1
|
Jia P, Peng S, Zhang Y, Zhao J, Zhao Q, Wu X, Shen F, Sun K, Yu L, Cen S. Identification of immune-associated genes involved in latent Mycobacterium marinum infection. Microbes Infect 2024:105407. [PMID: 39178982 DOI: 10.1016/j.micinf.2024.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Tuberculosis (TB) is a high mortality infectious disease caused by Mycobacterium tuberculosis (Mtb), and often develops into latent infection. About 5~10% of latent infections turn into active tuberculosis when the host immune system becomes deficient. Therefore, exploring the latent infection mechanism of Mtb is pivotal for the prevention and treatment of tuberculosis. We first established the zebrafish latent infection model and the chronic infection model utilizing Mycobacterium marinum, which has the highly similar gene background to Mtb. Using the latent infection model, we characterized the gene expression profiles and found 462 genes expressed differentially in the latent period and chronic tuberculosis infection. These differentially expressed genes are involved in various biological processes including transcription, transcriptional regulation, organism development, and immune responses. Among them, nineteen immune-related genes were found to express differentially in the latent period. By analyzing immune related protein network, the genes in the center of the network, including Nos2b, TNFα, IL1, TNFβ, TLR1, TLR2, and TLR4b, displayed significant deferential expression in latent infection and chronic infection period of zebrafish, suggesting that these genes might play an important role in controlling latent infection of Mtb. Identifying immune biomarker related to the status of tuberculosis latent infection might lead to novel strategy for diagnosis and treatment.
Collapse
Affiliation(s)
- Pingping Jia
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
| | - Shize Peng
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Zhao
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xiaoxiao Wu
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Fangqi Shen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Kai Sun
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Ulloa PE, Jilberto F, Lam N, Rincón G, Valenzuela L, Cordova-Alarcón V, Hernández AJ, Dantagnan P, Ravanal MC, Elgueta S, Araneda C. Identification of Single-Nucleotide Polymorphisms in Differentially Expressed Genes Favoring Soybean Meal Tolerance in Higher-Growth Zebrafish (Danio rerio). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:754-765. [PMID: 38958822 DOI: 10.1007/s10126-024-10343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Genetic variability within the same fish species could confer soybean meal (SBM) tolerance in some individuals, thus favoring growth. This study investigates the single-nucleotide polymorphisms (SNPs) in differentially expressed genes (DEGs) favoring SBM tolerance in higher-growth zebrafish (Danio rerio). In a previous work, nineteen families of zebrafish were fed a fish meal diet (100FM control diet) or SBM-based diets supplemented with saponin (50SBM + 2SPN-experimental diet), from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (170 ± 18 mg) or lower (76 ± 10 mg) weight gain on 50SBM + 2SPN in relation to 100FM. Intestinal transcriptomic analysis using RNA-seq revealed six hundred and sixty-five differentially expressed genes in higher-growth fish fed 50SBM + 2SPN diet. In this work, using these results, 47 SNPs in DEGs were selected. These SNPs were genotyped by Sequenom in 340 zebrafish that were fed with a 50SBM + 2SPN diet or with 100FM diet. Marker-trait analysis revealed 4 SNPs associated with growth in 3 immunity-related genes (aif1l, arid3c, and cst14b.2) in response to the 50SBM + 2SPN diet (p-value < 0.05). Two SNPs belonging to aif1l y arid3c produce a positive (+19 mg) and negative (-26 mg) effect on fish growth, respectively. These SNPs can be used as markers to improve the early selection of tolerant fish to SBM diet or other plant-based diets. These genes can be used as biomarkers to identify SNPs in commercial fish, thus contributing to the aquaculture sustainability.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago, 7500975, Chile.
