transcriptome was enriched with immune-related transcripts by challenging the cells in vitro with lipopolysaccharides of Escherichia coli and Zymosan from Saccharomyces cerevisiae. Our analysis revealed a multifaceted and complex internal defense system of the lugworm. A. marina possesses orthologs of proto-complement-like factors: six thioester-containing proteins, a complement-like receptor, and a MASP-related serine protease (MReM2). A. marina coelomocytes employ pattern-recognition receptors to detect pathogens and regulate immune responses. Among them, there are 18 Toll-like receptors and various putative lectin-like proteins with evolutionary conserved and taxa-specific domains. C-type lectins and a novel family of Gal-binding and CUB domains containing receptors were the most abundant in the transcriptome. The array of pore-forming proteins in the coelomocytes was surprisingly reduced compared to that of other invertebrate species. We characterized a set of conserved proteins metabolizing reactive oxygen species and nitric oxide and expanded the arsenal of potential antimicrobial peptides. Phenoloxidase activity in immune cells of lugworm is mediated only by laccase enzyme. The described repertoire of immune-associated molecules provides valuable candidates for further functional and comparative research on the immunity of annelids.
Collapse
Affiliation(s)
- Maria V Stanovova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Guzel R Gazizova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St. Petersburg, Russia
| |
Collapse
|
14
|
Rodriguez C, Vega IA, Castro-Vazquez A. A Dissenters' View on AppleSnail Immunobiology. Front Immunol 2022; 13:879122. [PMID: 35693764 PMCID: PMC9178244 DOI: 10.3389/fimmu.2022.879122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
We stand as dissenters against the acceptance of scientific knowledge that has not been built on empirical data. With this in mind, this review synthesizes selected aspects of the immunobiology of gastropods and of apple snails (Ampullariidae) in particular, from morphological to molecular and "omics" studies. Our trip went through more than two centuries of history and was guided by an evo-devo hypothesis: that the gastropod immune system originally developed in the mesenchymal connective tissue of the reno-pericardial complex, and that in that tissue some cells differentiated into hematopoietically committed progenitor cells that integrate constitutive hemocyte aggregations in the reno-pericardial territory, whether concentrated in the pericardium or the kidney in a species-specific manner. However, some of them may be freed from those aggregations, circulate in the blood, and form distant contingent aggregations anywhere in the body, but always in response to intruders (i.e., pathogens or any other immune challenge). After that, we reviewed the incipient immunology of the Ampullariidae by critically revising the findings in Pomacea canaliculata and Marisa cornuarietis, the only ampullariid species that have been studied in this respect, and we attempted to identify the effectors and the processes in which they are involved. Particularly for P. canaliculata, which is by far the most studied species, we ask which hemocytes are involved, in which tissues or organs are integrated, and what cellular reactions to intruders this species has in common with other animals. Furthermore, we wondered what humoral factors could also integrate its internal defense system. Among the cellular defenses, we give an outstanding position to the generation of hemocyte nodules, which seems to be an important process for these snails, serving the isolation and elimination of intruders. Finally, we discuss hematopoiesis in apple snails. There have been contrasting views about some of these aspects, but we envision a hematopoietic system centered in the constitutive hemocyte islets in the ampullariid kidney.
Collapse
Affiliation(s)
- Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
15
|
Song JA, Kho KH, Park YS, Choi CY. Toxicity response to benzo[α]pyrene exposure: Modulation of immune parameters of the bay scallop, Argopectenirradians. FISH & SHELLFISH IMMUNOLOGY 2022; 124:505-512. [PMID: 35489591 DOI: 10.1016/j.fsi.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Bay scallops were exposed to four BaP concentrations (0.5, 1.0, 10 and 50 μg/L) for 72 h to elucidate their immune response. Immune parameters were evaluated by measuring nitric oxide (NO) levels in hemolymph. Additionally, we measured peptidoglycan recognition proteins (PGRP), fibrinogen-domain-containing protein (FReDC1), metallothionein (MT), and heat shock protein (HSP) 70 mRNA expression in digestive diverticula. NO as well as FReDC1 and MT expression in each BaP group increased significantly over time except for the BaP 0.5 group. The PGRP and HSP70 mRNA expression in the BaP 50 group increased in the range 6-24 h and then decreased. In situ hybridization also confirmed that there was higher MT mRNA expression in the BaP 50 group than in the control group at 72 h. Our results suggest that higher levels of BaP dampened scallop immune responses, while simultaneously reducing their ability to cope with oxidative stress and DNA damage. BaP exposure can be considered a potential immune inducer in bay scallop.
