1
|
Polenogova OV, Kryukova NA, Klementeva T, Artemchenko AS, Lukin AD, Khodyrev VP, Slepneva I, Vorontsova Y, Glupov VV. The influence of inactivated entomopathogenic bacterium Bacillus thuringiensis on the immune responses of the Colorado potato beetle. PeerJ 2024; 12:e18259. [PMID: 39494291 PMCID: PMC11531747 DOI: 10.7717/peerj.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Invasion of microorganisms into the gut of insects triggers a cascade of immune reactions accompanied by increased synthesis of effectors (such as antimicrobial peptides, cytokines, and amino acids), leading to changes in the physiological state of the host. We hypothesized that even an inactivated bacterium can induce an immune response in an insect. The aim of this study was to compare the roles of reactive oxygen species (ROS) formation and of the response of detoxification and antioxidant systems in a Colorado potato beetle (CPB) larval model in the first hours after invasion by either an inactivated or live bacterium. Methods The influence of per os inoculation with inactivated entomopathogenic bacterium Bacillus thuringiensis var. tenebrionis (Bt) on the survival and physiological and biochemical parameters of CPB larvae was assessed as changes in the total hemocyte count (THC), activity of phenoloxidases (POs), glutathione-S-transferases (GSTs), nonspecific esterases (ESTs), catalase, peroxidases, superoxide dismutases (SODs) and formation of reactive oxygen species (ROS). Results A series of changes occurred within the hemolymph and the midgut of CPBs inoculated with inactivated Bt at 12 h after inoculation. These physiological and biochemical alterations serve to mediate generalized resistance to pathogens. The changes were associated with an increase in the THC and a 1.4-2.2-fold enhancement of detoxification enzymatic activities (such as GST and EST) as well as increased levels of antioxidants (especially peroxidases) in hemolymph in comparison to the control group. Suppressed EST activity and reduced ROS formation were simultaneously detectable in the larval midgut. Inoculation of beetle larvae with active Bt cells yielded similar results (elevated THC and suppressed PO activity). A fundamental difference in the immune activation processes between larvae that ingested the inactivated bacterium and larvae that had consumed the active bacterium was that the inactivated bacterium did not influence ROS formation in the hemolymph but did reduce their formation in the midgut. At 24 h postinfection with active Bt, ROS levels went up in both the hemolymph and the midgut. This was accompanied by a significant 5.7-fold enhancement of SOD activity and a 5.3-fold suppression of peroxidase activity. The observed alterations may be due to within-gut toxicity caused by early-stage bacteriosis. The imbalance in the antioxidant system and the accumulation of products toxic to the "putative" pathogen can activate detoxification mechanisms, including those of an enzymatic nature (EST and GST). The activation of detoxification processes and of innate immune responses is probably due to the recognition of the "putative" pathogen by gut epithelial cells and is similar in many respects to the immune response at early stages of bacteriosis.
Collapse
Affiliation(s)
- Olga V. Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A. Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna S. Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Viktor P. Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yana Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Wu Y, Weng Z, Yan H, Yao Z, Li Z, Sun Y, Ma K, Hull JJ, Zhang D, Ma W, Hua H, Lin Y. The microRNA-7322-5p/p38/Hsp19 axis modulates Chilo suppressalis cell-defences against Cry1Ca: an effective target for a stacked transgenic rice approach. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1827-1838. [PMID: 37353991 PMCID: PMC10440986 DOI: 10.1111/pbi.14095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/25/2023]
Abstract
Bacillus thuringiensis (Bt)-secreted crystal (Cry) toxins form oligomeric pores in host cell membranes and are a common element in generating insect-resistant transgenic crops. Although Cry toxin function has been well documented, cellular defences against pore-formation have not been as well developed. Elucidation of the processes underlying this defence, however, could contribute to the development of enhanced Bt crops. Here, we demonstrate that Cry1Ca-mediated downregulation of microRNA-7322-5p (miR-7322-5p), which binds to the 3' untranslated region of p38, negatively regulates the susceptibility of Chilo suppressalis to Cry1Ca. Moreover, Cry1Ca exposure enhanced phosphorylation of Hsp19, and hsp19 downregulation increased susceptibility to Cry1Ca. Further, Hsp19 phosphorylation occurs downstream of p38, and pull-down assays confirmed the interactions between Hsp19 and Cry1Ca, suggesting that activation of Hsp19 by the miR-7322-5p/p38/Hsp19 pathway promotes Cry1Ca sequestration. To assess the efficacy of targeting this pathway in planta, double-stranded RNA (dsRNA) targeting C. suppressalis p38 (dsp38) was introduced into a previously generated cry1Ca-expressing rice line (1CH1-2) to yield a single-copy cry1Ca/dsp38 rice line (p38-rice). Feeding on this rice line triggered a significant reduction in C. suppressalis p38 expression and the line was more resistant to C. suppressalis than 1CH1-2 in both short term (7-day) and continuous feeding bioassays as well as field trials. These findings provide new insights into invertebrate epithelium cellular defences and demonstrate a potential new pyramiding strategy for Bt crops.
