1
|
Ma J, Xu S, Li Z, Li YA, Wang S, Shi H. Enhancement of protective efficacy of recombinant attenuated Salmonella typhimurium delivering H9N2 avian influenza virus hemagglutinins(HA) antigen vaccine candidate strains by C-C motif chemokine ligand 5 in chickens(chCCL5). Vet Microbiol 2024; 298:110264. [PMID: 39395372 DOI: 10.1016/j.vetmic.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The H9N2 inactivated avian influenza vaccine cannot induce cellular and mucosal immune responses, while the attenuated Salmonella vector as an intracellular bacterium can induce dominant cellular and mucosal immune responses. However, it provides low protection against the virus when delivering viral antigens and needs further optimization. Chicken C-C motif chemokine ligand 5 (chCCL5) is an important CC chemokine associated with immune cell chemotaxis, migration, and viral infection. This study connected the sequence of chCCL5 (CCL5) with the hemagglutinin sequence of the H9N2 avian influenza virus (yH9HA), utilizing the attenuated Salmonella typhimurium vector containing the delayed lysis system MazE/F regulated by arabinose as a carrier. A vaccine strain of recombinant attenuated Salmonella typhimurium and H9N2 avian influenza virus HA, rSC0130 (pS0017-yH9HA-CCL5), was successfully constructed. The experimental results indicate that yH9HA-CCL5 can be expressed in 293 T cells; compared to the strain without CCL5, rSC0130 (pS0017-yH9HA-CCL5) can induce significantly increased cellular immune responses and provide better protective effects in H9N2 virus challenge experiments. The above results indicate that chCCL5 can significantly enhance the protective effect of Salmonella delivering H9N2 avian influenza virus HA protein vaccine against H9N2 avian influenza virus infection, providing valuable theoretical support for further improving the protective efficiency of recombinant attenuated Salmonella vectors for delivering viral antigens.
Collapse
Affiliation(s)
- Jingwen Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
2
|
Cammayo-Fletcher PLT, Flores RA, Nguyen BT, Villavicencio AGM, Lee SY, Kim WH, Min W. Promotion of Th1 and Th2 responses over Th17 in Riemerella anatipestifer stimulation in chicken splenocytes: Correlation of gga-miR-456-3p and gga-miR-16-5p with NOS2 and CCL5 expression. PLoS One 2023; 18:e0294031. [PMID: 37930983 PMCID: PMC10627459 DOI: 10.1371/journal.pone.0294031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Riemerella (R.) anatipestifer poses a significant threat to ducks, resulting in mortality rates ranging from 5-75%. This disease is highly infectious and economically consequential for domestic ducks. Although other avian species, such as chickens, also display susceptibility, the impact is comparatively less severe than in ducks. IL-17A has a pronounced correlation with R. anatipestifer infection in ducks, which is less in chickens. This study performed an in vitro transcriptome analysis using chicken splenic lymphocytes collected at 4-, 8-, and 24-hour intervals following R. anatipestifer stimulation. The primary objective was to discern the differentially expressed genes, with a specific focus on IL-17A and IL-17F expression. Moreover, an association between specific miRNAs with NOS2 and CCL5 was identified. The manifestation of riemerellosis in chickens was linked to heightened expression of Th1- and Th2-associated cells, while Th17 cells exhibited minimal involvement. This study elucidated the mechanism behind the absence of a Th17 immune response, shedding light on its role throughout disease progression. Additionally, through small RNA sequencing, we identified a connection between miRNAs, specifically miR-456-3p and miR-16-5p, and their respective target genes NOS2 and CCL5. These miRNAs are potential regulators of the inflammatory process during riemerellosis in chickens.
Collapse
Affiliation(s)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | | | - Seung Yun Lee
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
3
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
4
|
Lu M, Lee Y, Li C, Lillehoj HS. Immunological characterization of chicken tumor necrosis factor-α (TNF-α) using new sets of monoclonal antibodies specific for poultry TNF-α. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104374. [PMID: 35157961 DOI: 10.1016/j.dci.2022.104374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a type II transmembrane protein with either membrane-bound or soluble forms and is a prototypical member of the TNF superfamily. TNF-α is a pleiotropic cytokine associated with the regulation of systemic inflammation and host defense. Chicken TNF-α (chTNF-α) is a long-missed avian ortholog, and its immunological properties remain largely unknown compared to those of its mammalian counterparts. Here, we report the functional characterization and immunomodulatory properties of chTNF-α using a panel of newly developed anti-chTNF-α mouse monoclonal antibodies (mAbs). Using anti-chTNF-α mAbs, we determined the tissue expression of chTNF-α in lymphoid and non-lymphoid organs. A chTNF-α-specific antigen-capture sandwich ELISA was developed using compatible mAb partners by screening and validation of ten different mAbs. Employing 3G11 and 12G6 as capture and detection antibodies, respectively, the levels of native chTNF-α in the circulation of Clostridium perfringens, Eimeria, or dual C. perfringens/Eimeria-infected chickens were determined. Furthermore, intracellular expression of chTNF-α in primary immune cells or cell lines derived from chickens was validated by immunocytochemistry and flow cytometry assays using both 3G11 and 12G6 mAbs. Notably, both 3G11 and 12G6 neutralized chTNF-α-induced nitric oxide production in chicken HD11 cells in vitro. Collectively, our results enhance our understanding of the functional characteristics of chTNF-α, and these anti-chTNF-α mAbs will serve as valuable immune reagents to inform on inflammatory responses and disease pathogenesis in the fundamental and applied studies of avian species.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
5
|
Chen X, Song QL, Ji R, Wang JY, Li ZH, Xiao ZN, Guo D, Yang J. Hypoxia-induced polarization of M2 macrophages and CCL5 secretion promotes the migration and invasion of trophoblasts. Biol Reprod 2022; 107:834-845. [PMID: 35594449 DOI: 10.1093/biolre/ioac100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/22/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
In the early stage of pregnancy, hypoxia in the placenta is of great significance to the migration and invasion of trophoblasts. In addition, changes to the polarity and activity of macrophages can affect embryo implantation, trophoblast migration and invasion, and vascular remodeling by affecting cytokine secretion. However, the mechanism of the effects of hypoxic conditions in the placenta on trophoblasts remains unknown. We used gene knockdown on macrophages, and drug treatment on trophoblasts, and cultured them under hypoxic and normoxic conditions. The cells were then subjected to wound healing assays, Transwell cell invasion experiments, quantitative real-time reverse transcription PCR, western blotting, and immunofluorescence. The polarization of macrophages in each group, the migration and invasion ability of trophoblasts, and changes to the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway were detected. Hypoxic conditions induce M2 polarization of macrophages. The conditioned medium from macrophages under hypoxic conditions increased the migration and invasion of trophoblasts, and enhanced the levels of phosphorylated (p)-PI3K and p-AKT in trophoblasts. After CCL5 knockdown in macrophages, the ability of conditioned medium from macrophages cultured under hypoxic conditions to promote the migration and invasion of trophoblasts was weakened significantly. The use of PI3K/AKT signaling pathway agonists could reverse the attenuation effect caused by CCL5 knockdown.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Qian Lin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Jia Yu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Ze Hong Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - Zhuo Ni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| | - DuanYing Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei
| |
Collapse
|