Collapse
Affiliation(s)
- Jin Ah Song
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Young-Su Park
- Catholic University of Pusan, Busan, 46252, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
16
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
17
|
Liberti A, Natarajan O, Atkinson CGF, Dishaw LJ. Secreted immunoglobulin domain effector molecules of invertebrates and management of gut microbial ecology. Immunogenetics 2022; 74:99-109. [PMID: 34988622 DOI: 10.1007/s00251-021-01237-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023]
Abstract
The origins of a "pass-through" gut in early bilaterians facilitated the exploration of new habitats, motivated the innovation of feeding styles and behaviors, and helped drive the evolution of more complex organisms. The gastrointestinal tract has evolved to consist of a series of interwoven exchanges between nutrients, host immunity, and an often microbe-rich environmental interface. Not surprisingly, animals have expanded their immune repertoires to include soluble effectors that can be secreted into luminal spaces, e.g., in the gut, facilitating interactions with microbes in ways that influence their settlement dynamics, virulence, and their interaction with other microbes. The immunoglobulin (Ig) domain, which is also found in some non-immune molecules, is recognized as one of the most versatile recognition domains lying at the interface of innate and adaptive immunity; among vertebrates, secreted Igs are known to play crucial roles in the management of gut microbial communities. In this mini-review, we will focus on secreted immune effectors possessing Ig-like domains in invertebrates, such as the fibrinogen-related effector proteins first described in the gastropod Biomphalaria glabrata, the Down syndrome cellular adhesion molecule first described in the arthropod, Drosophila melanogaster, and the variable region-containing chitin-binding proteins of the protochordates. We will highlight our current understanding of their function and their potential role, if not yet recognized, in the establishment and maintenance of host-microbial interfaces and argue that these Igs are likely also essential to microbiome management.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ojas Natarajan
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA
| | - Celine Grace F Atkinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA.,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA
| | - Larry J Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. .,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA.
| |
Collapse
|
18
|
Gorbushin AM. Identification of peptidoglycan recognition proteins in hemocytes and kidney of common periwinkle Littorinalittorea. FISH & SHELLFISH IMMUNOLOGY 2022; 120:11-14. [PMID: 34774730 DOI: 10.1016/j.fsi.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Peptidoglycan Recognition Proteins (PGRPs) are a diverse group of proteins involved in innate immunity. In particular, PGRPs have been shown to participate in immune pattern recognition in various mollusks. However, they have not been described in Caenogastropoda, a large molluscan group comprising sea, freshwater and land snails. In this study, four short PGRPs with molecular weights ranging from 21 to 34 kDa and their isoforms were identified and structurally characterized in the kidney and hemocytic transcriptomes of a caenogastropod mollusk Littorina littorea. All of them (LlPGRP1-4) are secretory, possess a signal peptide and a characteristic N-terminal N-acetylmuramoyl-l-alanine amidase (Ami) domain with conserved Zn2+ binding- and amidase catalytic sites. The shortest proteins, LlPGRP1 and LlPGRP2, have no additional conserved motifs on the N-terminus. In longer and most abundantly expressed LlPGRP3 and LlPGRP4 the Ami-domain is combined with an N-terminal SH3-domain and a cysteine-rich motif, respectively. Expression analysis showed that LlPGRPs of the common periwinkle were uninvolved in the immune response to infection with trematode Himasthla elongata though they might act in antibacterial defense.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| |
Collapse
|
19
|
Baldwin WM, Valujskikh A, Fairchild RL. C1q as a potential tolerogenic therapeutic in transplantation. Am J Transplant 2021; 21:3519-3523. [PMID: 34058061 PMCID: PMC8564585 DOI: 10.1111/ajt.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 01/25/2023]
Abstract
In 1963, Lepow and colleagues resolved C1, the first component of the classical pathway, into three components, which they named C1q, C1r, and C1s. All three of these components were demonstrated to be involved in causing hemolysis in vitro. For over 30 years after that seminal discovery, the primary function attributed to C1q was as part of the C1 complex that initiated the classical pathway of the complement cascade. Then, a series of papers reported that isolated C1q could bind to apoptotic cells and facilitate their clearance by macrophages. Since then, rheumatologists have recognized that C1q is an important pattern recognition receptor (PRR) that diverts autoantigen containing extracellular vesicles from immune recognition. This critical function of C1q as a regulator of immune recognition has been largely overlooked in transplantation. Now that extracellular vesicles released from transplants have been identified as a major agent of immune recognition, it is logical to consider the potential impact of C1q on modulating the delivery of allogeneic extracellular vesicles to antigen presenting cells. This concept has clinical implications in the possible use of C1q or a derivative as a biological therapeutic to down-modulate immune responses to transplants.
