1
|
Roy R. Cancer cells and viruses share common glycoepitopes: exciting opportunities toward combined treatments. Front Immunol 2024; 15:1292588. [PMID: 38495885 PMCID: PMC10940920 DOI: 10.3389/fimmu.2024.1292588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been recognized as one the major hallmarks of cancer cells that has led to numerous glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly originate from the lack of key glycosyltransferases activities, mutations, over expressions, or modifications of the requisite chaperone for functional folding. Due to their relative structural simplicity, O-linked glycans of the altered mucin family of glycoproteins have been particularly attractive in the design of tumor associated carbohydrate-based vaccines. Several such glycoconjugate vaccine formulations have generated potent monoclonal anti-carbohydrate antibodies useful as diagnostic and immunotherapies in the fight against cancer. Paradoxically, glycoproteins related to enveloped viruses also express analogous N- and O-linked glycosylation patterns. However, due to the fact that viruses are not equipped with the appropriate glycosyl enzyme machinery, they need to hijack that of the infected host cells. Although the resulting N-linked glycans are very similar to those of normal cells, some of their O-linked glycan patterns often share the common structural simplicity to those identified on tumor cells. Consequently, given that both cancer cells and viral glycoproteins share both common N- and O-linked glycoepitopes, glycoconjugate vaccines could be highly attractive to generate potent immune responses to target both conditions.
Collapse
Affiliation(s)
- René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Ricardo MG, Seeberger PH. Merging Solid-Phase Peptide Synthesis and Automated Glycan Assembly to Prepare Lipid-Peptide-Glycan Chimeras. Chemistry 2023; 29:e202301678. [PMID: 37358020 DOI: 10.1002/chem.202301678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Biomaterials with improved biological features can be obtained by conjugating glycans to nanostructured peptides. Creating peptide-glycan chimeras requires superb chemoselectivity. We expedite access to such chimeras by merging peptide and glycan solid-phase syntheses employing a bifunctional monosaccharide. The concept was explored in the context of the on-resin generation of a model α(1→6)tetramannoside linked to peptides, lipids, steroids, and adamantane. Chimeras containing a β(1→6)tetraglucoside and self-assembling peptides such as FF, FFKLVFF, and the amphiphile palmitoyl-VVVAAAKKK were prepared in a fully automated manner. The robust synthetic protocol requires a single purification step to obtain overall yields of about 20 %. The β(1→6)tetraglucoside FFKLVFF chimera produces micelles rather than nanofibers formed by the peptide alone as judged by microscopy and circular dichroism. The peptide amphiphile-glycan chimera forms a disperse fiber network, creating opportunities for new glycan-based nanomaterials.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universitaet Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
3
|
Bharali MM, Santra A. Total Synthesis of 6-Deoxy-l-talose Containing a Pentasaccharide Repeating Unit of Acinetobacter baumannii K11 Capsular Polysaccharides. J Org Chem 2023; 88:8770-8780. [PMID: 37340701 DOI: 10.1021/acs.joc.3c00615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Herein, we report a concise synthetic approach for the first total synthesis of a pentasaccharide repeating unit of Acinetobacter baumannii K11 capsular polysaccharides containing a rare sugar 6-deoxy-l-talose. The pentasaccharide was synthesized in a convergent manner using a [3 + 2] block glycosylation strategy. During this synthetic strive, we used a 2,2,2-trichloroethoxycarbonyl (Troc)-protected monosaccharide unit to achieve a high yield during the glycosylation to synthesize a trisaccharide, and chemoselective deprotection of the Troc group from the trisaccharide was carried out under a mild, pH-neutral condition, keeping the O-glycosidic bond, azido, and acid/base sensitive group intact. A thiotolylglycoside disaccharide donor containing 6-deoxy-l-talose was synthesized for the first time by the armed-disarmed glycosylation method between two thiotolylglycosides.
