1
|
Shen ZY, Sadiq S, Xu T, Wu P, Khan I, Jiao X, Khan A, Wang L, Lin S. Inhibitory effect of organometallic framework composite nanomaterial ZIF8@ZIF67 on different pathogenic microorganisms of silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106307. [PMID: 40015899 DOI: 10.1016/j.pestbp.2025.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
The domestic silkworm (Bombyx mori) is of considerable economic importance, but is highly susceptible to various pathogens, which leads to substantial losses in sericulture. Nanomaterials, particularly metal-organic frameworks (MOFs), have shown promise in antibacterial applications due to their broad-spectrum activity and low toxicity. This study presented the synthesis, characterization, and antibacterial evaluation of MOF-based nanomaterials, specifically ZIF8, ZIF67, and their composite ZIF8@ZIF67, for their potential as antibacterial agents against silkworm pathogens. Our findings revealed that the composite material ZIF8@ZIF67 demonstrates better antibacterial efficacy against Bacillus cereus and Serratia marcescens in vitro than pristine ZIF8 and ZIF67, with minimal inhibitory concentrations of 2.5 μg/mL and 3.0 μg/mL, respectively. Furthermore, cytotoxicity assays indicate that neither ZIF8 at 100 μg/mL nor ZIF67 and ZIF8@ZIF67 at 200 μg/mL adversely affected the viability of BmN cells. At the same time, under these concentrations, the proliferation of Nosema bombycis at both 48 h and 72 h post-infection was significantly inhibited. Moreover, supplementation of 300 μg/g ZIF8@ZIF67 to silkworm larvae significantly enhanced their survival rates upon infection with the bacteria above without adversely affecting silkworm growth or cocoon weight. The underlying mechanisms of action may include disruption of bacterial cell membranes, induction of oxidative stress via generation of reactive oxygen species (ROS), and initiation of apoptosis. The biocompatibility and non-toxicity of ZIF8@ZIF67 and its antibacterial efficacy suggest its potential as a safe and effective agent for silkworm disease control. Conclusively, our research offers important insights for advancing MOFs-based nanomaterials for potential antibacterial treatment in silkworms or other insects.
Collapse
Affiliation(s)
- Zhen-Yu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Samreen Sadiq
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tao Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 21200, China.
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Xinhao Jiao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aftab Khan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lulai Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Su Lin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
2
|
Gu C, Mo Y, Li J, Zhang X, Xu S, Miao M, Quan Y, Yu W. LEF3 phosphorylation attenuates the replication of Bombyx mori nucleopolyhedrovirus by suppressing its interaction with alkaline nuclease. Virology 2025; 603:110369. [PMID: 39733516 DOI: 10.1016/j.virol.2024.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
Late expression factor 3 (LEF3), a multifunctional single-stranded DNA binding protein encoded by baculoviruses, is indispensable for viral DNA replication and plays a pivotal role in viral infection. Our previous quantitative analysis of phosphorylomics revealed that the phosphorylation levels of two serine residues (S8 and S25) located in LEF3 nuclear localization sequence were significantly up-regulated after Bombyx mori nucleopolyhedrovirus (BmNPV) infection, but the underlying mechanism remained unknown. To investigate the impact of phosphorylation on BmNPV infection, site-direct mutagenesis was performed on LEF3 to obtain phosphorylated mimic (S/D) or dephosphorylated mimic (S/A) mutants. The results demonstrated that the viral replication and proliferation were inhibited by phosphorylation of S8 or S25. Furthermore, we found that the N-terminal 125 amino acids region was responsible for interacting with virus-encoded alkaline nuclease, but this interaction could be suppressed by the phosphorylation. Our findings indicated that phosphorylation may serve as an antiviral strategy for host.