Collapse
Affiliation(s)
- William M Baldwin
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Sun J, Wang L, Yang W, Li Y, Jin Y, Wang L, Song L. A novel C-type lectin activates the complement cascade in the primitive oyster Crassostrea gigas. J Biol Chem 2021; 297:101352. [PMID: 34715129 PMCID: PMC8605247 DOI: 10.1016/j.jbc.2021.101352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.
| |
Collapse
|
21
|
A P, G M, M T, L B, N F. Characterisation and functional role of a novel C1qDC protein from a colonial ascidian. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104077. [PMID: 33905781 DOI: 10.1016/j.dci.2021.104077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
As an invertebrate, the compound ascidian Botryllus schlosseri faces nonself only with innate immunity. In this species, we already identified the key components of the lectin and alternative complement activation pathways. In the present work, by mining the transcriptome, we identified a single transcript codifying for a protein, member of the C1q-domain-containing protein family, with a signal peptide followed by two globular C1q (gC1q) domains. It shares a similar domain organisation with C1q/TNF-related proteins 4, the only vertebrate protein family with two gC1q domains. Our gC1q domain-containing protein, called BsC1qDC, is actively transcribed by immunocytes. The transcription is modulated during the Botryllus blastogenetic cycle and is upregulated following the injection of Bacillus clausii cells in the circulation. Furthermore, the injection of bsc1qdc iRNA in the vasculature results in decreased transcription of the gene and a significant impairment of phagocytosis and degranulation, suggesting the involvement of this molecule in immune responses.
Collapse
Affiliation(s)
- Peronato A
- Department of Biology, University of Padova, Italy
| | - Minervini G
- Department of Biomedical Sciences, University of Padova, Italy
| | - Tabarelli M
- PhD School in Agricultural Science and Biotechnology, University of Udine, Italy
| | - Ballarin L
- Department of Biology, University of Padova, Italy.
| | - Franchi N
- Department of Biology, University of Padova, Italy
| |
Collapse
|
22
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
23
|
Transcriptome profiling of Lymnaea stagnalis (Gastropoda) for ecoimmunological research. BMC Genomics 2021; 22:144. [PMID: 33648459 PMCID: PMC7919325 DOI: 10.1186/s12864-021-07428-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Host immune function can contribute to numerous ecological/evolutionary processes. Ecoimmunological studies, however, typically use one/few phenotypic immune assays and thus do not consider the complexity of the immune system. Therefore, "omics" resources that allow quantifying immune activity across multiple pathways are needed for ecoimmunological models. We applied short-read based RNAseq (Illumina NextSeq 500, PE-81) to characterise transcriptome profiles of Lymnaea stagnalis (Gastropoda), a multipurpose model snail species. We used a genetically diverse snail stock and exposed individuals to immune elicitors (injury, bacterial/trematode pathogens) and changes in environmental conditions that can alter immune activity (temperature, food availability). RESULTS Immune defence factors identified in the de novo assembly covered elements broadly described in other gastropods. For instance, pathogen-recognition receptors (PRR) and lectins activate Toll-like receptor (TLR) pathway and cytokines that regulate cellular and humoral defences. Surprisingly, only modest diversity of antimicrobial peptides and fibrinogen related proteins were detected when compared with other taxa. Additionally, multiple defence factors that may contribute to the phenotypic immune assays used to quantify antibacterial activity and phenoloxidase (PO)/melanisation-type reaction in this species were found. Experimental treatments revealed factors from non-self recognition (lectins) and signalling (TLR pathway, cytokines) to effectors (e.g., antibacterial proteins, PO enzymes) whose transcription depended on immune stimuli and environmental conditions, as well as components of snail physiology/metabolism that may drive these effects. Interestingly, the transcription of many factors (e.g., PRR, lectins, cytokines, PO enzymes, antibacterial proteins) showed high among-individual variation. CONCLUSIONS Our results indicate several uniform aspects of gastropod immunity, but also apparent differences between L. stagnalis and some previously examined taxa. Interestingly, in addition to immune defence factors that responded to immune elicitors and changes in environmental conditions, many factors showed high among-individual variation across experimental snails. We propose that such factors are highly important to be included in future ecoimmunological studies because they may be the key determinants of differences in parasite resistance among individuals both within and between natural snail populations.