Collapse
Affiliation(s)
- Yan Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zijin Weng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Haixia Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhuotian Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Zhenzhen Li
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yajie Sun
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Kangsheng Ma
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - J. Joe Hull
- U.S. Arid Land Agricultural Research Center, Department of AgricultureU.S. Agricultural Research ServiceMaricopaArizonaUSA
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Hongxia Hua
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
3
|
Tang YL, Kong YH, Qin S, Merchant A, Shi JZ, Zhou XG, Li MW, Wang Q. Transcriptomic dissection of termite gut microbiota following entomopathogenic fungal infection. Front Physiol 2023; 14:1194370. [PMID: 37153226 PMCID: PMC10161392 DOI: 10.3389/fphys.2023.1194370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Termites are social insects that live in the soil or in decaying wood, where exposure to pathogens should be common. However, these pathogens rarely cause mortality in established colonies. In addition to social immunity, the gut symbionts of termites are expected to assist in protecting their hosts, though the specific contributions are unclear. In this study, we examined this hypothesis in Odontotermes formosanus, a fungus-growing termite in the family Termitidae, by 1) disrupting its gut microbiota with the antibiotic kanamycin, 2) challenging O. formosanus with the entomopathogenic fungus Metarhizium robertsii, and finally 3) sequencing the resultant gut transcriptomes. As a result, 142531 transcripts and 73608 unigenes were obtained, and unigenes were annotated following NR, NT, KO, Swiss-Prot, PFAM, GO, and KOG databases. Among them, a total of 3,814 differentially expressed genes (DEGs) were identified between M. robertsii infected termites with or without antibiotics treatment. Given the lack of annotated genes in O. formosanus transcriptomes, we examined the expression profiles of the top 20 most significantly differentially expressed genes using qRT-PCR. Several of these genes, including APOA2, Calpain-5, and Hsp70, were downregulated in termites exposed to both antibiotics and pathogen but upregulated in those exposed only to the pathogen, suggesting that gut microbiota might buffer/facilitate their hosts against infection by finetuning physiological and biochemical processes, including innate immunity, protein folding, and ATP synthesis. Overall, our combined results imply that stabilization of gut microbiota can assist termites in maintaining physiological and biochemical homeostasis when foreign pathogenic fungi invade.
Collapse
Affiliation(s)
- Ya-ling Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun-hui Kong
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Ji-zhe Shi
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xu-guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Mu-wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu Province, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xu-guo Zhou, ; Mu-wang Li, ; Qian Wang,
| |
Collapse
|
4
|
Robles-Fort A, Pescador-Dionisio S, García-Robles I, Sentandreu V, Martínez-Ramírez AC, Real MD, Rausell C. Unveiling gene expression regulation of the Bacillus thuringiensis Cry3Aa toxin receptor ADAM10 by the potato dietary miR171c in Colorado potato beetle. PEST MANAGEMENT SCIENCE 2022; 78:3760-3768. [PMID: 34846789 DOI: 10.1002/ps.6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Colorado potato beetle (CPB) is a worldwide devastating pest of potato plants and other Solanaceae characterized by its remarkable ability to evolve resistance to insecticides. Bacillus thuringiensis (Bt) Cry3Aa toxin represents an environmentally safe alternative for CPB control but larvae susceptibility to this toxin has been reported to vary depending on the host plant on which larvae feed. To gain more insight into how nutrition mediates Bt tolerance through effects on gene expression, here we explored the post-transcriptional regulation by microRNAs (miRNAs) of the CPB-ADAM10 gene encoding the Cry3Aa toxin functional receptor ADAM10. RESULTS The lower CPB-ADAM10 gene expression in CPB larvae fed on potato plants cv. Vivaldi than those fed on potato cv. Monalisa or tomato plants was inversely related to Cry3Aa toxicity. By high-throughput sequencing we identified seven CPB miRNAs and one potato miRNA predicted to base pair with the CPB-ADAM10 messenger RNA. No differential expression of the endogenous lde-miR1175-5p was found in larvae feeding on any of the two potato plant varieties. However, statistically significant increased amounts of potato stu-miR171c-5p were detected in CPB larvae fed on potato cv. Vivaldi compared to larvae fed on potato cv. Monalisa. CONCLUSION Our results support a role for dietary miRNAs in Bt toxicity by regulating the CPB-ADAM10 gene encoding the Cry3Aa toxin receptor ADAM10 in CPB larvae and opening up the possibility of exploiting plant natural variation in miRNAs to provide more sustainable potato crop protection against CPB. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Aida Robles-Fort
