1
|
Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, Tabuenca ZG, Arichi T, Edden RAE, Chai X, Puts NA. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex 2024; 34:bhae046. [PMID: 38430105 PMCID: PMC10908220 DOI: 10.1093/cercor/bhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| | - Hannah Hwa
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Benjamin Hopwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ross Lawrence
- Division of Cognitive Neurology, Department of Neurology, Johns Hopkins University, 1629 Thames Street Suite 350, Baltimore, MD 21231, United States
| | - Zeus G Tabuenca
- Department of Statistical Methods, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, 1st Floor, South Wing, St Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, United States
- F.M. Kirby Research Centre for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, United States
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, QC H3A2B4, Canada
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
2
|
Kanjlia S, Feigenson L, Bedny M. Neural basis of approximate number in congenital blindness. Cortex 2021; 142:342-356. [PMID: 34352637 DOI: 10.1016/j.cortex.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Although humans are unique among animals in their ability to manipulate symbolic numbers, we share with other species an approximate number sense that allows us to estimate and compare the number of objects or events in a set, such as the number of apples in a tree. Our ability to discriminate the numerosity of two sets decreases as the ratio between them becomes smaller (e.g., 8 vs 16 items is harder to discriminate than 8 vs 32 items). The intraparietal sulcus (IPS) plays a key role in this numerical approximation. Neuronal populations within the IPS code for numerosity, with stimuli of different numerosities eliciting discriminable spatial patterns of activity. The developmental origins of these IPS number representations are not known. Here, we tested the hypothesis that representations of number in the IPS require visual experience with object sets, by working with individuals blind from birth. While undergoing fMRI, congenitally blind (n = 17) and blindfolded sighted (n = 25) participants judged which of two sequences of beeps was more numerous. In both sighted and blind individuals, patterns of activity in the IPS discriminated among different numerosities (4, 8, 16 vs 32), with better discrimination in the IPS of the blind group. In both groups, decoding performance decreased as the ratio between numerosities decreased (e.g., 8 vs 16 was less discriminable than 8 vs 32). These findings suggest that number representations in the IPS either have innate precursors, or that auditory or tactile experience with sets is sufficient for typical development.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychology, Carnegie Mellon University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
3
|
Pujol J, Blanco-Hinojo L, Macia D, Martínez-Vilavella G, Deus J, Pérez-Sola V, Cardoner N, Soriano-Mas C, Sunyer J. Differences between the child and adult brain in the local functional structure of the cerebral cortex. Neuroimage 2021; 237:118150. [PMID: 33984493 DOI: 10.1016/j.neuroimage.2021.118150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Imaging studies on neuronal network formation provide relevant information as to how the brain matures during adolescence. We used a novel imaging approach combining well-established MRI measures of local functional connectivity that jointly provide qualitatively different information relating to the functional structure of the cerebral cortex. To investigate the adolescent transition into adulthood, we comparatively assessed 169 preadolescents aged 8-12 years and 121 healthy adults. Whole-brain functional connectivity maps were generated using multi-distance measures of intracortical neural activity coupling defined within iso-distant local areas. Such Iso-Distant Average Correlation (IDAC) measures therefore represent the average temporal correlation of a given brain unit, or voxel, with other units situated at increasingly separated iso-distant intervals. The results indicated that between-group differences in the functional structure of the cerebral cortex are extensive and implicate part of the lateral prefrontal cortex, a medial frontal/anterior cingulate region, the superior parietal lobe extending to the somatosensory strip and posterior cingulate cortex, and local connections within the visual cortex, hippocampus, amygdala and insula. We thus provided detail of the cerebral cortex functional structure maturation during the transition to adulthood, which may serve to establish more accurate links between adolescent performance gains and cerebral cortex maturation. Remarkably, our study provides new information as to the cortical maturation processes in prefrontal areas relevant to executive functioning and rational learning, medial frontal areas playing an active role in the cognitive appraisal of emotion and anxiety, and superior parietal cortices strongly associated with bodily self-consciousness in the context of body image formation.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain.