| | - Felipe Jilberto
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Natalia Lam
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | | | - Luis Valenzuela
- INRIA Chile, Avenida Apoquindo 2827, piso 12, Santiago, 7550312, Chile
| | - Valentina Cordova-Alarcón
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Adrián J Hernández
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Maria Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Isla Teja, Avda. Julio Sarrazín s/n, Valdivia, 5090000, Chile
| | - Sebastian Elgueta
- Facultad de Ciencias Para El Cuidado de La Salud, Universidad San Sebastian, Sede Los Leones, Santiago, Chile
| | - Cristian Araneda
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| |
Collapse
|
3
|
Irshath AA, Rajan AP, Vimal S, Prabhakaran VS, Ganesan R. Bacterial Pathogenesis in Various Fish Diseases: Recent Advances and Specific Challenges in Vaccine Development. Vaccines (Basel) 2023; 11:vaccines11020470. [PMID: 36851346 PMCID: PMC9968037 DOI: 10.3390/vaccines11020470] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aquaculture is a fast-growing food sector but is plagued by a plethora of bacterial pathogens that infect fish. The rearing of fish at high population densities in aquaculture facilities makes them highly susceptible to disease outbreaks, which can cause significant economic loss. Thus, immunity development in fish through vaccination against various pathogens of economically important aquaculture species has been extensively studied and has been largely accepted as a reliable method for preventing infections. Vaccination studies in aquaculture systems are strategically associated with the economically and environmentally sustainable management of aquaculture production worldwide. Historically, most licensed fish vaccines have been developed as inactivated pathogens combined with adjuvants and provided via immersion or injection. In comparison, live vaccines can simulate a whole pathogenic illness and elicit a strong immune response, making them better suited for oral or immersion-based therapy methods to control diseases. Advanced approaches in vaccine development involve targeting specific pathogenic components, including the use of recombinant genes and proteins. Vaccines produced using these techniques, some of which are currently commercially available, appear to elicit and promote higher levels of immunity than conventional fish vaccines. These technological advancements are promising for developing sustainable production processes for commercially important aquatic species. In this review, we explore the multitude of studies on fish bacterial pathogens undertaken in the last decade as well as the recent advances in vaccine development for aquaculture.
Collapse
Affiliation(s)
- Aadil Ahmed Irshath
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Anand Prem Rajan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
- Correspondence: (A.P.R.); (R.G.)
| | - Sugumar Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 600 077, Tamilnadu, India
| | - Vasantha-Srinivasan Prabhakaran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamilnadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
- Correspondence: (A.P.R.); (R.G.)
| |
Collapse
|
4
|
Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet 2023; 19:e1010586. [PMID: 36622851 PMCID: PMC9858863 DOI: 10.1371/journal.pgen.1010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/20/2023] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (Danio rerio) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human C-reactive protein (CRP). Furthermore, knockout of one of the six zebrafish crp genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Collapse
|
5
|
WhiB4 Is Required for the Reactivation of Persistent Infection of Mycobacterium marinum in Zebrafish. Microbiol Spectr 2022; 10:e0044321. [PMID: 35266819 PMCID: PMC9045381 DOI: 10.1128/spectrum.00443-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Granulomas are the pathological hallmark of tuberculosis (TB). In individuals with latent TB infection, Mycobacterium tuberculosis cells reside within granulomas in a nonreplicating dormant state, and a portion of them will develop active TB. Little is known on the bacterial mechanisms/factors involved in this process. In this study, we found that WhiB4, an oxygen sensor and a transcription factor, plays a critical role in disease progression and reactivation of Mycobacterium marinum (M. marinum) infection in zebrafish. We show that the whiB4::Tn mutant of M. marinum caused persistent infection in adult zebrafish, which is characterized by the lower but stable bacterial loads, constant number of nonnecrotized granulomas in fewer organs, and reduced inflammation compared to those of zebrafish infected with the wild-type bacteria or the complemented strain. The mutant bacteria in zebrafish were also less responsive to antibiotic treatments. Moreover, the whiB4::Tn mutant was defective in resuscitation from hypoxia-induced dormancy and the DosR regulon was dysregulated in the mutant. Taken together, our results suggest that WhiB4 is a major driver of reactivation from persistent infection. IMPORTANCE About one-quarter of the world’s population has latent TB infection, and 5 to 10% of those individuals will fall ill with TB. Our finding suggests that WhiB4 is an attractive target for the development of novel therapeutics, which may help to prevent the reactivation of latent infection, thereby reducing the incidences of active TB.