Collapse
Affiliation(s)
- Mrinmoy Manash Bharali
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Santra
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Abdullayev S, Roy R. Practical non-enzymatic synthesis of propargyl sialyl-α-(2-3’)-lactosamine trisaccharide using minimal protecting groups manipulation. Carbohydr Res 2022; 514:108543. [DOI: 10.1016/j.carres.2022.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
|
6
|
Mishra VN, Mandal PK. One-pot iterative glycosylations toward a tetrasaccharide related to the O-specific polysaccharide from Escherichia coli O132. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1928153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vijay Nath Mishra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
- Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Hao S, Lin S, Wang X, An R, Guo M, Wang Y, Cheng X, Xu H, Yang X, Hou Z, Guo C. Sequential one-pot synthesis of (1→6) amide-linked oligosaccharide mimetics under mild conditions. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1798456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shuang Hao
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuai Lin
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuanxin Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue Cheng
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoguang Yang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
8
|
Moffett S, Shiao TC, Mousavifar L, Mignani S, Roy R. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1659. [PMID: 32776710 DOI: 10.1002/wnan.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 01/29/2023]
Abstract
Despite exciting discoveries and progresses in drug design against cancer, its cure is still rather elusive and remains one of the humanities major challenges in health care. The safety profiles of common small molecule anti-cancer therapeutics are less than at acceptable levels and limiting deleterious side-effects have to be urgently addressed. This is mainly caused by their incapacity to differentiate healthy cells from cancer cells; hence, the use of high dosage becomes necessary. One possible solution to improve the therapeutic windows of anti-cancer agents undoubtedly resides in modern nanotechnology. This review presents a discussion concerning multivalent carbohydrate-protein interactions as this topic pertains to the fundamental aspects that lead glycoscientists to tackle glyconanoparticles. The second section describes the detailed properties of cancer cells and how their aberrant glycan surfaces differ from those of healthy cells. The third section briefly describes the immune systems, both innate and adaptative, because the numerous displays of cell surface protein receptors necessitate to be addressed from the multivalent angles, a strength full characteristic of nanoparticles. The next chapter presents recent advances in glyconanotechnologies, including glycodendrimers in particular, as they apply to glycobiology and carbohydrate-based cancer vaccines. This was followed by an overview of metallodendrimers and how this rapidly evolving field may contribute to our arsenal of therapeutic tools to fight cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | | | | | | | - René Roy
- Glycovax Pharma Inc, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Laverde D, Romero-Saavedra F, Argunov DA, Enotarpi J, Krylov VB, Kalfopoulou E, Martini C, Torelli R, van der Marel GA, Sanguinetti M, Codée JDC, Nifantiev NE, Huebner J. Synthetic Oligomers Mimicking Capsular Polysaccharide Diheteroglycan are Potential Vaccine Candidates against Encapsulated Enterococcal Infections. ACS Infect Dis 2020; 6:1816-1826. [PMID: 32364376 DOI: 10.1021/acsinfecdis.0c00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections caused by Enterococcus spp. are a major concern in the clinical setting. In Enterococcus faecalis, the capsular polysaccharide diheteroglycan (DHG), composed of ß-d-galactofuranose-(1 → 3)-ß-d-glucopyranose repeats, has been described as an important virulence factor and as a potential vaccine candidate against encapsulated strains. Synthetic structures emulating immunogenic polysaccharides present many advantages over native polysaccharides for vaccine development. In this work, we described the synthesis of a library of DHG oligomers, differing in length and order of the monosaccharide constituents. Using suitably protected thioglycoside building blocks, oligosaccharides up to 8-mer in length built up from either Galf-Glcp or Glcp-Galf dimers were generated, and we evaluated their immunoreactivity with antibodies raised against DHG. After the screening, we selected two octasaccharides, having either a galactofuranose or glucopyranose terminus, which were conjugated to a carrier protein for the production of polyclonal antibodies. The resulting antibodies were specific toward the synthetic structures and mediated in vitro opsonophagocytic killing of different encapsulated E. feacalis strains. The evaluated oligosaccharides are the first synthetic structures described to elicit antibodies that target encapsulated E. faecalis strains and are, therefore, promising candidates for the development of a well-defined enterococcal glycoconjugate vaccine.