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain
| | - Didac Macia
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Gerard Martínez-Vilavella
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Passeig Marítim 25-29, 08003 Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - Víctor Pérez-Sola
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Institute of Neuropsychiatry and Addictions, Hospital del Mar-IMIM, Spain; Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - Narcís Cardoner
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Mental Health Department, Parc Taulí Sabadell University Hospital, Spain; Department of Psychiatry and Forensic Medicine, Autonomous University of Barcelona, Spain
| | - Carles Soriano-Mas
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM, Barcelona, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Spain; Department of Psychobiology and Methodology in Health Sciences, Autonomous University of Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Ciber on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
İçer S, Acer İ, Baş A. Gender-based functional connectivity differences in brain networks in childhood. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 192:105444. [PMID: 32200049 DOI: 10.1016/j.cmpb.2020.105444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Understanding the effect of gender differences on the brain can provide important information to characterize normal changes throughout life and to increase the likelihood of sex-specific approaches for neurological and psychiatric diseases. In this study, Functional Connectivity (FC), Amplitude of Low-Frequency Fluctuations (ALFF) and fractional ALFF (fALFF) analyzes will be compared between female and male brains between the ages of 7 and 18 years using resting state-functional magnetic resonance imaging (rs-fMRI). METHODS The rs-fMRI data in this study has been provided by The New York University (NYU) Child Study Center of the publicly shared ADHD200 database. From the NYU dataset, 68 (34 females, 34 males) healthy subjects in the age range of 7-18 years were selected. The female group (mean age: 12.3271±3.1380) and male group (mean age: 11.8766±2.9697) consisted of right-handed, small head motion and similar IQ values. FC was obtained by seed voxel analysis and the effect of low-frequency fluctuations on gender was examined by ALFF and fALFF analyses. Two-sample t-test was used to compare female and male groups with the significance thresholds set to FDR-corrected p<0.05. RESULTS In the results of our study, both in the ALFF, fALFF analyses and the seed regions belonging to many network regions, higher FC rates were found in girls than boys. Our results show that the females' language functions, visual functions such as object detection and recognition, working memory, executive functions, and episodic memory are more developed than males in this age range. In addition, as another result of our study, the seed regions are statistically stronger where the higher activation of female participants than male participants has concentrated in the left hemisphere. CONCLUSIONS Gender differences in brain networks should be taken into consideration when examining childhood cognitive and neuropsychiatric disorders and the results should also be evaluated according to gender. Evaluation of gender differences in childhood can increase the likelihood of early and definitive diagnosis and correct treatment for neurological diseases and can help doctors and scientists find new diagnostic tools to discover brain differences.
Collapse
Affiliation(s)
- Semra İçer
- Biomedical Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey.