Collapse
|
24
|
Schultz JH, Bu L, Kamel B, Adema CM. RNA-seq: The early response of the snail Physella acuta to the digenetic trematode Echinostoma paraensei. J Parasitol 2021; 106:490-505. [PMID: 32726421 DOI: 10.1645/19-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To analyze the response of the snail Physella acuta to Echinostoma paraensei, a compatible digenetic trematode, Illumina RNA-seq data were collected from snails with early infection (5 snails at 2 days post-exposure [DPE]) and established infection (4 snails, 8 DPE), and 7 control (unexposed) snails. A reference transcriptome (325,563 transcripts, including 98% of eukaryotic universal single-copy orthologs; BUSCO) and a draft P. acuta genome (employing available genomic Illumina reads; 799,945 scaffolds, includes 88% BUSCO genes) were assembled to guide RNA-seq analyses. Parasite exposure of P. acuta led to 10,195 differentially expressed (DE) genes at 2 DPE and 8,876 DE genes at 8 DPE with only 18% of up-regulated and 22% of down-regulated sequences shared between these time points. Gene ontology (GO) analysis yielded functional annotation of only 1.2% of DE genes but did not indicate major changes in biological activities of P. acuta between 2 and 8 DPE. Increased insights were achieved by analysis of expression profiles of 460 immune-relevant DE transcripts, identified by BLAST and InterProScan. Physella acuta has expanded gene families that encode immune-relevant domains, including CD109/TEP, GTPase IMAP, Limulus agglutination factor (dermatopontin), FReD (≥82 sequences with fibrinogen-related domains), and transcripts that combine C-type lectin (C-LECT) and C1q domains, novel among metazoa. Notably, P. acuta expressed sequences from these immune gene families at all time points, but the assemblages of unique transcripts from particular immune gene families differed between 2 and 8 DPE. The shift in profiles of DE immune genes, from early exposure to parasite establishment, suggests that compatible P. acuta initially respond to infection but switch to express immune genes that likely are less effective against E. paraensei but counter other types of (opportunistic) pathogens and parasites. We propose that the latter expression profile is part of an extended phenotype of E. paraensei, imposed upon P. acuta through parasite manipulation of the host, following successful parasite establishment in the snail after 2 DPE.
Collapse
Affiliation(s)
- Jonathan H Schultz
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Bishoy Kamel
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
25
|
Zuo S, Jiang K, Li D, Yan X, Nie H. Transcriptomic analysis of Manila clam Ruditapes philippinarum under lipopolysaccharide challenge provides molecular insights into immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 106:110-119. [PMID: 32755682 DOI: 10.1016/j.fsi.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/14/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The Manila clam, Ruditapes philippinarum, is an economically important shellfish in marine aquaculture. A better understanding of the immune system in R. philippinarum will provide the basis for the development of strategies to mitigate the impact of infectious diseases affecting this species but can also be of relevance for other bivalves of commercial interest. In this study, the transcriptional response of the Manila clam under lipopolysaccharide (LPS) challenge was characterized using RNA sequencing. The transcriptomes of LPS challenged group of clams (LH1, LH2 and LH3), and the PBS control group (CH1, CH2 and CH3), were sequenced with the Illumina HiSeq platform. Compared with the unigene expression profile of the control group, 223 unigenes were up-regulated and 389 unigenes were down-regulated in the LPS challenged group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that signal transduction, defense response, and immune-related pathways such as Chemokine signaling pathway, Complement and coagulation cascades, NOD-like receptor signaling pathway, and Inflammatory mediator regulation of TRP channels in sensory system were the most highly enriched pathways among the genes that were differentially expressed under LPS challenge. This study present understanding of the molecular basis underpinning response to LPS challenge and provides useful information for future work on the molecular mechanism of pathogen resistance and immunity in Manila clam.