Collapse
Affiliation(s)
- Chaoguang Gu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Yuqian Mo
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Jiaqi Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Xizhen Zhang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Siqi Xu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China.
| |
Collapse
|
3
|
Bai Y, Xie Y, Yao J, Zeng F, Wang D. Genome-Wide Identification and Characterization of Heat Shock Proteins in the Stored-Product Pest Rhyzopertha dominica (Fabricius): Phylogenetic, Structural, and Stress-Induced Expression Analyses. INSECTS 2025; 16:127. [PMID: 40003757 PMCID: PMC11855361 DOI: 10.3390/insects16020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Heat shock proteins (HSPs) are crucial molecular chaperones that help organisms maintain protein stability under stress conditions. As a major stored-product pest, Rhyzopertha dominica (Fabricius) faces distinct stresses compared to field insects, primarily due to the specific pest control methods applied during grain storage. In this study, a total of 53 HSP genes from five gene families (HSP90, HSP70, HSP60, sHSP, and DnaJ) were identified and characterized using bioinformatics methods. Among them, DnaJ was the largest and the most diverse HSP family in R. dominica. Transcriptome sequencing and RT-qPCR were then used to evaluate HSP gene expression patterns under four storage-related stresses, following a series of bioassays. Extreme high temperature was the strongest inducer of HSP expression, with 12 genes showing over a 10-fold increase. Controlled nitrogen atmosphere also led to considerable upregulation of HSP genes, especially in the HSP70 family. In contrast, phosphine fumigation and K-Obiol grain protectant caused very limited induction of HSP genes, which might have been due to the less severe protein damage caused by chemical stresses compared to physical stresses. Our study provides a theoretical basis for further research on HSP functions in R. dominica.
Collapse
Affiliation(s)
- Yueliang Bai
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yanzhu Xie
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Junji Yao
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Fangfang Zeng
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Dianxuan Wang
- National Grain Industry (Storage Insect Pest Control) Technology Innovation Center, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
4
|
Khan S, Wang A, Liu J, Khan I, Mujahid L, Ruijin M, Sadiq S, Zaman S, Khan A, Khan S, Khan M, Miao Y. Synthesis of SnO₂/COF Green Nanomaterials for Effective Pesticide Decomposition and Promoting Tomato Plants Growth. Chem Asian J 2025:e202401856. [PMID: 39868502 DOI: 10.1002/asia.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed which are badly effecting eco-system and water bodies. In this research work, we prepared SnO2 nanosheets (SONS) by in-situ and green synthesis approach. Remarkably, SONS exhibit a larger surface area, tailored pore size, and higher catalytic performance than SnO2 nanoparticles (SONP). To further improve the efficiency of SONS, we coupled it with covalent organic farmwork nanosheets (COFNS) via the hydrothermal approach. The SONS@COFNS hybrid nanocatalysts exhibit improved carrier migration, enhanced porosity, multiple active sites, and exceptional light absorption capabilities. The as prepared green nanomaterials delivered improved activities for Neonicotinoids and Pyrethroids degradation. Remarkably, the most active sample 6COFNS/SONS showed the highest degradation efficiency (94 %), which is approximately 1.92 times higher than the degradation efficiency of pristine SONS (49 %). This work will ultimately contribute to developing green, ecofriendly nanomaterials for pesticides degradation and promoting tomato plants growth.