Collapse
Affiliation(s)
- D. Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - F. Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - D. A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Enotarpi
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - V. B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - E. Kalfopoulou
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| | - C. Martini
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - R. Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - G. A. van der Marel
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - M. Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome 00168, Italy
| | - J. D. C. Codée
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - N. E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - J. Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, Munich 80337, Germany
| |
Collapse
|
10
|
Shit P, Misra AK. Straightforward synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O43 strain. Glycoconj J 2020; 37:647-656. [PMID: 32601769 DOI: 10.1007/s10719-020-09933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
A concise synthetic strategy has been developed for the synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O43 strain involving stereoselective β-D-mannosylation and α-L-fucosylation using corresponding trichloroacetimidate intermediates and perchloric acid supported over silica (HClO4-SiO2) as glycosylation promoter. The yield and stereoselectivity of the glycosylations were very good.
Collapse
Affiliation(s)
- Pradip Shit
- Division of Molecular Medicine, Bose Institute, P-1/12, C.I.T. Scheme VII M, Kolkata, 700054, India
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute, P-1/12, C.I.T. Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
11
|
Abstract
Vaccines are powerful tools that can activate the immune system for protection against various diseases. As carbohydrates can play important roles in immune recognition, they have been widely applied in vaccine development. Carbohydrate antigens have been investigated in vaccines against various pathogenic microbes and cancer. Polysaccharides such as dextran and β-glucan can serve as smart vaccine carriers for efficient antigen delivery to immune cells. Some glycolipids, such as galactosylceramide and monophosphoryl lipid A, are strong immune stimulators, which have been studied as vaccine adjuvants. In this review, we focus on the current advances in applying carbohydrates as vaccine delivery carriers and adjuvants. We will discuss the examples that involve chemical modifications of the carbohydrates for effective antigen delivery, as well as covalent antigen-carbohydrate conjugates for enhanced immune responses.
Collapse
Affiliation(s)
- Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Mignani S, Rodrigues J, Roy R, Shi X, Ceña V, El Kazzouli S, Majoral JP. Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discov Today 2019; 24:1176-1183. [PMID: 30898662 DOI: 10.1016/j.drudis.2019.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
Abstract
Dendrimers are highly branched, star-shaped macromolecules with nanometer-scale dimensions that can be readily modified with a range of functional groups, thus modifying their physicochemical and biological properties. In nanomedicine, dendrimers can be used as vectors for the targeted delivery strategy of a variety of biologically active agents or can be used as drug per se. In the future, it will be necessary to designate and develop 'safe' dendrimers, which is currently a crucial concern. Here, we analyze the key in vitro physicochemical parameters to be considered for preclinical evaluation of biomedical dendrimers.
Collapse
Affiliation(s)
- Serge Mignani
- Department of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450018, China; Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; Glycovax Pharma, 424 Guy Street, Suite 202, Montréal, QC, H3J 1S6, Canada.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montréal, QC, H3J 1S6, Canada.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Valentin Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas, ISCIII, 28031 Madrid, Spain
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Engineering, Euromed University of Fes (UEMF), Route de Meknès, 30000 Fès, Morocco
| | - Jean-Pierre Majoral
- Department of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450018, China; Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4 France; Université Toulouse 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
13
|
Kumar H, Mandal PK. Synthetic routes toward pentasaccharide repeating unit corresponding to the O-antigen of Escherichia coli O181. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Synthetic directions of acidic hexasaccharide repeating unit of the O-antigen of Cronobacter sakazakii HPB 2855 using one pot glycosylation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliv Rev 2018; 136-137:73-81. [PMID: 29155170 DOI: 10.1016/j.addr.2017.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
Abstract
Nanomedicine, which is an application of nanotechnologies in healthcare is developed to improve the treatments and lives of patients suffering from a range of disorders and to increase the successes of drug candidates. Within the nanotechnology universe, the remarkable unique and tunable properties of dendrimers have made them promising tools for diverse biomedical applications such as drug delivery, gene therapy and diagnostic. Up-to-date, very few dendrimers has yet gained regulatory approval for systemic administration, why? In this critical review, we briefly focus on the list of desired basic dendrimer requirements for decision-making purpose by the scientists (go/no-go decision), in early development stages, to become clinical candidates, and to move towards Investigational New Drugs (IND) application submission. In addition, the successful translation between research and clinic should be performed by the implementation of a simple roadmap to jump the 'valley of death' successfully.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Peres, 75006 Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Helena Tomas
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - René Roy
- Glycovax Pharma, 424 Guy Street, Suite 202, Montreal, Quebec H3J 1S6, Canada
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP, 44099, 31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex, France.
