1
|
Tan G, Yuan M, Li L, Zhu H, Lui S, Qiu C, Zhang W. Shared and distinct morphometric similarity network abnormalities in generalized anxiety disorder, posttraumatic stress disorder and social anxiety disorder. BMC Psychiatry 2025; 25:5. [PMID: 39748330 PMCID: PMC11697831 DOI: 10.1186/s12888-024-06460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The high comorbidity and symptom overlap of generalized anxiety disorder (GAD), posttraumatic stress disorder (PTSD), and social anxiety disorder (SAD), has led to the study of their shared and disorder-specific neural substrates. However, the morphometric similarity network (MSN) differences among these disorders remain unknown. METHODS MSN derived from T1-weighted images in patients of GAD, PTSD, and SAD, and health controls (HC) using a Siemens 3T magnetic resonance imaging system. Covariance analysis and post hoc tests were used to investigate group differences. In addition, the relationship between MSN and clinical characteristics was analyzed. RESULTS Increased morphometric similarity (MS) between left bankssts (BA22, superior temporal cortex, STC) and right precentral gyrus, and decreased MS between left precentral gyrus and right cuneus_part1/part2, and between right rostral middle frontal cortex (rMFC) and right STC were common in GAD and PTSD relative to HC and SAD. Compared to the other three groups, SAD exhibited disorder-specific alterations of increased MS between right rMFC and right STC, and between left cuneus and right inferior parietal cortex. Additionally, increased regional MSN in left precentral gyrus was found in PTSD compared to HC and SAD. A mild positive correlation of the MS value between left bankssts and right precentral gyrus and the Hamilton Anxiety Rating Scale scores (uncorrected p = 0.041) was found in PTSD. CONCLUSIONS Our study provides the first evidence for common and distinct brain MSN abnormalities underlying the pathophysiology of GAD, PTSD, and SAD, which may aid in differential diagnosis and determining potential disorder-specific intervention targets.
Collapse
Affiliation(s)
- Guifeng Tan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, P. R. China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, P. R. China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Lun Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, P. R. China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, P. R. China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, P. R. China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, P. R. China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu, 610041, P. R. China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, P. R. China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
2
|
Sebenius I, Dorfschmidt L, Seidlitz J, Alexander-Bloch A, Morgan SE, Bullmore E. Structural MRI of brain similarity networks. Nat Rev Neurosci 2025; 26:42-59. [PMID: 39609622 DOI: 10.1038/s41583-024-00882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Recent advances in structural MRI analytics now allow the network organization of individual brains to be comprehensively mapped through the use of the biologically principled metric of anatomical similarity. In this Review, we offer an overview of the measurement and meaning of structural MRI similarity, especially in relation to two key assumptions that often underlie its interpretation: (i) that MRI similarity can be representative of architectonic similarity between cortical areas and (ii) that similar areas are more likely to be axonally connected, as predicted by the homophily principle. We first introduce the historical roots and technical foundations of MRI similarity analysis and compare it with the distinct MRI techniques of structural covariance and tractography analysis. We contextualize this empirical work with two generative models of homophilic networks: an economic model of cost-constrained connectional homophily and a heterochronic model of ontogenetically phased cortical maturation. We then review (i) studies of the genetic and transcriptional architecture of MRI similarity in population-averaged and disorder-specific contexts and (ii) developmental studies of normative cohorts and clinical studies of neurodevelopmental and neurodegenerative disorders. Finally, we prioritize knowledge gaps that must be addressed to consolidate structural MRI similarity as an accessible, valid marker of the architecture and connectivity of an individual brain network.
Collapse
Affiliation(s)
- Isaac Sebenius
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
| | - Lena Dorfschmidt
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jakob Seidlitz
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Morgan
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Edward Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Wang Y, Zhu D, Zhao L, Wang X, Zhang Z, Hu B, Wu D, Zheng W. Profiling cortical morphometric similarity in perinatal brains: Insights from development, sex difference, and inter-individual variation. Neuroimage 2024; 295:120660. [PMID: 38815676 DOI: 10.1016/j.neuroimage.2024.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
The topological organization of the macroscopic cortical networks important for the development of complex brain functions. However, how the cortical morphometric organization develops during the third trimester and whether it demonstrates sexual and individual differences at this particular stage remain unclear. Here, we constructed the morphometric similarity network (MSN) based on morphological and microstructural features derived from multimodal MRI of two independent cohorts (cross-sectional and longitudinal) scanned at 30-44 postmenstrual weeks (PMW). Sex difference and inter-individual variations of the MSN were also examined on these cohorts. The cross-sectional analysis revealed that both network integration and segregation changed in a nonlinear biphasic trajectory, which was supported by the results obtained from longitudinal analysis. The community structure showed remarkable consistency between bilateral hemispheres and maintained stability across PMWs. Connectivity within the primary cortex strengthened faster than that within high-order communities. Compared to females, male neonates showed a significant reduction in the participation coefficient within prefrontal and parietal cortices, while their overall network organization and community architecture remained comparable. Furthermore, by using the morphometric similarity as features, we achieved over 65 % accuracy in identifying an individual at term-equivalent age from images acquired after birth, and vice versa. These findings provide comprehensive insights into the development of morphometric similarity throughout the perinatal cortex, enhancing our understanding of the establishment of neuroanatomical organization during early life.