Collapse
Affiliation(s)
- Shuqi Zuo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Dongdong Li
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
26
|
Gorbushin AM. Toll-like signaling pathway in the transcriptome of Littorina littorea. FISH & SHELLFISH IMMUNOLOGY 2020; 106:640-644. [PMID: 32835850 DOI: 10.1016/j.fsi.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The transcriptome of the caenogastropod mollusk Littorina littorea was scanned for the presence of sequences encoding Toll-like receptors (TLRs) and corresponding proteins involved in downstream TLR signaling pathway. In the transcriptomic snapshots of hemocytes and kidney tissues, 45 complete TLRs encoded by 35 genes were identified. Out of the 59 non-TLR molecules involved in a canonical TLR signaling pathway, 35 genes were classified as homologous and could be placed within the TLR-mediated MyD88-and MAPK-dependent circuitries. No reference vertebrate adapters TIRAP, TRIF and TRAM were identified in the transcriptome. The results of RNA-seq experiments with an immune challenge (rediae of the digenean Himasthla elongata) indicate that four TLRs (LlTLR1, 3, 5 and 8) and a set of upregulated genes involved in signal transduction (LlMyd88, LlTNFα, LlCASP8, LlFADD, LlNFKBIA (IkBα), LlIRAK1, LlSTAT1, LlMAPK14 (P38), LlMAP2K1 (MEK1/2), LlIRF3 and LlIRF5) may participate in the anti-digenean immune response of L. littorea.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| |
Collapse
|
27
|
Hillion S, Arleevskaya MI, Blanco P, Bordron A, Brooks WH, Cesbron JY, Kaveri S, Vivier E, Renaudineau Y. The Innate Part of the Adaptive Immune System. Clin Rev Allergy Immunol 2020; 58:151-154. [PMID: 31154567 DOI: 10.1007/s12016-019-08740-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The innate immune response provides a first line of defense against common microorganisms and, for more complex and/or recurring situations where pathogens must be eliminated, an adaptive immune response has emerged and evolved to provide better protection against subsequent infections. However, such dichotomy has to be reevaluated because innate B cells (e.g., B1 and marginal zone B cells) and the newly described innate lymphoid cells (iLC) have been found to exhibit innate-like properties, such as antigen internalization, regulatory B cell functions, and helper T cell activities. In addition, the production and function of natural antibodies (nAbs) by innate B cells and their capacity to activate the classical complement pathway constitute additional important mechanisms at the junction of innate and adaptive immunity as well as the recent integration of platelets into the innate immune spectrum. There is no doubt that these mechanisms present an advantage in immunity and homeostasis particularly during the first years of life, but arguments are arising to consider that these precursors may have detrimental effects in a variety of autoimmune/inflammatory diseases, allergies and cancers, as well as in response to immunotherapy. Accordingly, and as presented in this special issue of Clinical Reviews in Allergy and Immunology, a better comprehension of the key molecular and cellular actors implicated at the crossroads of the innate and adaptive immune response represents a new challenge in our understanding of the immunological and immunopathological responses.
Collapse
Affiliation(s)
- Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| | | | - Patrick Blanco
- Laboratoire d'Immunologie et Immunogénétique, CHU Bordeaux, Bordeaux, France
| | - Anne Bordron
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Brest, France
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | | | - Srini Kaveri
- INSERM, Université Paris Descartes, Sorbonne, Paris, France
| | - Eric Vivier
- INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Brest, France. .,Central Research Laboratory, Kazan Federal University, Kazan, Russia. .,Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, BP 824, F-29609, Brest, France.
| |
Collapse
|
28
|
Lu L, Loker ES, Adema CM, Zhang SM, Bu L. Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008780. [PMID: 33052953 PMCID: PMC7588048 DOI: 10.1371/journal.pntd.0008780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Achieving a deeper understanding of the factors controlling the defense responses of invertebrate vectors to the human-infecting pathogens they transmit will provide needed new leads to pursue for control. Consequently, we provide new genomic and transcriptomic insights regarding FReDs (containing a fibrinogen domain) and FREPs (fibrinogen domain and one or two IgSF domains) from the planorbid snail Biomphalaria glabrata, a Neotropical vector of Schistosoma mansoni, causative agent of human intestinal schistosomiasis. Using new bioinformatics approaches to improve annotation applied to both genome and RNA-Seq data, we identify 73 FReD genes, 39 of which are FREPs. We provide details of domain structure and consider relationships and homologies of B. glabrata FBG and IgSF domains. We note that schistosome-resistant (BS-90) snails mount complex FREP responses following exposure to S. mansoni infection whereas schistosome-susceptible (M line) snails do not. We also identify several coding differences between BS-90 and M line snails in three FREPs (2, 3.1 and 3.2) repeatedly implicated in other studies of anti-schistosome responses. In combination with other results, our study provides a strong impetus to pursue particular FREPs (2, 3.1, 3.2 and 4) as candidate resistance factors to be considered more broadly with respect to schistosome control efforts, including involving other Biomphalaria species vectoring S. mansoni in endemic areas in Africa.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