| | - İrem Acer
- Graduate School of Natural and Applied Sciences Biomedical Engineering Department, Erciyes University, Kayseri, Turkey
| | - Abdullah Baş
- Graduate School of Natural and Applied Sciences Biomedical Engineering Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Kim NY, Kastner S. A biased competition theory for the developmental cognitive neuroscience of visuo-spatial attention. Curr Opin Psychol 2019; 29:219-228. [DOI: 10.1016/j.copsyc.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
|
6
|
Dow-Edwards D, MacMaster FP, Peterson BS, Niesink R, Andersen S, Braams BR. Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicol Teratol 2019; 76:106834. [PMID: 31505230 DOI: 10.1016/j.ntt.2019.106834] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Adolescence is a period of dramatic neural reorganization creating a period of vulnerability and the possibility for the development of psychopathology. The maturation of various neural circuits during adolescence depends, to a large degree, on one's experiences both physical and psychosocial. This occurs through a process of plasticity which is the structural and functional adaptation of the nervous system in response to environmental demands, physiological changes and experiences. During adolescence, this adaptation proceeds upon a backdrop of structural and functional alterations imparted by genetic and epigenetic factors and experiences both prior to birth and during the postnatal period. Plasticity entails an altering of connections between neurons through long-term potentiation (LTP) (which alters synaptic efficiency), synaptogenesis, axonal sprouting, dendritic remodeling, neurogenesis and recruitment (Skaper et al., 2017). Although most empirical evidence for plasticity derives from studies of the sensory systems, recent studies have suggested that during adolescence, social, emotional, and cognitive experiences alter the structure and function of the networks subserving these domains of behavior. Each of these neural networks exhibits heightened vulnerability to experience-dependent plasticity during the sensitive periods which occur in different circuits and different brain regions at specific periods of development. This report will summarize some examples of adaptation which occur during adolescence and some evidence that the adolescent brain responds differently to stimuli compared to adults and children. This symposium, "Experience during adolescence shapes brain development: from synapses and networks to normal and pathological behavior" occurred during the Developmental Neurotoxicology Society/Teratology Society Annual Meeting in Clearwater Florida, June 2018. The sections will describe the maturation of the brain during adolescence as studied using imaging technologies, illustrate how plasticity shapes the structure of the brain using examples of pathological conditions such as Tourette's' syndrome and attention deficit hyperactivity disorder, and a review of the key molecular systems involved in this plasticity and how some commonly abused substances alter brain development. The role of stimulants used in the treatment of attention deficit hyperactivity disorder (ADHD) in the plasticity of the reward circuit is then described. Lastly, clinical data promoting an understanding of peer-influences on risky behavior in adolescents provides evidence for the complexity of the roles that peers play in decision making, a phenomenon different from that in the adult. Imaging studies have revealed that activation of the social network by the presence of peers at times of decision making is unique in the adolescent. Since normal brain development relies on experiences which alter the functional and structural connections between cells within circuits and networks to ultimately alter behavior, readers can be made aware of the myriad of ways normal developmental processes can be hijacked. The vulnerability of developing adolescent brain places the adolescent at risk for the development of a life time of abnormal behaviors and mental disorders.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States of America.
| | - Frank P MacMaster
- Departments of Psychiatry & Pediatrics, University of Calgary, Addiction and Mental Health Strategic Clinical Network, Calgary, Alberta, Canada
| | - Bradley S Peterson
- Children's Hospital Los Angeles, The Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States of America
| | - Raymond Niesink
- Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands; Faculty of Management, Science and Technology, School of Science, Open University of the Netherlands, Heerlen, the Netherlands
| | - Susan Andersen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - B R Braams
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
7
|
Jacobi I, Sheikh Rashid M, de Laat JAPM, Dreschler WA. Age Dependence of Thresholds for Speech in Noise in Normal-Hearing Adolescents. Trends Hear 2019; 21:2331216517743641. [PMID: 29212433 PMCID: PMC5724638 DOI: 10.1177/2331216517743641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Previously found effects of age on thresholds for speech reception thresholds in noise in adolescents as measured by an online screening survey require further study in a well-controlled teenage sample. Speech reception thresholds (SRT) of 72 normal-hearing adolescent students were analyzed by means of the online speech-in-noise screening tool Earcheck (In Dutch: Oorcheck). Screening was performed at school and included pure-tone audiometry to ensure normal-hearing thresholds. The students’ ages ranged from 12 to 17 years. A group of young adults was included as a control group. Data were controlled for effects of gender and level of education. SRT scores within the controlled teenage sample revealed an effect of age on the order of an improvement of −0.2 dB per year. Effects of level of education and gender were not significant. Hearing screening tools that are based on SRT for speech in noise should control for an effect of age when assessing adolescents. Based on the present data, a correction factor of −0.2 dB per year between the ages of 12 and 17 is proposed. The proposed age-corrected SRT cut-off scores need to be evaluated in a larger sample including hearing-impaired adolescents.