Collapse
Affiliation(s)
- Ying Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Dalin Zhu
- Department of Medical Imaging Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China; School of Physics, Hangzhou Normal University, Hangzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; School of Medical Technology, Beijing Institute of Technology, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Persson Waye K, Löve J, Lercher P, Dzhambov AM, Klatte M, Schreckenberg D, Belke C, Leist L, Ristovska G, Jeram S, Kanninen KM, Selander J, Arat A, Lachmann T, Clark C, Botteldooren D, White K, Julvez J, Foraster M, Kaprio J, Bolte G, Psyllidis A, Gulliver J, Boshuizen H, Bozzon A, Fels J, Hornikx M, van den Hazel P, Weber M, Brambilla M, Braat-Eggen E, Van Kamp I, Vincens N. Adopting a child perspective for exposome research on mental health and cognitive development - Conceptualisation and opportunities. ENVIRONMENTAL RESEARCH 2023; 239:117279. [PMID: 37778607 DOI: 10.1016/j.envres.2023.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Mental disorders among children and adolescents pose a significant global challenge. The exposome framework covering the totality of internal, social and physical exposures over a lifetime provides opportunities to better understand the causes of and processes related to mental health, and cognitive functioning. The paper presents a conceptual framework on exposome, mental health, and cognitive development in children and adolescents, with potential mediating pathways, providing a possibility for interventions along the life course. The paper underscores the significance of adopting a child perspective to the exposome, acknowledging children's specific vulnerability, including differential exposures, susceptibility of effects and capacity to respond; their susceptibility during development and growth, highlighting neurodevelopmental processes from conception to young adulthood that are highly sensitive to external exposures. Further, critical periods when exposures may have significant effects on a child's development and future health are addressed. The paper stresses that children's behaviour, physiology, activity pattern and place for activities make them differently vulnerable to environmental pollutants, and calls for child-specific assessment methods, currently lacking within today's health frameworks. The importance of understanding the interplay between structure and agency is emphasized, where agency is guided by social structures and practices and vice-versa. An intersectional approach that acknowledges the interplay of social and physical exposures as well as a global and rural perspective on exposome is further pointed out. To advance the exposome field, interdisciplinary efforts that involve multiple scientific disciplines are crucial. By adopting a child perspective and incorporating an exposome approach, we can gain a comprehensive understanding of how exposures impact children's mental health and cognitive development leading to better outcomes.
Collapse
Affiliation(s)
- Kerstin Persson Waye
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Jesper Löve
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lercher
- Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Angel M Dzhambov
- Institute of Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria; Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Group "Health and Quality of Life in a Green and Sustainable Environment", SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria; Environmental Health Division, Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Bulgaria
| | - Maria Klatte
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Dirk Schreckenberg
- Centre for Applied Psychology, Environmental and Social Research (Zeus GmbH), Hagen, Germany
| | - Christin Belke
- Centre for Applied Psychology, Environmental and Social Research (Zeus GmbH), Hagen, Germany
| | - Larisa Leist
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Gordana Ristovska
- Institute of Public Health of the Republic of North Macedonia, Skopje, Macedonia
| | - Sonja Jeram
- National Institute of Public Health, Ljubljana, Slovenia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenny Selander
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arzu Arat
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lachmann
- Cognitive and Developmental Psychology, University of Kaiserslautern-Landau, Kaiserslautern, Germany; Centro de Investigación Nebrija en Cognición (CINC), Universidad Nebrija, Madrid, Spain
| | - Charlotte Clark
- Population Health Research Institute, St George's, University of London, London, United Kingdom
| | - Dick Botteldooren
- Department of Information Technology, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Kim White
- National Institute for Public Health and the Environment, Netherlands
| | - Jordi Julvez
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Clinical and Epidemiological Neuroscience Group (NeuroÈpia), Reus, Spain