29
|
Jiang K, Nie H, Li D, Yan X. New insights into the Manila clam and PAMPs interaction based on RNA-seq analysis of clam through in vitro challenges with LPS, PGN, and poly(I:C). BMC Genomics 2020; 21:531. [PMID: 32738896 PMCID: PMC7430831 DOI: 10.1186/s12864-020-06914-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Background Manila clam (Ruditapes philippinarum) is a worldwide commercially important marine bivalve species. In recent years, however, microbial diseases caused high economic losses and have received increasing attention. To understand the molecular basis of the immune response to pathogen-associated molecular patterns (PAMPs) in R. philippinarum, transcriptome libraries of clam hepatopancreas were constructed at 24 h post-injection with Lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid (poly(I:C)) and phosphate-buffered saline (PBS) control by using RNA sequencing technology (RNA-seq). Results A total of 832, 839, and 188 differentially expressed genes (DEGs) were found in LPS, PGN, and poly(I:C) challenge group compared with PBS control, respectively. Several immune-related genes and pathways were activated in response to the different PAMPs, suggesting these genes and pathways might specifically participate in the immune response to pathogens. Besides, the analyses provided useful complementary data to compare different PAMPs challenges in vivo. Functional enrichment analysis of DEGs demonstrated that PAMPs responsive signal pathways were related to apoptosis, signal transduction, immune system, and signaling molecules and interaction. Several shared or specific DEGs response to different PAMPs were revealed in R. philippinarum, including pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), interferon-induced proteins (IFI), and some other immune-related genes were found in the present work. Conclusions This is the first study employing high throughput transcriptomic sequencing to provide valuable genomic resources and investigate Manila clam response to different PAMPs through in vivo challenges with LPS, PGN, and poly(I:C). The results obtained here provide new insights to understanding the immune characteristics of R. philippinarum response to different PAMPs. This information is critical to elucidate the molecular basis of R. philippinarum response to different pathogens invasion, which potentially can be used to develop effective control strategies for different pathogens.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China. .,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
30
|
Lima MG, Augusto RDC, Pinheiro J, Thiengo SC. Physiology and immunity of the invasive giant African snail, Achatina (Lissachatina) fulica, intermediate host of Angiostrongylus cantonensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103579. [PMID: 31877327 DOI: 10.1016/j.dci.2019.103579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
As one of the most successful invasive land snail species, Achatina (Lissachatina) fulica Bowdich, 1822 has achieved wide global distribution, particularly in (sub)tropical regions, with further dispersal likely due to climate change. This species of giant African snails (up to 17 cm shell length) is a pest that has extensive negative impact on agriculture and can serve as vector for several parasites, including Angiostrongylus cantonensis, a nematode parasite that causes (human) eosinophilic meningitis, an emergent disease. Investigation showed that A. cantonensis infection negatively impacts the metabolism of A. fulica by depleting polysaccharide stores of the intermediate host, compromising the energy balance of the snail. A review of the literature indicates that A. fulica possesses potent innate type immune defenses to counter infection, including phagocytic hemocytes capable of deploying reactive oxygen species and lectins for non-self recognition, a serine protease-dependent coagulation response (not observed in other taxa of gastropods), as well as antimicrobial proteins including achacin, an antimicrobial protein. A recent chromosome level genome assembly will facilitate progressively detailed characterization of these immune features of A. fulica. We strongly encourage further immunological studies of A. fulica, ranging from organismal level to molecular biology to gain better understanding of the A. fulica internal defense response to nematode pathogens like A. cantonensis and the contribution of immune function to the invasiveness of (snail) species. Characterization of immunity of A. fulica, representing the understudied Stylommatophora (panpulmonate landsnails) will also broaden the comparative immunology of Gastropoda.
Collapse
Affiliation(s)
- Mariana G Lima
- Laboratório de Referência Nacional para Esquistossomose - Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil; Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal, Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| | - Ronaldo de C Augusto
- UMR 5244 Univ Perpignan via Domitia-CNRS-IFREMER-Univ Montpellier, Interactions Hôtes-Pathògenes-Environnements (IHPE), Université de Perpignan via Domitia, France.