Collapse
Affiliation(s)
- Irene Jacobi
- 1 Department of Clinical and Experimental Audiology, 26066 Academic Medical Centre , Amsterdam, The Netherlands
| | - Marya Sheikh Rashid
- 1 Department of Clinical and Experimental Audiology, 26066 Academic Medical Centre , Amsterdam, The Netherlands
| | - Jan A P M de Laat
- 2 Department of Audiology, 4501 Leiden University Medical Centre , Leiden, The Netherlands
| | - Wouter A Dreschler
- 1 Department of Clinical and Experimental Audiology, 26066 Academic Medical Centre , Amsterdam, The Netherlands
| |
Collapse
|
8
|
Chen Y, Liu YN, Zhou P, Zhang X, Wu Q, Zhao X, Ming D. The Transitions Between Dynamic Micro-States Reveal Age-Related Functional Network Reorganization. Front Physiol 2019; 9:1852. [PMID: 30662409 PMCID: PMC6328489 DOI: 10.3389/fphys.2018.01852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/07/2018] [Indexed: 01/23/2023] Open
Abstract
Normal dynamic change in human brain occurs with age increasing, yet much remains unknown regarding how brain develops, matures, and ages. Functional connectivity analysis of the resting-state brain is a powerful method for revealing the intrinsic features of functional networks, and micro-states, which are the intrinsic patterns of functional connectivity in dynamic network courses, and are suggested to be more informative of brain functional changes. The aim of this study is to explore the age-related changes in these micro-states of dynamic functional network. Three healthy groups were included: the young (ages 21-32 years), the adult (age 41-54 years), and the old (age 60-86 years). Sliding window correlation method was used to construct the dynamic connectivity networks, and then the micro-states were individually identified with clustering analysis. The distribution of age-related connectivity variations in several intrinsic networks for each micro-state was analyzed then. The micro-states showed substantial age-related changes in the transitions between states but not in the dwelling time. Also there was no age-related reorganization observed within any micro-state. But there were reorganizations observed in the transition between them. These results suggested that the identified micro-states represented certain underlying connectivity patterns in functional brain system, which are similar to the intrinsic cognitive networks or resources. In addition, the dynamic transitions between these states were probable mechanisms of reorganization or compensation in functional brain networks with age increasing.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Microelectronics, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ya-nan Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Peng Zhou
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xiong Zhang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Qiong Wu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xin Zhao
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Rohr CS, Vinette SA, Parsons KAL, Cho IYK, Dimond D, Benischek A, Lebel C, Dewey D, Bray S. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls. Cereb Cortex 2018; 27:4350-4360. [PMID: 27522072 DOI: 10.1093/cercor/bhw236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills.
Collapse
Affiliation(s)
- Christiane S Rohr
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Sarah A Vinette
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Kari A L Parsons
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Ivy Y K Cho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alina Benischek
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
10
|
Meier K, Partanen M, Giaschi D. Neural Correlates of Speed-Tuned Motion Perception in Healthy Adults. Perception 2018; 47:660-683. [PMID: 29683390 DOI: 10.1177/0301006618771463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been suggested that slow and medium-to-fast speeds of motion may be processed by at least partially separate mechanisms. The purpose of this study was to establish the cortical areas activated during motion-defined form and global motion tasks as a function of speed, using functional magnetic resonance imaging. Participants performed discrimination tasks with random dot stimuli at high coherence, at coherence near their own thresholds, and for random motion. Stimuli were moving at 0.1 or 5 deg/s. In the motion-defined form task, lateral occipital complex, V5/MT+ and intraparietal sulcus showed greater activation by high or near-threshold coherence than by random motion stimuli; V5/MT+ and intraparietal sulcus demonstrated greater activation for 5 than 0.1 deg/s dot motion. In the global motion task, only high coherence stimuli elicited significant activation over random motion; this activation was primarily in nonclassical motion areas. V5/MT+ was active for all motion conditions and showed similar activation for coherent and random motion. No regions demonstrated speed-tuning effects for global motion. These results suggest that similar cortical systems are activated by slow- and medium-speed stimuli during these tasks in healthy adults.