| |
Collapse
|
16
|
Mukherjee MM, Ghosh R. Synthetic Routes toward Acidic Pentasaccharide Related to the O-Antigen of E. coli 120 Using One-Pot Sequential Glycosylation Reactions. J Org Chem 2017; 82:5751-5760. [DOI: 10.1021/acs.joc.7b00561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
17
|
Bhaumik I, Misra AK. Convergent Synthesis of the Tetrasaccharide Repeating Unit of the O
-Polysaccharide of Salmonella enterica
O41. ChemistrySelect 2017. [DOI: 10.1002/slct.201700143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ishani Bhaumik
- Division of Molecular Medicine; Bose Institute, P-1/12, C.I.T. Scheme VII M; Kolkata 700054 India
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute, P-1/12, C.I.T. Scheme VII M; Kolkata 700054 India
| |
Collapse
|
18
|
Barabas AZ, Cole CD, Graeff RM, Morcol T, Lafreniere R. A novel modified vaccination technique produces IgG antibodies that cause complement-mediated lysis of multiple myeloma cells carrying CD38 antigen. Hum Antibodies 2017; 24:45-51. [PMID: 28128764 DOI: 10.3233/hab-160294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives were to: 1) induce a lytic IgG antibody (ab) response (via the so called `third vaccination method') against CD38 antigen (ag) residing on the extra-cellular domain of multiple myeloma (MM) cells in recipient rabbits, by combining the CD38 ag with donor-derived anti-CD38 ag lytic IgG ab into an immune complex (IC); and 2) determine whether abs produced would cause complement-mediated lysis (in vitro) of human MM cells containing CD38 ag. The vaccine was created in a two-step process. First, ab (rabbit anti-CD38 ag IgG ab) was raised in donor rabbits by injections of low molecular weight soluble CD38 ag in Freund's complete adjuvant (FCA) and aqueous solution. Second, transfer of pathogenic lytic IgG ab response into recipient rabbits was achieved by injections of ICs composed of CD38 ag and homologous anti-CD38 ag IgG ab. Consequently, recipient rabbits produced the same ab with the same specificity against the target ag as was present in the inoculum, namely agglutinating, precipitating and lytic (as demonstrated in vitro). In an in vitro study, in the presence of complement, donor and recipient rabbits' immune sera caused lysis of CD38 ag associated human MM cells. The most effective lytic ab response causing sera were those from donor rabbits injected with CD38 ag in FCA and those from rabbits injected with ICs, especially when they were administered in adjuvants. These results provided proof of concept that the third vaccination method has good potential as a stand-alone and efficacious method of controlling cancer.
Collapse
Affiliation(s)
- Arpad Z Barabas
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Chad D Cole
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Richard M Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Tulin Morcol
- BioSante Pharmaceuticals, Inc., Doylestown, PA, USA
| | - Rene Lafreniere
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
20
|
Rocheleau S, Pottel J, Huskić I, Moitessier N. Highly Regioselective Monoacylation of Unprotected Glucopyranoside Using Transient Directing-Protecting Groups. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sylvain Rocheleau
- Department of Chemistry; McGill University; 801, Sherbrooke St·W. H3A 0B8 Montreal Canada
| | - Joshua Pottel
- Department of Chemistry; McGill University; 801, Sherbrooke St·W. H3A 0B8 Montreal Canada
| | - Igor Huskić
- Department of Chemistry; McGill University; 801, Sherbrooke St·W. H3A 0B8 Montreal Canada
| | - Nicolas Moitessier
- Department of Chemistry; McGill University; 801, Sherbrooke St·W. H3A 0B8 Montreal Canada
| |
Collapse
|
21
|
Ganneau C, Simenel C, Emptas E, Courtiol T, Coïc YM, Artaud C, Dériaud E, Bonhomme F, Delepierre M, Leclerc C, Lo-Man R, Bay S. Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate. Org Biomol Chem 2017; 15:114-123. [DOI: 10.1039/c6ob01931e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A complex glycopeptide was obtained in multigram as a fully synthetic anti-cancer vaccine for human use.