Collapse
|
6
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Jacome Sanz D, Saralahti AK, Pekkarinen M, Kesseli J, Nykter M, Rämet M, Ojanen MJT, Pesu M. Proprotein convertase subtilisin/kexin type 9 regulates the production of acute-phase reactants from the liver. Liver Int 2021; 41:2511-2522. [PMID: 34174143 DOI: 10.1111/liv.14993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) controls blood cholesterol levels by fostering the LDL receptor (LDLR) degradation in hepatocytes. Additionally, PCSK9 has been suggested to participate in immunoregulation by modulating cytokine production. We studied the immunological role of PCSK9 in Streptococcus pneumoniae bacteraemia in vivo and in a human hepatocyte cell line. METHODS CRISPR/Cas9 mutagenesis was utilized to create pcsk9 knock-out (KO) zebrafish, which were infected with S pneumoniae to assess the role of PCSK9 for the survival of the fish and in the transcriptomic response of the liver. The direct effects of PCSK9 on the expression of acute-phase reaction (APR) genes were studied in HepG2 cells. RESULTS The pcsk9 KO zebrafish lines (pcsk9tpu-13 and pcsk9tpu-2,+15 ) did not show developmental defects or gross phenotypical differences. In the S pneumoniae infected zebrafish, the mortality of pcsk9 KOs was similar to the controls. A liver-specific gene expression analysis revealed that a pneumococcal challenge upregulated pcsk9, and that the pcsk9 deletion reduced the expression of APR genes, including hepcidin antimicrobial peptide (hamp) and complement component 7b (c7b). Accordingly, silencing PCSK9 in vitro in HepG2 cells using small interfering RNAs (siRNAs) decreased HAMP expression. CONCLUSIONS We demonstrate that PCSK9 is not critical for zebrafish survival in a systemic pneumococcal infection. However, PCSK9 deficiency was associated with the lower expression of APR genes in zebrafish and altered the expression of innate immunity genes in a human hepatocyte cell line. Overall, our data suggest an evolutionarily conserved function for PCSK9 in APR in the liver.
Collapse
Affiliation(s)
- Dafne Jacome Sanz
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meeri Pekkarinen
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Kesseli
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Markus J T Ojanen
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marko Pesu
- Laboratory of Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab laboratories Ltd, Tampere, Finland
| |
Collapse
|
8
|
Foulon M, Robbe-Saule M, Esnault L, Malloci M, Mery A, Saint-André JP, Kempf M, Homedan C, Marion E, Marsollier L. Ketogenic diet impairs Mycobacterium ulcerans growth and toxin production, enhancing hosts' response to the infection in an experimental mouse model. J Infect Dis 2021; 224:1973-1983. [PMID: 33944942 DOI: 10.1093/infdis/jiab236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ketogenic diets have been used to treat diverse conditions, and there is growing evidence of their benefits for tissue repair and in inflammatory disease treatment. However, their role in infectious diseases has been little studied. Buruli ulcer (Mycobacterium ulcerans infection) is a chronic infectious disease characterized by large skin ulcerations caused by mycolactone, the major virulence factor of the bacillus. Here, we investigated the impact of ketogenic diet on this cutaneous disease in an experimental mouse model. This diet prevented ulceration, by modulating bacterial growth and host inflammatory response. β-hydroxybutyrate, the major ketone body produced during ketogenic diet and diffusing in tissues, impeded M. ulcerans growth and mycolactone production in vitro underlying its potential key role in infection. These results pave the way for the development of new patient management strategies involving shorter courses of treatment and improving wound healing, in line with the major objectives of the World Health Organization.
Collapse
Affiliation(s)
- Mélanie Foulon
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Marie Robbe-Saule
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Lucille Esnault
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Marine Malloci
- MicroPICell Imaging Core Facility, SFR Santé F. Bonamy UMS016, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Anthony Mery
- Département de biochimie et génétique, CHU Angers, France
| | | | - Marie Kempf
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France.,Laboratoire de bactériologie, CHU, Angers, France
| | - Chadi Homedan
- Département de biochimie et génétique, CHU Angers, France
| | - Estelle Marion
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| | - Laurent Marsollier
- Equipe ATOMycA, U1232 CRCINA, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
9
|