- Department of Genetics, University of Valencia, Burjassot, Spain
| | | | | | - Vicente Sentandreu
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, Burjassot, Spain
| | - Amparo C Martínez-Ramírez
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, Burjassot, Spain
| | - M Dolores Real
- Department of Genetics, University of Valencia, Burjassot, Spain
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Burjassot, Spain
| |
Collapse
|
5
|
Ramos LFC, Martins M, Murillo JR, Domont GB, de Oliveira DMP, Nogueira FCS, Maciel-de-Freitas R, Junqueira M. Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Front Cell Infect Microbiol 2022; 12:900608. [PMID: 35873163 PMCID: PMC9302590 DOI: 10.3389/fcimb.2022.900608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly microcephaly in newborns, and other clinical aspects such as acute febrile illness and neurologic complications, for example, Guillain-Barré syndrome. One of the most promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis. The presence of Wolbachia is associated with a reduced susceptibility to arboviruses and a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the mechanisms by which Wolbachia influences metabolic pathways leading to differences in egg production remains poorly known. To investigate the impact of coinfections on the reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary. Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss proteins and pathways altered in Ae. aegypti during ZIKV infections, Wolbachia infections, coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the immune priming enhancement by Wolbachia presence and the modulation of the Juvenile Hormone pathway caused by both microorganism’s infection.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| | - Magno Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| |
Collapse
|
6
|
Bacillus thuringiensis Spores and Cry3A Toxins Act Synergistically to Expedite Colorado Potato Beetle Mortality. Toxins (Basel) 2021; 13:toxins13110746. [PMID: 34822531 PMCID: PMC8624055 DOI: 10.3390/toxins13110746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
The insect integument (exoskeleton) is an effective physiochemical barrier that limits disease-causing agents to a few portals of entry, including the gastrointestinal and reproductive tracts. The bacterial biopesticide Bacillus thuringiensis (Bt) enters the insect host via the mouth and must thwart gut-based defences to make its way into the body cavity (haemocoel) and establish infection. We sought to uncover the main antibacterial defences of the midgut and the pathophysiological features of Bt in a notable insect pest, the Colorado potato beetle Leptinotarsa decemlineata (CPB). Exposing the beetles to both Bt spores and their Cry3A toxins (crystalline δ-endotoxins) via oral inoculation led to higher mortality levels when compared to either spores or Cry3A toxins alone. Within 12 h post-exposure, Cry3A toxins caused a 1.5-fold increase in the levels of reactive oxygen species (ROS) and malondialdehyde (lipid peroxidation) within the midgut - key indicators of tissue damage. When Cry3A toxins are combined with spores, gross redox imbalance and 'oxidation stress' is apparent in beetle larvae. The insect detoxification system is activated when Bt spores and Cry3A toxins are administered alone or in combination to mitigate toxicosis, in addition to elevated mRNA levels of candidate defence genes (pattern-recognition receptor, stress-regulation, serine proteases, and prosaposin-like protein). The presence of bacterial spores and/or Cry3A toxins coincides with subtle changes in microbial community composition of the midgut, such as decreased Pseudomonas abundance at 48 h post inoculation. Both Bt spores and Cry3A toxins have negative impacts on larval health, and when combined, likely cause metabolic derangement, due to multiple tissue targets being compromised.