Collapse
|
22
|
Yamazaki Y, Watabe N, Obata H, Hara E, Ohmae M, Kimura S. Immune activation with peptide assemblies carrying Lewis y tumor-associated carbohydrate antigen. J Pept Sci 2016; 23:189-197. [DOI: 10.1002/psc.2926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yuji Yamazaki
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University; Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Naoki Watabe
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University; Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Hiroaki Obata
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University; Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Eri Hara
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science; Kyoto University Hospital; 53 Shogoin kawahara-cho, Sakyo-ku Kyoto 606-8507 Japan
| | - Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University; Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering; Kyoto University; Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
23
|
Ghosh T, Misra AK. Synthesis of the Heptasaccharide Repeating Unit of the Cell Wall O-Polysaccharide of Enterotoxigenic Escherichia coli O139. ChemistryOpen 2016; 5:43-6. [PMID: 27308210 PMCID: PMC4906484 DOI: 10.1002/open.201500164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/10/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) like the O139 strain are mostly responsible for traveler's diarrhea and causes diseases in pigs, cattle, and poultry. A convenient synthetic strategy was developed for the synthesis of the heptasaccharide repeating unit of the cell wall lipopolysaccharide of the E. coli O139 strain. The p-methoxybenzyl (PMB) group was used as a temporary protecting group which was removed in situ under the glycosylation conditions by changing the reaction temperature during the synthesis of the target compound. All glycosylation steps gave high yields with good stereoselectivity. A (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-mediated selective oxidation of the primary hydroxyl group was carried out using a biphasic reaction condition at the late stage of the synthesis. Such synthetic oligosaccharides could later be effectively conjugated with proteins to prepare glycoconjugate derivatives as vaccine candidates.
Collapse
Affiliation(s)
- Tamashree Ghosh
- Division of Molecular MedicineBose InstituteP-1/12, C.I.T. Scheme VII MKolkata700054India
| | - Anup Kumar Misra
- Division of Molecular MedicineBose InstituteP-1/12, C.I.T. Scheme VII MKolkata700054India
| |
Collapse
|
24
|
Sarkar V, Mukhopadhyay B. Chemical synthesis of the hexasaccharide related to the repeating unit of the capsular polysaccharide from carbapenem resistant Klebsiella pneumoniae 2796 and 3264. RSC Adv 2016. [DOI: 10.1039/c6ra07351d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Total synthesis of the hexasaccharide repeating unit of the capsular polysaccharide fromKlebsiella pneumoniae2796 and 3264 following a linear sequential glycosylation strategy.
Collapse
Affiliation(s)
- Vikramjit Sarkar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| | - Balaram Mukhopadhyay
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
25
|
Santra A, Ghosh T, Misra AK. Synthesis of Di- and Trisaccharides Related to the O-Polysaccharide of Shigella dysenteriae Type 8. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1108424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abhishek Santra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Tamashree Ghosh
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India
| |
Collapse
|
26
|
Das R, Mukhopadhyay B. Chemical Synthesis of the Pentasaccharide Related to the Repeating Unit of theO-Antigen fromSalmonella entericaO4. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1047503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Mandal PK, Chheda PR. Synthesis of a pentasaccharide repeating unit of the O-specific polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O28. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Abstract
Carbohydrate antigens are important targets for the immune system, but identification of key glycan antigens is challenging. Direct analysis of glycomes by mass spectrometry is difficult, and detection reagents, such as monoclonal antibodies and lectins, are only available for a small subset of glycans. An alternative approach involves profiling serum anti-glycan antibody populations to identify unique antibodies or changes in antibody subpopulations. Glycan microarray technology allows rapid evaluation of hundreds to thousands of antigen-antibody interactions in a single experiment. This high-throughput format is particularly useful in profiling complex anti-glycan antibodies in serum. Here we elaborate the use of this technology to explore clinically relevant carbohydrate antigens by profiling serum anti-glycan antibodies. Detailed protocols from glycan microarray fabrication to microarray binding assays and analysis of microarray data are presented.