Collapse
Affiliation(s)
- Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Laiba Mujahid
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Meng Ruijin
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Samreen Sadiq
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Saeed Zaman
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Aftab Khan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, 94640, Pakistan
| | - Mansoor Khan
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yuanyang Miao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Wu YX, Sadiq S, Jiao XH, Zhou XM, Wang LL, Xie XR, Khan I, Wu P. CRISPR/Cas13a-mediated visual detection: A rapid and robust method for early detection of Nosema bombycis in silkworms. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104203. [PMID: 39437972 DOI: 10.1016/j.ibmb.2024.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
The sericulture industry faces a significant threat from the Pebrine disease of silkworms, caused by Nosema bombycis. Nonetheless, the current microscopic diagnostic methods can be time-consuming, labor-intensive, and lacking sensitivity and accuracy. Therefore, it is crucial to develop a novel detection approach that is efficient, highly sensitive, and low-cost. In this regard, the CRISPR/Cas system has the potential to be a fast, accurate, and highly specific method of detection. Herein, using a microplate reader, a portable fluorescence detection device, and test strips as signal output tools respectively, we have efficiently developed three rapid and facile visual detection methods for N. bombycis using a CRISPR/Cas13a system with conjugation of Recombinase polymerase amplification (RPA). We evaluated the sensitivity of this combined technology by comparing it with the positive plasmid standard and the genome standard of N. bombycis. Remarkably, the sensitivity of the CRISPR/Cas13a system for N. bombycis positive plasmid standard based on the microplate reader, portable fluorescence detection device, and test strips was 1 copy/μL, 10 copies/μL, and 1 copy/μL, respectively, while for the N. bombycis genome standards, the detection sensitivity was 10 fg/μL, 10 fg/μL, and 1 fg/μL, respectively. In addition, extensive evaluations have demonstrated that the established technology can accurately detect N. bombycis without cross-reactivity with other pathogens, ensuring a specificity rate of 100%. In brief, this study will provide a practical, efficient, and affordable method for early and rapid detection of N. bombycis in various settings.
Collapse
Affiliation(s)
- Yi-Xiang Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Samreen Sadiq
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Xin-Hao Jiao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Xue-Min Zhou
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Lu-Lai Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Xin-Ran Xie
- School of Economics and Management, Jilin Agricultural University, Changchun, Jilin, 130022, China
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 21200, China.
| |
Collapse
|
6
|
Fei S, Xia J, Mehmood N, Wang Y, Feng M, Sun J. Autophagy promotes replication of Bombyx mori Nucleopolyhedrovirus in insect cells. Int J Biol Macromol 2024; 277:134325. [PMID: 39089561 DOI: 10.1016/j.ijbiomac.2024.134325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BmNPV is a pathogen that infects silkworms exclusively. Although the interaction between BmNPV and the silkworm has been widely noticed and studied, its specific mechanism has still not been elucidated. In this study, we investigated whether BmNPV infection induces the onset of host cell autophagy to enhance viral replication. We observed a significant increase in double- or single-membrane vesicles and an accumulation of enhanced green fluorescent protein eGFP-ATG8 spots in virus-infected cells 72 h after BmNPV infection, accompanied by a conversion of ATG8 to ATG8-PE. In addition, we observed changes in the mitochondrial morphology of BmN cells after BmNPV infection by transmission electron microscopy. By detecting the mitochondrial membrane potential, we found that BmNPV infection resulted in the decrease of mitochondrial membrane potential, and that eGFP-ATG8 was able to co-localise with mitochondria after virus infection of the cells. Moreover, the use of drugs to regulate the occurrence of autophagy affects the replication of cellular BmNPV. Our data demonstrates that BmNPV infection induces host cell autophagy and leads to cellular mitochondrial damage, which in turn may lead to mitochondrial autophagy, and that BmNPV-induced host autophagy promotes its replication in cells. These findings will provide clues for further understanding of host-virus interactions.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Nasir Mehmood
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
7
|
Altaf A, Khan I, Khan A, Sadiq S, Humayun M, Khan S, Zaman S, Khan A, Abumousa RA, Bououdina M. Metal/Covalent Organic Framework Encapsulated Lead-Free Halide Perovskite Hybrid Nanocatalysts: Multifunctional Applications, Design, Recent Trends, Challenges, and Prospects. ACS OMEGA 2024; 9:34220-34242. [PMID: 39157131 PMCID: PMC11325423 DOI: 10.1021/acsomega.4c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Perovskites are bringing revolutionization in a various fields due to their exceptional properties and crystalline structure. Most specifically, halide perovskites (HPs), lead-free halide perovskites (LFHPs), and halide perovskite quantum dots (HPs QDs) are becoming hotspots due to their unique optoelectronic properties, low cost, and simple processing. HPs QDs, in particular, have excellent photovoltaic and optoelectronic applications because of their tunable emission, high photoluminescence quantum yield (PLQY), effective charge separation, and low cost. However, practical applications of the HPs QDs family have some limitations such as degradation, instability, and deep trap states within the bandgap, structural inflexibility, scalability, inconsistent reproducibility, and environmental concerns, which can be covered by encapsulating HPs QDs into porous materials like metal-organic frameworks (MOFs) or covalent-organic frameworks (COFs) that offer protection, prevention of aggregation, tunable optical properties, flexibility in structure, enhanced biocompatibility, improved stability under harsh conditions, consistency in production quality, and efficient charge separation. These advantages of MOFs-COFs help HPs QDs harness their full potential for various applications. This review mainly consists of three parts. The first portion discusses the perovskites, halide perovskites, lead-free perovskites, and halide perovskite quantum dots. In the second portion, we explore MOFs and COFs. In the third portion, particular emphasis is given to a thorough evaluation of the development of HPs QDs@MOFs-COFs based materials for comprehensive investigations for next-generation materials intended for diverse technological applications, such as CO2 conversion, pollutant degradation, hydrogen generation, batteries, gas sensing, and solar cells. Finally, this review will open a new gateway for the synthesis of perovskite-based quantum dots.