Collapse
Affiliation(s)
- Kimberly Meier
- Department of Psychology, 8166 University of British Columbia , Vancouver, British Columbia, Canada
| | - Marita Partanen
- Department of Education and Counselling Psychology and Special Education, 8166 University of British Columbia , Vancouver, British Columbia, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, 8166 University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Rohr CS, Arora A, Cho IYK, Katlariwala P, Dimond D, Dewey D, Bray S. Functional network integration and attention skills in young children. Dev Cogn Neurosci 2018; 30:200-211. [PMID: 29587178 PMCID: PMC6969078 DOI: 10.1016/j.dcn.2018.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Children acquire attention skills rapidly during early childhood as their brains undergo vast neural development. Attention is well studied in the adult brain, yet due to the challenges associated with scanning young children, investigations in early childhood are sparse. Here, we examined the relationship between age, attention and functional connectivity (FC) during passive viewing in multiple intrinsic connectivity networks (ICNs) in 60 typically developing girls between 4 and 7 years whose sustained, selective and executive attention skills were assessed. Visual, auditory, sensorimotor, default mode (DMN), dorsal attention (DAN), ventral attention (VAN), salience, and frontoparietal ICNs were identified via Independent Component Analysis and subjected to a dual regression. Individual spatial maps were regressed against age and attention skills, controlling for age. All ICNs except the VAN showed regions of increasing FC with age. Attention skills were associated with FC in distinct networks after controlling for age: selective attention positively related to FC in the DAN; sustained attention positively related to FC in visual and auditory ICNs; and executive attention positively related to FC in the DMN and visual ICN. These findings suggest distributed network integration across this age range and highlight how multiple ICNs contribute to attention skills in early childhood.
Collapse
Affiliation(s)
- Christiane S Rohr
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Anish Arora
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ivy Y K Cho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Prayash Katlariwala
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dennis Dimond
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Chen Y, Wang W, Zhao X, Sha M, Liu Y, Zhang X, Ma J, Ni H, Ming D. Age-Related Decline in the Variation of Dynamic Functional Connectivity: A Resting State Analysis. Front Aging Neurosci 2017; 9:203. [PMID: 28713261 PMCID: PMC5491557 DOI: 10.3389/fnagi.2017.00203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Normal aging is typically characterized by abnormal resting-state functional connectivity (FC), including decreasing connectivity within networks and increasing connectivity between networks, under the assumption that the FC over the scan time was stationary. In fact, the resting-state FC has been shown in recent years to vary over time even within minutes, thus showing the great potential of intrinsic interactions and organization of the brain. In this article, we assumed that the dynamic FC consisted of an intrinsic dynamic balance in the resting brain and was altered with increasing age. Two groups of individuals (N = 36, ages 20–25 for the young group; N = 32, ages 60–85 for the senior group) were recruited from the public data of the Nathan Kline Institute. Phase randomization was first used to examine the reliability of the dynamic FC. Next, the variation in the dynamic FC and the energy ratio of the dynamic FC fluctuations within a higher frequency band were calculated and further checked for differences between groups by non-parametric permutation tests. The results robustly showed modularization of the dynamic FC variation, which declined with aging; moreover, the FC variation of the inter-network connections, which mainly consisted of the frontal-parietal network-associated and occipital-associated connections, decreased. In addition, a higher energy ratio in the higher FC fluctuation frequency band was observed in the senior group, which indicated the frequency interactions in the FC fluctuations. These results highly supported the basis of abnormality and compensation in the aging brain and might provide new insights into both aging and relevant compensatory mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Chen
- College of Microelectronics, Tianjin UniversityTianjin, China.,Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China
| | - Weiwei Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Xin Zhao
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Miao Sha
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Ya'nan Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Xiong Zhang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| | - Jianguo Ma