Collapse
|
29
|
Demian WLL, Kottari N, Shiao TC, Randell E, Roy R, Banoub JH. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1223-1233. [PMID: 25476939 DOI: 10.1002/jms.3448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
We present in this manuscript the characterization of the exact glycation sites of the Thomsen-Friedenreich antigen-BSA vaccine (TF antigen:BSA) prepared using a Michael addition reaction between the saccharide antigen as an electrophilic acceptor and the nucleophilic thiol and L-Lysine ε-amino groups of BSA using different ligation conditions. Matrix laser desorption ionization time-of-flight mass spectrometry of the neoglycoconjugates prepared with TF antigen:protein ratios of 2:1 and 8:1, allowed to observe, respectively, the protonated molecules for each neoglycoconjugates: [M + H](+) at m/z 67,599 and 70,905. The measurements of these molecular weights allowed us to confirm exactly the carbohydrate:protein ratios of these two synthetic vaccines. These were found to be closely formed by a TF antigen:BSA ratios of 2:1 and 8:1, respectively. Trypsin digestion and liquid chromatography coupled with electrospray ionization mass spectrometry allowed us to identify the series of released glycopeptide and peptide fragments. De novo sequencing affected by low-energy collision dissociation tandem mass spectrometry was then employed to unravel the precise glycation sites of these neoglycoconjugate vaccines. Finally, we identified, respectively, three diagnostic and characteristic glycated peptides for the synthetic glycoconjugate possessing a TF antigen:BSA ratio 2:1, whereas we have identified for the synthetic glycoconjugate having a TF:BSA ratio 8:1 a series of 14 glycated peptides. The net increase in the occupancy sites of these neoglycoconjugates was caused by the large number of glycoforms produced during the chemical ligation of the synthetic carbohydrate antigen onto the protein carrier.
Collapse
Affiliation(s)
- Wael L L Demian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's Newfoundland, A1B 3X9, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Mandal PK. Synthesis of the pentasaccharide repeating unit of the O-antigen of E. coli O117:K98:H4. Beilstein J Org Chem 2014; 10:2724-8. [PMID: 25550736 PMCID: PMC4273275 DOI: 10.3762/bjoc.10.287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/06/2014] [Indexed: 11/24/2022] Open
Abstract
The pentasaccharide repeating unit of the O-antigen of E. coli O117:K98:H4 strain has been synthesized using a combination of sequential glycosylations and [3 + 2] block synthetic strategy from the suitably protected monosaccharide intermediates. Thioglycosides and glycosyl trichloroacetimidate derivatives have been used as glycosyl donors in the glycosylations.
Collapse
Affiliation(s)
- Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226 031, India
| |
Collapse
|
31
|
Das R, Mahanti M, Mukhopadhyay B. Concise synthesis of the tetrasaccharide repeating unit of the O-polysaccharide isolated from Edwardsiella tarda PCM 1156 strain. Carbohydr Res 2014; 399:15-20. [DOI: 10.1016/j.carres.2014.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/24/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
32
|
Dhara D, Kar RK, Bhunia A, Misra AK. Convergent Synthesis and Conformational Analysis of the Hexasaccharide Repeating Unit of theO-Antigen ofShigella flexneriSerotype 1d. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Santra A, Si A, Kar RK, Bhunia A, Misra AK. Linear synthesis and conformational analysis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O13. Carbohydr Res 2014; 391:9-15. [DOI: 10.1016/j.carres.2014.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 11/28/2022]
|
34
|
Synthesis of a pentasaccharide repeating unit of the O-antigen of enteroadherent Escherichia coli O154 strain. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. DETECTION OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL AND NUCLEAR AGENTS FOR THE PREVENTION OF TERRORISM 2014. [DOI: 10.1007/978-94-017-9238-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Ghosh T, Santra A, Misra AK. Convergent synthesis of a hexasaccharide corresponding to the cell wall O-antigen of Escherichia coli O41. RSC Adv 2014. [DOI: 10.1039/c3ra45493b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Bhaumik I, Misra AK. Expedient synthesis of a pentasaccharide related to the O-specific polysaccharide of Escherichia coli O117:K98:H4 strain. RSC Adv 2014. [DOI: 10.1039/c4ra10538a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A convenient synthetic strategy has been developed for the synthesis of a pentasaccharide, related to the O-specific polysaccharide ofEscherichia coliO117:K98:H4 strain, using sequential glycosylations of functionalized monosaccharide moieties.