Collapse
|
7
|
Pu YC, Wang R, Liu HH, Lu SP, Tang FX, Hou YM. Immunosenescence along with direct physiological allocation trade-offs between life history and immunity in the red palm weevil Rhynchophorus ferrugineus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104143. [PMID: 34051204 DOI: 10.1016/j.dci.2021.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Recent works have generally indicated that insects exhibit two immune response strategies: external and internal immune defense. However, the immune-related trade-offs and physiological regulatory mechanisms in red palm weevil, a major invasive pest, remain unclear. Based on postinfection survivorship experiments, we initially measured baseline constitutive external immunity (antibacterial activity of external secretions) and internal immunity (phenoloxidase and antibacterial activity of hemolymph) in uninfected individuals. Then, we challenged the individual immune system and examined subsequent investment in immune function. Our data showed that multiple factors (instar, age, sex, mating status, immune treatment) interacted to affect immune components and infection outcomes, but the magnitude and nature of the impact varied in each case. Although immune senescence is a common phenomenon in which immune function decreases with age, different components of the immune system changed differentially. Notably, mating activity may impose an immunity-related cost, with some evidence of sexual dimorphism and age-associated differences. Finally, parameters related to life-history traits usually decreased temporarily because of increased immunity, suggesting that the ultimate consequences of immune function fitness may be physiologically traded off with other fitness aspects, including growth, development, mating, reproduction, and longevity. These results reveal the complex factors that impact immunity as well as the physiological regulation of individual immunity, which may determine the evolution and outcome of immune senescence and trade-offs.
Collapse
Affiliation(s)
- Yu-Chen Pu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, Fujian, 363000, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Rui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hui-Hui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Sheng-Ping Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fan-Xi Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
8
|
Martins M, Ramos LFC, Murillo JR, Torres A, de Carvalho SS, Domont GB, de Oliveira DMP, Mesquita RD, Nogueira FCS, Maciel-de-Freitas R, Junqueira M. Comprehensive Quantitative Proteome Analysis of Aedes aegypti Identifies Proteins and Pathways Involved in Wolbachia pipientis and Zika Virus Interference Phenomenon. Front Physiol 2021; 12:642237. [PMID: 33716790 PMCID: PMC7947915 DOI: 10.3389/fphys.2021.642237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) is a global public health emergency due to its association with microcephaly, Guillain-Barré syndrome, neuropathy, and myelitis in children and adults. A total of 87 countries have had evidence of autochthonous mosquito-borne transmission of ZIKV, distributed across four continents, and no antivirus therapy or vaccines are available. Therefore, several strategies have been developed to target the main mosquito vector, Aedes aegypti, to reduce the burden of different arboviruses. Among such strategies, the use of the maternally-inherited endosymbiont Wolbachia pipientis has been applied successfully to reduce virus susceptibility and decrease transmission. However, the mechanisms by which Wolbachia orchestrate resistance to ZIKV infection remain to be elucidated. In this study, we apply isobaric labeling quantitative mass spectrometry (MS)-based proteomics to quantify proteins and identify pathways altered during ZIKV infection; Wolbachia infection; co-infection with Wolbachia/ZIKV in the A. aegypti heads and salivary glands. We show that Wolbachia regulates proteins involved in reactive oxygen species production, regulates humoral immune response, and antioxidant production. The reduction of ZIKV polyprotein in the presence of Wolbachia in mosquitoes was determined by MS and corroborates the idea that Wolbachia helps to block ZIKV infections in A. aegypti. The present study offers a rich resource of data that may help to elucidate mechanisms by which Wolbachia orchestrate resistance to ZIKV infection in A. aegypti, and represents a step further on the development of new targeted methods to detect and quantify ZIKV and Wolbachia directly in complex tissues.