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Gabriele Bolte
- Institute of Public Health and Nursing Research, University of Bremen, Bremen, Germany
| | - Achilleas Psyllidis
- Department of Sustainable Design Engineering, Delft University of Technology, Delft, the Netherlands
| | - John Gulliver
- Population Health Research Institute, St George's, University of London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Hendriek Boshuizen
- Department for Statistics, Datascience and Mathematical Modelling, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Alessandro Bozzon
- Department of Sustainable Design Engineering, Delft University of Technology, Delft, the Netherlands
| | - Janina Fels
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| | - Maarten Hornikx
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter van den Hazel
- International Network on Children's Health, Environment and Safety, Ellecom, the Netherlands
| | | | - Marco Brambilla
- Data Science Laboratory, Politecnico di Milano, Milan, Italy
| | | | - Irene Van Kamp
- National Institute for Public Health and the Environment, Netherlands
| | - Natalia Vincens
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Cai M, Ma J, Wang Z, Zhao Y, Zhang Y, Wang H, Xue H, Chen Y, Zhang Y, Wang C, Zhao Q, Xue K, Liu F. Individual-level brain morphological similarity networks: Current methodologies and applications. CNS Neurosci Ther 2023; 29:3713-3724. [PMID: 37519018 PMCID: PMC10651978 DOI: 10.1111/cns.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The human brain is an extremely complex system in which neurons, clusters of neurons, or regions are connected to form a complex network. With the development of neuroimaging techniques, magnetic resonance imaging (MRI)-based brain networks play a key role in our understanding of the intricate architecture of human brain. Among them, the structural MRI-based brain morphological network approach has attracted increasing attention due to the advantages in data acquisition, image quality, and in revealing the structural organizing principles intrinsic to the brain. This review is to summarize the methodology and related applications of individual-level morphological networks. BACKGROUND There have been a growing number of studies related to brain morphological similarity networks. Conventional morphological networks are intersubject covariance networks constructed using a certain morphological indicator of a group of subjects; individual-level morphological networks, on the other hand, measure the morphological similarity between brain regions for individual brains and can reflect the morphological information of single subjects. In recent years, individual morphological networks have demonstrated significant worth in exploring the topological changes of the human brain under both normal and disease conditions. Such studies provided novel perspectives for understanding human brain development and exploring the pathological mechanisms of neuropsychiatric disorders. CONCLUSION This paper mainly focuses on the studies of brain morphological networks at the individual level, introduces several ways for network construction, reviews representative work in this field, and finally points out current problems and future directions.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chunyang Wang
- Department of Scientific ResearchTianjin Medical University General HospitalTianjinChina
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
6
|
Sleurs C, Fletcher P, Mallucci C, Avula S, Ajithkumar T. Neurocognitive Dysfunction After Treatment for Pediatric Brain Tumors: Subtype-Specific Findings and Proposal for Brain Network-Informed Evaluations. Neurosci Bull 2023; 39:1873-1886. [PMID: 37615933 PMCID: PMC10661593 DOI: 10.1007/s12264-023-01096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/05/2023] [Indexed: 08/25/2023] Open
Abstract
The increasing number of long-term survivors of pediatric brain tumors requires us to incorporate the most recent knowledge derived from cognitive neuroscience into their oncological treatment. As the lesion itself, as well as each treatment, can cause specific neural damage, the long-term neurocognitive outcomes are highly complex and challenging to assess. The number of neurocognitive studies in this population grows exponentially worldwide, motivating modern neuroscience to provide guidance in follow-up before, during and after treatment. In this review, we provide an overview of structural and functional brain connectomes and their role in the neuropsychological outcomes of specific brain tumor types. Based on this information, we propose a theoretical neuroscientific framework to apply appropriate neuropsychological and imaging follow-up for future clinical care and rehabilitation trials.
Collapse
Affiliation(s)
- Charlotte Sleurs
- Department of Cognitive Neuropsychology, Tilburg University, 5037 AB, Tilburg, The Netherlands.
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium.