Collapse
Affiliation(s)
- Ishani Bhaumik
- Bose Institute
- Division of Molecular Medicine
- Kolkata-700054, India
| | - Anup Kumar Misra
- Bose Institute
- Division of Molecular Medicine
- Kolkata-700054, India
| |
Collapse
|
38
|
Expedient synthesis of a tetrasaccharide and a pentasaccharide corresponding to the cell wall O-antigen of Escherichia coli O77 and Escherichia coli O17. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Sau A, Dhara D, Misra AK. Concise synthesis of a pentasaccharide repeating unit corresponding to the O-antigen of Escherichia coli O102. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Facile synthesis of a pentasaccharide repeating unit corresponding to the common O-antigen of Salmonella enterica O57 and Escherichia coli O51. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Martos-Maldonado MC, Thygesen MB, Jensen KJ, Vargas-Berenguel A. Gold-Ferrocene Glyco-Nanoparticles for High-Sensitivity Electrochemical Detection of Carbohydrate-Lectin Interactions. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Abstract
Combining nanotechnology with glycobiology has triggered an exponential growth of research activities in the design of novel functional bionanomaterials (glyconanotechnology). More specifically, recent synthetic advances towards the tailored and versatile design of glycosylated nanoparticles namely glyconanoparticles, considered as synthetic mimetics of natural glycoconjugates, paved the way toward diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shapes, sizes, and organized around stable nanoparticles have readily contributed to their development and applications in nanomedicine. In this context, glycosylated gold-nanoparticles (GNPs), glycosylated quantum dots (QDs), fullerenes, single-wall natotubes (SWNTs), and self-assembled glycononanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention to afford powerful imaging, therapeutic, and biodiagnostic devices. This review will provide an overview of the most recent syntheses and applications of glycodendrimers in glycoscience that have permitted to deepen our understanding of multivalent carbohydrate-protein interactions. Together with synthetic breast cancer vaccines, inhibitors of bacterial adhesions to host tissues including sensitive detection devices, these novel bionanomaterials are finding extensive relevance.
Collapse
|
43
|
Verma PR, Mukhopadhyay B. Concise synthesis of a tetra- and a trisaccharide related to the repeating unit of the O-antigen from Providencia rustigianii O34 in the form of their p-methoxyphenyl glycosides. RSC Adv 2013. [DOI: 10.1039/c2ra22407k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Sau A, Misra AK. Convergent synthesis of the tetrasaccharide repeating unit of the cell wall lipopolysaccharide of Escherichia coli O40. Beilstein J Org Chem 2012; 8:2053-9. [PMID: 23209539 PMCID: PMC3511039 DOI: 10.3762/bjoc.8.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/01/2012] [Indexed: 11/23/2022] Open
Abstract
A tetrasaccharide repeating unit corresponding to the cell-wall lipopolysaccharide of E. coli O40 was synthesized by using a convergent block glycosylation strategy. A disaccharide donor was coupled to a disaccharide acceptor by a stereoselective glycosylation. A 2-aminoethyl linker was chosen as the anomeric protecting group at the reducing end of the tetrasaccharide. All glycosylation steps are significantly high yielding and stereoselective.