Collapse
Affiliation(s)
- Anam Altaf
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Iltaf Khan
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aftab Khan
- College
of Material Science and Engineering, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Samreen Sadiq
- Jiangsu
Key Laboratory of Sericultural and Animal Biotechnology, School of
Biotechnology, Jiangsu University of Science
and Technology, Zhenjiang 212100, China
| | - Muhammad Humayun
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Shoaib Khan
- College
of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Saeed Zaman
- College of
Chemistry, Liaoning University, Shenyang 110036, China
| | - Abbas Khan
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Rasha A. Abumousa
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
8
|
Khan A, Sadiq S, Khan I, Humayun M, Jiyuan G, Usman M, Khan A, Khan S, Alanazi AF, Bououdina M. Preparation of visible-light active MOFs-Perovskites (ZIF-67/LaFeO 3) nanocatalysts for exceptional CO 2 conversion, organic pollutants and antibiotics degradation. Heliyon 2024; 10:e27378. [PMID: 38486780 PMCID: PMC10938116 DOI: 10.1016/j.heliyon.2024.e27378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Modern industries rapid expansion has heightened energy needs and accelerated fossil fuel depletion, contributing to global warming. Additionally, organic pollutants present substantial risks to aquatic ecosystems due to their stability, insolubility, and non-biodegradability. Scientists are currently researching high-performance materials to address these issues. LaFeO3 nanosheets (LFO-NS) were synthesized in this study using a solvothermal method with polyvinylpyrrolidone (PVP) as a soft template. The LFO-NS demonstrate superior performance, large surface area and charge separation than that of LaFeO3 nanoparticles (LFO-NP). The LFO-NS performance is further upgraded by incorporating ZIF-67. Our results confirmed the ZIF-67/LFO-NS nanocomposite have superior performances than pure LFO-NP and ZIF-67. The integration of ZIF-67 has enhanced the charge separation and promote the surface area of LFO-NSwhich was confirmed by various characterization techniques including TEM, HRTEM, DRS, EDX, XRD, FS, XPS, FT-IR, BET, PL, and RAMAN. The 5ZIF-67/LFO-NS sample showed significant activities for CO2 conversion, malachite green degradation, and antibiotics (cefazolin, oxacillin, and vancomycin) degradation. Furthermore, stability tests have confirmed that our optimal sample very active and stable. Furthermore, based on scavenger experiments and the photocatalytic degradation pathways, it has been established that H+ and •O2- are vital in the decomposition of MG and antibiotics. Our research work will open new gateways to prepare MOFs-Perovskites nanocatalysts for exceptional CO2 conversion, organic pollutants and antibiotics degradation.