| | - Jairo Pinheiro
- Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal, Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| | - Silvana C Thiengo
- Laboratório de Referência Nacional para Esquistossomose - Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Lu L, Loker ES, Zhang SM, Buddenborg SK, Bu L. Genome-wide discovery, and computational and transcriptional characterization of an AIG gene family in the freshwater snail Biomphalaria glabrata, a vector for Schistosoma mansoni. BMC Genomics 2020; 21:190. [PMID: 32122294 PMCID: PMC7053062 DOI: 10.1186/s12864-020-6534-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The AIG (avrRpt2-induced gene) family of GTPases, characterized by the presence of a distinctive AIG1 domain, is mysterious in having a peculiar phylogenetic distribution, a predilection for undergoing expansion and loss, and an uncertain functional role, especially in invertebrates. AIGs are frequently represented as GIMAPs (GTPase of the immunity associated protein family), characterized by presence of the AIG1 domain along with coiled-coil domains. Here we provide an overview of the remarkably expanded AIG repertoire of the freshwater gastropod Biomphalaria glabrata, compare it with AIGs in other organisms, and detail patterns of expression in B. glabrata susceptible or resistant to infection with Schistosoma mansoni, responsible for the neglected tropical disease of intestinal schistosomiasis. RESULTS We define the 7 conserved motifs that comprise the AIG1 domain in B. glabrata and detail its association with at least 7 other domains, indicative of functional versatility of B. glabrata AIGs. AIG genes were usually found in tandem arrays in the B. glabrata genome, suggestive of an origin by segmental gene duplication. We found 91 genes with complete AIG1 domains, including 64 GIMAPs and 27 AIG genes without coiled-coils, more than known for any other organism except Danio (with > 100). We defined expression patterns of AIG genes in 12 different B. glabrata organs and characterized whole-body AIG responses to microbial PAMPs, and of schistosome-resistant or -susceptible strains of B. glabrata to S. mansoni exposure. Biomphalaria glabrata AIG genes clustered with expansions of AIG genes from other heterobranch gastropods yet showed unique lineage-specific subclusters. Other gastropods and bivalves had separate but also diverse expansions of AIG genes, whereas cephalopods seem to lack AIG genes. CONCLUSIONS The AIG genes of B. glabrata exhibit expansion in both numbers and potential functions, differ markedly in expression between strains varying in susceptibility to schistosomes, and are responsive to immune challenge. These features provide strong impetus to further explore the functional role of AIG genes in the defense responses of B. glabrata, including to suppress or support the development of medically relevant S. mansoni parasites.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Sarah K. Buddenborg
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA UK
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
32
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
33
|
Li H, Hambrook JR, Pila EA, Gharamah AA, Fang J, Wu X, Hanington P. Coordination of humoral immune factors dictates compatibility between Schistosoma mansoni and Biomphalaria glabrata. eLife 2020; 9:e51708. [PMID: 31916937 PMCID: PMC6970513 DOI: 10.7554/elife.51708] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
Immune factors in snails of the genus Biomphalaria are critical for combating Schistosoma mansoni, the predominant cause of human intestinal schistosomiasis. Independently, many of these factors play an important role in, but do not fully define, the compatibility between the model snail B. glabrata, and S. mansoni. Here, we demonstrate association between four previously characterized humoral immune molecules; BgFREP3, BgTEP1, BgFREP2 and Biomphalysin. We also identify unique immune determinants in the plasma of S. mansoni-resistant B. glabrata that associate with the incompatible phenotype. These factors coordinate to initiate haemocyte-mediated destruction of S. mansoni sporocysts via production of reactive oxygen species. The inclusion of BgFREP2 in a BgFREP3-initiated complex that also includes BgTEP1 almost completely explains resistance to S. mansoni in this model. Our study unifies many independent lines of investigation to provide a more comprehensive understanding of the snail immune system in the context of infection by this important human parasite.
Collapse
Affiliation(s)
- Hongyu Li
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- School of Public HealthUniversity of AlbertaEdmontonCanada
| | | | | | | | - Jing Fang
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- School of Public HealthUniversity of AlbertaEdmontonCanada
| | - Xinzhong Wu
- Ocean CollegeBeibu Gulf UniversityQinzhouChina
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | | |
Collapse
|
34
|
Fujii Y, Gerdol M, Kawsar SMA, Hasan I, Spazzali F, Yoshida T, Ogawa Y, Rajia S, Kamata K, Koide Y, Sugawara S, Hosono M, Tame JRH, Fujita H, Pallavicini A, Ozeki Y. A GM1b/asialo-GM1 oligosaccharide-binding R-type lectin from purplish bifurcate mussels Mytilisepta virgata and its effect on MAP kinases. FEBS J 2019; 287:2612-2630. [PMID: 31769916 PMCID: PMC7317968 DOI: 10.1111/febs.15154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022]
Abstract
A 15‐kDa lectin, termed SeviL, was isolated from Mytilisepta virgata (purplish bifurcate mussel). SeviL forms a noncovalent dimer that binds strongly to ganglio‐series GM1b oligosaccharide (Neu5Acɑ2‐3Galβ1‐3GalNAcβ1‐4Galβ1‐4Glc) and its precursor, asialo‐GM1 (Galβ1‐3GalNAcβ1‐4Galβ1‐4Glc). SeviL also interacts weakly with the glycan moiety of SSEA‐4 hexaose (Neu5Acα2‐3Galβ1‐3GalNAcβ1‐3Galα1‐4Galβ1‐4Glc). A partial protein sequence of the lectin was determined by mass spectrometry, and the complete sequence was identified from transcriptomic analysis. SeviL, consisting of 129 amino acids, was classified as an R(icin B)‐type lectin, based on the presence of the QxW motif characteristic of this fold. SeviL mRNA is highly expressed in gills and, in particular, mantle rim tissues. Orthologue sequences were identified in other species of the family Mytilidae, including Mytilus galloprovincialis, from which lectin MytiLec‐1 was isolated and characterized in our previous studies. Thus, mytilid species contain lectins belonging to at least two distinct families (R‐type lectins and mytilectins) that have a common β‐trefoil fold structure but differing glycan‐binding specificities. SeviL displayed notable cytotoxic (apoptotic) effects against various cultured cell lines (human breast, ovarian, and colonic cancer; dog kidney) that possess asialo‐GM1 oligosaccharide at the cell surface. This cytotoxic effect was inhibited by the presence of anti‐asialo‐GM1 oligosaccharide antibodies. With HeLa ovarian cancer cells, SeviL showed dose‐ and time‐dependent activation of kinase MKK3/6, p38 MAPK, and caspase‐3/9. The transduction pathways activated by SeviL via the glycosphingolipid oligosaccharide were triggered apoptosis. Database Nucleotide sequence data have been deposited in the GenBank database under accession numbers MK434191, MK434192, MK434193, MK434194, MK434195, MK434196, MK434197, MK434198, MK434199, MK434200, and MK434201.