| | - Paul Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Conor Mallucci
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospital NHS Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
7
|
Zhao R, Sun C, Xu X, Zhao Z, Li M, Chen R, Shen Y, Pan Y, Zhang S, Wang G, Wu D. Developmental Pattern of Individual Morphometric Similarity Network in the Human Fetal Brain. Neuroimage 2023; 283:120410. [PMID: 39491205 DOI: 10.1016/j.neuroimage.2023.120410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024] Open
Abstract
The development of the cerebral cortex during the fetal period is a complex yet well-coordinated process. MRI-based morphological brain network provides a powerful tool for describing this process at a network level. Due to the challenges of in-utero MRI acquisition and image processing, the fetal morphological brain network has not been established. In this study, utilizing high-resolution in-utero MRI data, we constructed an individual morphometric similarity network for each fetus based on multiple cortical features. The spatiotemporal development of morphological connections was described at the level of edge, node, and lobe, respectively. Based on graph theoretical method, the topology structure of fetal morphological network was characterized. Edge analysis demonstrated an increase of morphological dissimilarity between hemispheres with gestational age, especially for the parietal cortex. The limbic and parieto-occipital regions exhibited the most drastic changes of morphological connections at both the edge and node levels. Between- and within-lobe analysis illustrated that the limbic lobe became more similar to other lobes, while the parietal and occipital lobes became more dissimilar to other lobes. Graph theoretical analysis indicated that the small-world structure of the fetal morphological network appeared as early as 22 weeks and that the network topology exhibited an enhanced integration and reduced segregation during prenatal development. The findings obtained from the preterm-born neonates agreed well with those of the fetuses. In summary, this study fills a gap in prenatal morphological brain network research and provides a piece of important evidence for understanding the normal development of fetal brain connectome during the second-third trimester.
Collapse
Affiliation(s)
- Ruoke Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyi Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhiyong Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Mingyang Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruike Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yao Shen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yibin Pan
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Songying Zhang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Jinan, China.
| | - Dan Wu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Bass C, Silva MD, Sudre C, Williams LZJ, Sousa HS, Tudosiu PD, Alfaro-Almagro F, Fitzgibbon SP, Glasser MF, Smith SM, Robinson EC. ICAM-Reg: Interpretable Classification and Regression With Feature Attribution for Mapping Neurological Phenotypes in Individual Scans. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:959-970. [PMID: 36374873 DOI: 10.1109/tmi.2022.3221890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An important goal of medical imaging is to be able to precisely detect patterns of disease specific to individual scans; however, this is challenged in brain imaging by the degree of heterogeneity of shape and appearance. Traditional methods, based on image registration, historically fail to detect variable features of disease, as they utilise population-based analyses, suited primarily to studying group-average effects. In this paper we therefore take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution (FA). Specifically, we explore the use of a VAE-GAN (variational autoencoder - general adversarial network) for translation called ICAM, to explicitly disentangle class relevant features, from background confounds, for improved interpretability and regression of neurological phenotypes. We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, as well as brain age prediction, for both neurodevelopment and neurodegeneration, using the developing Human Connectome Project (dHCP) and UK Biobank datasets. We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space. Our code is freely available on GitHub https://github.com/CherBass/ICAM.
Collapse
|
9
|
Petrican R, Fornito A. Adolescent neurodevelopment and psychopathology: The interplay between adversity exposure and genetic risk for accelerated brain ageing. Dev Cogn Neurosci 2023; 60:101229. [PMID: 36947895 PMCID: PMC10041470 DOI: 10.1016/j.dcn.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In adulthood, stress exposure and genetic risk heighten psychological vulnerability by accelerating neurobiological senescence. To investigate whether molecular and brain network maturation processes play a similar role in adolescence, we analysed genetic, as well as longitudinal task neuroimaging (inhibitory control, incentive processing) and early life adversity (i.e., material deprivation, violence) data from the Adolescent Brain and Cognitive Development study (N = 980, age range: 9-13 years). Genetic risk was estimated separately for Major Depressive Disorder (MDD) and Alzheimer's Disease (AD), two pathologies linked to stress exposure and allegedly sharing a causal connection (MDD-to-AD). Adversity and genetic risk for MDD/AD jointly predicted functional network segregation patterns suggestive of accelerated (GABA-linked) visual/attentional, but delayed (dopamine [D2]/glutamate [GLU5R]-linked) somatomotor/association system development. A positive relationship between brain maturation and psychopathology emerged only among the less vulnerable adolescents, thereby implying that normatively maladaptive neurodevelopmental alterations could foster adjustment among the more exposed and genetically more stress susceptible youths. Transcriptomic analyses suggested that sensitivity to stress may underpin the joint neurodevelopmental effect of adversity and genetic risk for MDD/AD, in line with the proposed role of negative emotionality as a precursor to AD, likely to account for the alleged causal impact of MDD on dementia onset.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool L69 7ZA, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Lautarescu A, Bonthrone AF, Pietsch M, Batalle D, Cordero-Grande L, Tournier JD, Christiaens D, Hajnal JV, Chew A, Falconer S, Nosarti C, Victor S, Craig MC, Edwards AD, Counsell SJ. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl Psychiatry 2022; 12:323. [PMID: 35945202 PMCID: PMC9363426 DOI: 10.1038/s41398-022-02073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- EPSRC/Wellcome Centre for Medical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|