Collapse
Affiliation(s)
- Abhijit Sau
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII-M, Kolkata-700054, India; FAX: +91-33-2355 3886
| | | |
Collapse
|
45
|
Ghosh T, Misra AK. Facile synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli 19ab. Carbohydr Res 2012; 362:8-12. [DOI: 10.1016/j.carres.2012.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 11/25/2022]
|
46
|
Santra A, Ghosh T, Misra AK. Expedient synthesis of two structurally close tetrasaccharides corresponding to the O-antigens of Escherichia coli O127 and Salmonella enterica O13. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
McWilliam HEG, Driguez P, Piedrafita D, McManus DP, Meeusen ENT. Novel immunomic technologies for schistosome vaccine development. Parasite Immunol 2012; 34:276-84. [PMID: 22486551 DOI: 10.1111/j.1365-3024.2011.01330.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schistosomiasis remains one of the most common human helminthiases, despite the availability of an effective drug against the causative parasites. Drug treatment programmes have several limitations, and it is likely that a vaccine is required for effective control. While decades of vaccine development have seen the discovery and testing of several candidate antigens, none have shown consistent and acceptable high levels of protection. The migrating larval stages are susceptible to immunity, however few larval-specific antigens have been discovered. Therefore, there is a need to identify novel larval-specific antigens, which may prove to be more efficacious than existing targets. Immunomics, a relatively new field developed to cope with the recent large influx of biological information, holds promise for the discovery of vaccine targets, and this review highlights some immunomic approaches to schistosome vaccine development. Firstly, a method to focus on the immune response elicited by the important and vulnerable larval stage is described, which allows a targeted study of the immunome at different tissue sites. Then, two high-throughput arrays are discussed for the identification of protein and carbohydrate antigens. It is anticipated that these approaches will progress vaccine development against the schistosomes, as well as other parasites.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Biotechnology Research Laboratories, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
48
|
Synthesis of the tetrasaccharide motif and its structural analog corresponding to the lipopolysaccharide of Escherichia coli O75. PLoS One 2012; 7:e37291. [PMID: 22662142 PMCID: PMC3360696 DOI: 10.1371/journal.pone.0037291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background Extraintestinal pathogenic E. coli are mostly responsible for a diverse spectrum of invasive human and animal infections leading to the urinary tract infections. Bacterial lipopolysaccharides are responsible for their pathogenicity and their interactions with host immune responses. In spite of several breakthroughs in the development of therapeutics to combat urinary tract infections and related diseases, the emergence of multidrug-resistant bacterial strains is a serious concern. Lipopolysaccharides are attractive targets for the development of long-term therapeutic agents to eradicate the infections. Since the natural sources cannot provide the required amount of oligosaccharides, development of chemical synthetic strategies for their synthesis is relevant to gain access to a reservoir of oligosaccharides and their close analogs. Methodology Two tetrasaccharide derivatives were synthesized from a single disaccharide intermediate. β-d-mannoside moiety was prepared from β-d-glucoside moiety following oxidation–reduction methodology. A [2+2] stereoselective block glycosylation strategy has been adopted for the preparation of tetrasaccharide derivative. α-d-Glucosamine moiety was prepared from α-d-mannosidic moiety following triflate formation at C-2 and SN2 substitution. A one-pot iterative glycosylation exploiting the orthogonal property of thioglycoside was carried out during the synthesis of tetrasaccharide analog. Results Synthesis of the tetrasaccharide motif (1) and its structural analog (2) corresponding to the lipopolysaccharide of Escherichia coli O75 was successfully achieved in excellent yield. Most of the reactions are clean and high yielding. Both compounds 1 and 2 were synthesized as their 4-methoxyphenyl glycoside, which can act as a temporary anomeric protecting group for further use of these tetrasaccharides in the preparation of glycoconjugates.
Collapse
|
49
|
Convergent synthesis of the pentasaccharide repeating unit of the O-antigenic polysaccharide of enterohaemorrhagic Escherichia coli O113. Glycoconj J 2012; 29:181-8. [PMID: 22562778 DOI: 10.1007/s10719-012-9383-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
An acidic pentasaccharide repeating unit corresponding to the O-antigenic polysaccharide of enterohaemorrhagic Escherichia coli O113 as its p-methoxyphenyl glycoside has been synthesized in a convergent manner by adopting a [3+2] block glycosylation strategy. During the synthetic endeavor a one-pot reaction condition for stereoselective glycosylation and protecting group manipulation has been applied. All glycosylation steps are highly stereoselective with good to excellent yield.
Collapse
|
50
|
Sau A, Panchadhayee R, Ghosh D, Misra AK. Synthesis of a tetrasaccharide analog corresponding to the repeating unit of the O-polysaccharide of Salmonella enterica O59: unexpected stereo outcome in glycosylation. Carbohydr Res 2012; 352:18-22. [PMID: 22398254 DOI: 10.1016/j.carres.2012.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
|