Collapse
Affiliation(s)
- Michele Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - André Torres
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Scott IM, Hatten G, Tuncer Y, Clarke VC, Jurcic K, Yeung KKC. Proteomic Analyses Detect Higher Expression of C-Type Lectins in Imidacloprid-Resistant Colorado Potato Beetle Leptinotarsa decemlineata Say. INSECTS 2020; 12:insects12010003. [PMID: 33374543 PMCID: PMC7822175 DOI: 10.3390/insects12010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Surveillance and determining the mechanisms of pesticide resistance are key components of resistance management. Mechanisms can be investigated using biochemical, genomic, proteomic and other modern analytical techniques. In the present study, proteomic analyses of Colorado potato beetle (CPB), one of the most adaptable insect pests to both plant toxins and synthetic insecticides, were applied to identify protein differences in insecticide-susceptible and resistant strains. Proteins identified in abdominal and midgut tissues based on separating by 2-dimensional (2-D) gels and mass spectrometry were associated with insect innate immunity. A database search found that the highest match was a C-type lectin (CTL), which is a component in the insect’s innate immune system. The 2-D gel spot identified as a CTL was greater in the insecticide-resistant CPB strain, but the CTL spot size was increased by exposure to imidacloprid in the susceptible strain. This is a novel finding, which suggests that CTLs and insect immunity may respond to certain toxins as well as to pathogens. There may also be a potential application for pest management if insect immunity is targeted. Abstract The Colorado potato beetle (CPB) is one of the most adaptable insect pests to both plant toxins and synthetic insecticides. Resistance in CPB is reported for over 50 classes of insecticides, and mechanisms of insecticide-resistance include enhanced detoxification enzymes, ABC transporters and target site mutations. Adaptation to insecticides is also associated with changes in behaviour, energy metabolism and other physiological processes seemingly unrelated to resistance but partially explained through genomic analyses. In the present study, in place of genomics, we applied 2-dimensional (2-D) gel and mass spectrometry to investigate protein differences in abdominal and midgut tissue of insecticide-susceptible (S) and -resistant (R) CPB. The proteomic analyses measured constitutive differences in several proteins, but the highest match was identified as a C-type lectin (CTL), a component of innate immunity in insects. The constitutive expression of the CTL was greater in the multi-resistant (LI) strain, and the same spot was measured in both midgut and abdominal tissue. Exposure to the neonicotinoid insecticide, imidacloprid, increased the CTL spot found in the midgut but not in the abdominal tissue of the laboratory (Lab) strain. No increase in protein levels in the midgut tissue was observed in the LI or a field strain (NB) tolerant to neonicotinoids. With the exception of biopesticides, such as Bacillus thuringiensis (Bt), no previous studies have documented differences in the immune response by CTLs in insects exposed to synthetic insecticides or the fitness costs associated with expression levels of immune-related genes in insecticide-resistant strains. This study demonstrates again how CPB has been successful at adapting to insecticides, plant defenses as well as pathogens.
Collapse
Affiliation(s)
- Ian M. Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada; (G.H.); (Y.T.)
- Correspondence:
| | - Gabrielle Hatten
- London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada; (G.H.); (Y.T.)
| | - Yazel Tuncer
- London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada; (G.H.); (Y.T.)
| | - Victoria C. Clarke
- London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada; (V.C.C.); (K.J.); (K.K.-C.Y.)
| | - Kristina Jurcic
- London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada; (V.C.C.); (K.J.); (K.K.-C.Y.)
| | - Ken K.-C. Yeung
- London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada; (V.C.C.); (K.J.); (K.K.-C.Y.)
| |
Collapse
|
10
|
Wu K, Wang J, Geng L, Chen K, Huang W, Liu Q, Beerntsen BT, Ling E. Loss of control of the culturable bacteria in the hindgut of Bombyx mori after Cry1Ab ingestion. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103754. [PMID: 32464134 DOI: 10.1016/j.dci.2020.103754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Bt protein, produced by Bacillus thuringiensis, can bind receptors to destroy the physiological functions of the insect midgut. It is unknown whether Bt can also target the hindgut and influence its defense against fecal bacteria. Here we show that Crystal protein 1Ab (Cry1Ab), a Bt protein, was detected in the larval hindgut contents of Bombyx mori after ingestion of this toxin protein. The number of fecal bacteria that can be inhibited by the hindgut prophenoloxidase-induced melanization was significantly enhanced after oral ingestion of Cry1Ab. Although the hindgut contents became brown, the activity of hindgut phenoloxidase was decreased. LC-MS/MS analysis of the hindgut lumen contents revealed that many new proteins including several proteases were newly secreted. The enhanced secretion of proteases cleaved prophenoloxidase to decrease its activity, including the corresponding activity to inhibit the fecal bacteria. In addition, after ingestion of Cry1Ab, the pylorus (between the midgut and hindgut) could not autonomously contract due to the physical detachment of the acellular cuticle-like membrane from the epidermal cells, which prevented the movement of food from the midgut to the hindgut. Some cells in the cryptonephry of the hindgut became swollen and degraded, possibly due to the presence of Cry1Ab in the hindgut. These findings demonstrate that the inhibition of feces bacteria by the hindgut prophenoloxidase-induced melanization is out of control after Cry1Ab ingestion.
Collapse
Affiliation(s)
- Kai Wu
- College of Life Sciences, Shangrao Normal University, Shangrao, China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Lei Geng
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
| | - Kai Chen
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
| | - Qiuning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China
| | - Brenda T Beerntsen
- Veterinary Pathobiology, 213 Connaway Hall, University of Missouri Columbia, MO, 65211, USA
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|