Sunita, Singhvi N, Singh Y, Shukla P. Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 83:104357. [PMID: 32438080 DOI: 10.1016/j.meegid.2020.104357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a successful pathogen in the history of mankind. A high rate of mortality and morbidity raises the need for vaccine development. Mechanism of pathogenesis, survival strategy and virulence determinant are needed to be explored well for this pathogen. The involvement of DNA binding proteins in the regulation of virulence genes, transcription, DNA replication, repair make them more significant. In present work, we have identified 1453 DNA binding proteins (DBPs) in the 4173 genes of Mtb through the DNABIND tool and they were subjected for further screening by incorporating different bioinformatics tools. The eighteen DBPs were selected for the B-cell epitope prediction by using ABCpred server. Moreover, the B-cell epitope bearing the antigenic and non- allergenic property were selected for T-cell epitope prediction using ProPredI, and ProPred server. Finally, DGIGSAVSV (Rv1088), IRALPSSRH (Rv3923c), LTISPIANS (Rv3235), VQPSGKGGL (Rv2871) VPRPGPRPG (Rv2731) and VGQKINPHG (Rv0707) were identified as T-cell epitopes. The structural modelling of these epitopes and DBPs was performed to ensure the localization of these epitopes on the respective proteins. The interaction studies of these epitopes with human HLA confirmed their validation to be used as potential vaccine candidates. Collectively, these results revealed that the DBPs- Rv2731, Rv3235, Rv1088, Rv0707, Rv3923c and Rv2871 are the most appropriate vaccine candidates. In our knowledge, it is the first report of using the DBPs of Mtb for epitope prediction. Significantly, this study also provides evidence to be useful for designing a peptide-based vaccine against tuberculosis.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Nirjara Singhvi
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
10
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
11
|
Niskanen M, Myllymäki H, Rämet M. DNA vaccination with the Mycobacterium marinum MMAR_4110 antigen inhibits reactivation of a latent mycobacterial infection in the adult Zebrafish. Vaccine 2020; 38:5685-5694. [PMID: 32624250 DOI: 10.1016/j.vaccine.2020.06.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tuberculosis is a major challenge for health care, as options for its treatment and prevention are limited. Therefore, novel approaches, such as DNA vaccination, to both prevent primary infections and the reactivation of latent infections need to be developed. A Mycobacterium marinum infection in adult zebrafish (Danio rerio) recapitulates features of the human Mycobacterium tuberculosis infection, providing a convenient preclinical animal model for studying tuberculosis. METHODS Hypoxic M. marinum cultures were produced with the Wayne model, and further reaerated to replicate the in vivo reactivation in vitro. Expression levels of M. marinum genes were studied with mRNA sequencing from exponentially growing bacteria, anaerobic cultures and at 2 and 12 h after reaeration. Seven reactivation-associated genes were selected for further studies, where their antigen potentiality as DNA-vaccines to prevent reactivation of a latent mycobacterial infection was investigated in the adult zebrafish model. The Mann-Whitney test was used to evaluate differences in bacterial counts between the groups. RESULTS The mRNA sequencing data showed that, seven M. marinum genes, MMAR_0444, MMAR_0514, MMAR_0552, MMAR_0641, MMAR_1093, MMAR_4110 and MMAR_4524, were upregulated during reactivation when compared to both dormant and logarithmic growing bacteria. Four different MMAR_4110 antigens prevented the reactivation of a latent mycobacterial infection in the adult zebrafish. CONCLUSION This study provides novel information about reactivation-related M. marinum genes. One of the antigens, MMAR_4110, inhibited the reactivation of a latent M. marinum infection in zebrafish, implicating that the characterized genes could be potential targets for further vaccine and drug development against mycobacterial diseases.
Collapse
Affiliation(s)
- Mirja Niskanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henna Myllymäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit and Medical Research Centre, University of Oulu, Finland.
| |
Collapse
|
12
|
Bailone RL, Fukushima HCS, Ventura Fernandes BH, De Aguiar LK, Corrêa T, Janke H, Grejo Setti P, Roça RDO, Borra RC. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 2020; 36:13. [PMID: 32382525 PMCID: PMC7203993 DOI: 10.1186/s42826-020-00042-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Much of medical research relies on animal models to deepen knowledge of the causes of animal and human diseases, as well as to enable the development of innovative therapies. Despite rodents being the most widely used research model worldwide, in recent decades, the use of the zebrafish (Danio rerio) model has exponentially been adopted among the scientific community. This is because such a small tropical freshwater teleost fish has crucial genetic, anatomical and physiological homology with mammals. Therefore, zebrafish constitutes an excellent experimental model for behavioral, genetic and toxicological studies which unravels the mechanism of various human diseases. Furthermore, it serves well to test new therapeutic agents, such as the safety of new vaccines. The aim of this review was to provide a systematic literature review on the most recent studies carried out on the topic. It presents numerous advantages of this type of animal model in tests of efficacy and safety of both animal and human vaccines, thus highlighting gains in time and cost reduction of research and analyzes.
Collapse
Affiliation(s)
- Ricardo Lacava Bailone
- Ministry of Agriculture, Livestock and Supply, Federal Inspection Service, São Carlos, SP Brazil
- São Paulo State University, Botucatu, SP Brazil
| | - Hirla Costa Silva Fukushima
- Health and Biological Sciences Center, Federal University, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Luís Kluwe De Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Newport, UK
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | - Princia Grejo Setti
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, SP Brazil
| |
Collapse
|