Collapse
Affiliation(s)
- Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Guo Jiyuan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC–HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
9
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
10
|
Zhang X, Ma S, Gu C, Hu M, Miao M, Quan Y, Yu W. K64 acetylation of heat shock protein 90 suppresses nucleopolyhedrovirus replication in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22079. [PMID: 38288491 DOI: 10.1002/arch.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
HSP90 is a highly conserved chaperone that facilitates the proliferation of many viruses, including silkworm (bombyx mori) nucleopolyhedrovirus (BmNPV), but the underlying regulatory mechanism was unclear. We found that suppression of HSP90 by 17-AAG, a HSP90-specific inhibitor, significantly reduced the expression of BmNPV capsid protein gp64 and viral genome replication, whereas overexpression of B. mori HSP90(BmHSP90) promoted BmNPV replication. Furthermore, in a recent study of the lysine acetylome of B. mori infected with BmNPV, we focused on the reduced viral proliferation due to changes of BmHSP90 lysine acetylation. Site-directed introduction of acetylated (K/Q) or deacetylated (K/R) mimic mutations into BmHSP90 revealed that lysine 64 (K64) acetylation activated the JAK/STAT pathway and reduced BmHSP90 ATPase activity, leading to diminished chaperone activity and ultimately inhibiting BmNPV proliferation. In this study, a single lysine 64 acetylation change of BmHSP90 was elucidated as a model of posttranslational modifications occurring in the wake of host-virus interactions, providing novel insights into potential antiviral strategies.
Collapse
Affiliation(s)
- Xizhen Zhang
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Shiyi Ma
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Chaoguang Gu
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Miao Hu
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Meng Miao
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Yanping Quan
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| | - Wei Yu
- Department of Biopharmaceuticals, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Sadiq S, Khan I, Humayun M, Wu P, Khan A, Khan S, Khan A, Khan S, Alanazi AF, Bououdina M. Synthesis of Metal-Organic Framework-Based ZIF-8@ZIF-67 Nanocomposites for Antibiotic Decomposition and Antibacterial Activities. ACS OMEGA 2023; 8:49244-49258. [PMID: 38162750 PMCID: PMC10753725 DOI: 10.1021/acsomega.3c07606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Toxic antibiotic effluents and antibiotic-resistant bacteria constitute a threat to global health. So, scientists are investigating high-performance materials for antibiotic decomposition and antibacterial activities. In this novel research work, we have successfully designed ZIF-8@ZIF-67 nanocomposites via sol-gel and solvothermal approaches. The ZIF-8@ZIF-67 nanocomposite is characterized by various techniques that exhibit superior surface area enhancement, charge separation, and high light absorption performance. Yet, ZIF-8 has high adsorption rates and active sites, while ZIF-67 has larger pore volume and efficient adsorption and reaction capabilities, demonstrating that the ZIF-8@ZIF-67 nanocomposite outperforms pristine ZIF-8 and ZIF-67. Compared with pristine ZIF-8 and ZIF-67, the most active 6ZIF-67@ZIF-8 nanocomposite showed higher decomposition efficacy for ciprofloxacin (65%), levofloxacin (54%), and ofloxacin (48%). Scavenger experiments confirmed that •OH, •O2-, and h+ are the most active species for the decomposition of ciprofloxacin (CIP), levofloxacin (LF), and ofloxacin (OFX), respectively. In addition, the 6ZIF-67/ZIF-8 nanocomposite suggested its potential applications in Escherichia coli for growth inhibition zone, antibacterial activity, and decreased viability. Moreover, the stability test and decomposition pathway of CIP, LF, and OFX were also proposed. Finally, our study aims to enhance the efficiency and stability of ZIF-8@ZIF-67 nanocomposite and potentially enable its applications in antibiotic decomposition, antibacterial activities, and environmental remediation.
Collapse
Affiliation(s)
- Samreen Sadiq
- School
of Biotechnology, Jiangsu University of
Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Iltaf Khan
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Muhammad Humayun
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Ping Wu
- School
of Biotechnology, Jiangsu University of
Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Abbas Khan
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Sohail Khan
- Department
of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Khan
- Department
of Physics, School of Science, Jiangsu University
of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Shoaib Khan
- College of
Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Amal Faleh Alanazi
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
12
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|