- College of Microelectronics, Tianjin UniversityTianjin, China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Center HospitalTianjin, China
| | - Dong Ming
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjin, China.,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin UniversityTianjin, China
| |
Collapse
|
13
|
Development of brain networks and relevance of environmental and genetic factors: A systematic review. Neurosci Biobehav Rev 2016; 71:215-239. [DOI: 10.1016/j.neubiorev.2016.08.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/10/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023]
|
14
|
The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci Biobehav Rev 2016; 70:13-32. [DOI: 10.1016/j.neubiorev.2016.07.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/18/2022]
|
15
|
Solé-Padullés C, Castro-Fornieles J, de la Serna E, Calvo R, Baeza I, Moya J, Lázaro L, Rosa M, Bargalló N, Sugranyes G. Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex. Dev Cogn Neurosci 2016; 17:35-44. [PMID: 26657414 PMCID: PMC6990074 DOI: 10.1016/j.dcn.2015.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023] Open
Abstract
There is limited evidence on the effects of age and sex on intrinsic connectivity of networks underlying cognition during childhood and adolescence. Independent component analysis was conducted in 113 subjects aged 7-18; the default mode, executive control, anterior salience, basal ganglia, language and visuospatial networks were identified. The effect of age was examined with multiple regression, while sex and 'age × sex' interactions were assessed by dividing the sample according to age (7-12 and 13-18 years). As age increased, connectivity in the dorsal and ventral default mode network became more anterior and posterior, respectively, while in the executive control network, connectivity increased within frontoparietal regions. The basal ganglia network showed increased engagement of striatum, thalami and precuneus. The anterior salience network showed greater connectivity in frontal areas and anterior cingulate, and less connectivity of orbitofrontal, middle cingulate and temporoparietal regions. The language network presented increased connectivity of inferior frontal and decreased connectivity within the right middle frontal and left inferior parietal cortices. The visuospatial network showed greater engagement of inferior parietal and frontal cortices. No effect of sex, nor age by sex interactions was observed. These findings provide evidence of strengthening of cortico-cortical and cortico-subcortical networks across childhood and adolescence.
Collapse
Affiliation(s)
- Cristina Solé-Padullés
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain
| | - Josefina Castro-Fornieles
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain; Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain; Department of Psychiatry and Clinical Psychology, University of Barcelona, Casanova 143, Barcelona 08036, Spain; Biomedical Research Networking Centre Consortium (CIBERSAM), Monforte de lemos 3-5, Madrid 28029, Spain
| | - Elena de la Serna
- Biomedical Research Networking Centre Consortium (CIBERSAM), Monforte de lemos 3-5, Madrid 28029, Spain
| | - Rosa Calvo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain; Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain; Biomedical Research Networking Centre Consortium (CIBERSAM), Monforte de lemos 3-5, Madrid 28029, Spain
| | - Inmaculada Baeza
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain; Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain; Biomedical Research Networking Centre Consortium (CIBERSAM), Monforte de lemos 3-5, Madrid 28029, Spain
| | - Jaime Moya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain; Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Luisa Lázaro
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain; Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain; Department of Psychiatry and Clinical Psychology, University of Barcelona, Casanova 143, Barcelona 08036, Spain; Biomedical Research Networking Centre Consortium (CIBERSAM), Monforte de lemos 3-5, Madrid 28029, Spain
| | - Mireia Rosa
- Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Nuria Bargalló
- Biomedical Research Networking Centre Consortium (CIBERSAM), Monforte de lemos 3-5, Madrid 28029, Spain; Image Diagnosis Centre, Hospital Clinic of Barcelona, Villarroel 170, Barcelona 08036, Spain; Magnetic Resonance Image Core Facility, IDIBAPS, Rosselló 149-153, Barcelona 08036, Spain
| | - Gisela Sugranyes
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, Barcelona 08036, Spain; Department of Child and Adolescent Psychiatry and Psychology, SGR1119, Institute of Neuroscience, Hospital Clínic of Barcelona, Villarroel 170, Barcelona 08036, Spain.
| |
Collapse
|