Collapse
Affiliation(s)
- Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Italy
| | - Sarkar M A Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Bangladesh.,School of Sciences, Yokohama City University, Japan
| | - Imtiaj Hasan
- School of Sciences, Yokohama City University, Japan.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Bangladesh
| | | | - Tatsusada Yoshida
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Yukiko Ogawa
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Sultana Rajia
- School of Sciences, Yokohama City University, Japan.,Department of Pharmacy, Varendra University, Rajshahi, Bangladesh
| | - Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | | | - Shigeki Sugawara
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masahiro Hosono
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, Japan
| | - Hideaki Fujita
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Italy
| | | |
Collapse
|
35
|
Gorbushin AM. Immune response of a caenogastropod host: A case study of Littorina littorea and its digenean parasites. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103465. [PMID: 31398373 DOI: 10.1016/j.dci.2019.103465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The caenogastropod mollusk Littorina littorea is a promising experimental model for comparative studies on host/parasite immune conflict. Several different digenean parasites use L. littorea as the first intermediate host, overcoming snail immune reactions by a wide range of tactics that are radically different among different digenean species and at different developmental parasite stages. The immune system of L. littorea is rather effective against digenean Himasthla elongata invasion, and even successfully established parasite induces a chronic host immune reaction, present at a low but stable level, that may be involved in the selection of derived parasitic clones in long lived self-sustaining infrapopulations (SSI) of rediae. An anti-digenean response in L. littorea is not systemic (non-generalized) yet tissue specific, mostly reliant on cellular rather than humoral reactions. The repertoire of immune pattern-recognizing receptors in the common periwinkle comprises diverse secreted and membrane-attached lectin molecules, as the main drivers of snail immune discrimination of digenean parasites. Comparative studies suggest that the characteristic vulnerability to digenean parasitism of L. littorea, and gastropods in general, is in part due the overall organization of immunity relative to other classes of molluscs, e.g. the immune strategy of bivalves seems to rely on less specific cellular reactions and a more generalized systemic humoral immunity. This difference may arise from the molecular features of the selective retention of their taxon-specific complement-like molecular complexes, which diverged in common ancestors of Bivalvia and Gastropoda.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), Saint-Petersburg, Russia.
| |
Collapse
|
36
|
Gerdol M, Greco S, Pallavicini A. Extensive Tandem Duplication Events Drive the Expansion of the C1q-Domain-Containing Gene Family in Bivalves. Mar Drugs 2019; 17:md17100583. [PMID: 31615007 PMCID: PMC6835236 DOI: 10.3390/md17100583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/04/2023] Open
Abstract
C1q-domain-containing (C1qDC) proteins are rapidly emerging as key players in the innate immune response of bivalve mollusks. Growing experimental evidence suggests that these highly abundant secretory proteins are involved in the recognition of microbe-associated molecular patterns, serving as lectin-like molecules in the bivalve proto-complement system. While a large amount of functional data concerning the binding specificity of the globular head C1q domain and on the regulation of these molecules in response to infection are quickly accumulating, the genetic mechanisms that have led to the extraordinary lineage-specific expansion of the C1qDC gene family in bivalves are still largely unknown. The analysis of the chromosome-scale genome assembly of the Eastern oyster Crassostrea virginica revealed that the 476 oyster C1qDC genes, far from being uniformly distributed along the genome, are located in large clusters of tandemly duplicated paralogs, mostly found on chromosomes 7 and 8. Our observations point out that the evolutionary process behind the development of a large arsenal of C1qDC lectin-like molecules in marine bivalves is still ongoing and likely based on an unequal crossing over.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
- National Institute of Oceanography and Applied Geophysics, 34151 Trieste, Italy.
| |
Collapse
|