1
|
Faysal AA, Kaya SI, Cetinkaya A, Ozkan SA, Gölcü A. The Effect of Polymerization Techniques on the Creation of Molecularly Imprinted Polymer Sensors and Their Application on Pharmaceutical Compounds. Crit Rev Anal Chem 2024:1-20. [PMID: 38252120 DOI: 10.1080/10408347.2023.2301652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Molecularly imprinted polymers (MIPs) have become more prevalent in fabricating sensor applications, particularly in medicine, pharmaceuticals, food quality monitoring, and the environment. The ease of their preparation, adaptability of templates, superior affinity and specificity, improved stability, and the possibility for downsizing are only a few benefits of these sensors. Moreover, from a medical perspective, monitoring therapeutic medications and determining pharmaceutical compounds in their pharmaceutical forms and biological systems is very important. Additionally, because medications are hazardous to the environment, effective, quick, and affordable determination in the surrounding environment is of major importance. Concerning a variety of performance criteria, including sensitivity, specificity, low detection limits, and affordability, MIP sensors outperform other published technologies for analyzing pharmaceutical drugs. MIP sensors have, therefore, been widely used as one of the most crucial techniques for analyzing pharmaceuticals. The first part of this review provides a detailed explanation of the many polymerization techniques that were employed to create high-performing MIP sensors. In the subsequent section of the review, the utilization of MIP-based sensors for quantifying the drugs in their pharmaceutical preparation, biological specimens, and environmental samples are covered in depth. Finally, a critical evaluation of the potential future research paths for MIP-based sensors clarifies the use of MIP in pharmaceutical fields.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
- Graduate School of Health Sciences, Ankara University, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Türkiye
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
2
|
Zhao Y, Simon C, Daoud Attieh M, Haupt K, Falcimaigne-Cordin A. Reduction-responsive molecularly imprinted nanogels for drug delivery applications. RSC Adv 2020; 10:5978-5987. [PMID: 35497405 PMCID: PMC9049337 DOI: 10.1039/c9ra07512g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Degradable molecularly imprinted polymers (MIPs) with affinity for S-propranolol were prepared by the copolymerization of methacrylic acid as functional monomer and a disulfide-containing cross-linker, bis(2-methacryloyloxyethyl)disulfide (DSDMA), using bulk polymerization or high dilution polymerization for nanogels synthesis. The specificity and the selectivity of DSDMA-based molecularly imprinted polymers toward S-propranolol were studied in batch binding experiments, and their binding properties were compared to a traditional ethylene glycol dimethacrylate (EDMA)-based MIP. Nanosized MIPs prepared with DSDMA as crosslinker could be degraded into lower molecular weight linear polymers by cleaving the disulfide bonds and thus reversing cross-linking using different reducing agents (NaBH4, DTT, GSH). Turbidity, viscosity, polymer size and IR-spectra were measured to study the polymer degradation. The loss of specific recognition and binding capacity of S-propranolol was also observed after MIP degradation. This phenomenon was applied to modulate the release properties of the MIP. In presence of GSH at its intracellular concentration, the S-propranolol release was higher, showing that these materials could potentially be applied as intracellular controlled drug delivery system.
Collapse
Affiliation(s)
- Y Zhao
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - C Simon
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - M Daoud Attieh
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - K Haupt
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| | - A Falcimaigne-Cordin
- Sorbonne Universités - Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory CS 60319 60203 Compiègne Cedex France
| |
Collapse
|
3
|
Scrivano L, Parisi OI, Iacopetta D, Ruffo M, Ceramella J, Sinicropi MS, Puoci F. Molecularly imprinted hydrogels for sustained release of sunitinib in breast cancer therapy. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luca Scrivano
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; Rende Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; Rende Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences; University of Calabria; Rende Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; Rende Italy
| | - Mariarosa Ruffo
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; Rende Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences; University of Calabria; Rende Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; Rende Italy
| | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences; University of Calabria; Rende Italy
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutrition Sciences; University of Calabria; Rende Italy
| |
Collapse
|
4
|
Sun L, Guan J, Xu Q, Yang X, Wang J, Hu X. Synthesis and Applications of Molecularly Imprinted Polymers Modified TiO₂ Nanomaterials: A Review. Polymers (Basel) 2018; 10:E1248. [PMID: 30961173 PMCID: PMC6401937 DOI: 10.3390/polym10111248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO₂) nanomaterials have caused a widespread concern in the past several decades for their bulk characteristics and potential applications in many different areas. Lately, the combination between molecularly imprinted polymers (MIPs) and TiO₂ nanomaterials have been proven to improve the relative adsorption capacity, selectivity and accelerate the rate of mass transfer of analyte which is not possible using TiO₂ alone. Considering the unique performance of the MIPs modified TiO₂ nanomaterials, this review intends to give an overview of the recent progresses in the development of MIPs modified TiO₂ nanomaterials, the potential applications of their tailor-made characteristics. The limitations and challenges in this practically promising nanomaterials have also been raised and summarized. By means of the points raised in this article, we would like to provide some assistance for further development of preparation methodologies and the expansion of some potential applications in the field of MIPs modified TiO₂ nanomaterials.
Collapse
Affiliation(s)
- Lingna Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jie Guan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Qin Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaoyu Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
- Guangling College, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
5
|
Preparation and Evaluation of Oseltamivir Molecularly Imprinted Polymer Silica Gel as Liquid Chromatography Stationary Phase. Molecules 2018; 23:molecules23081881. [PMID: 30060497 PMCID: PMC6222414 DOI: 10.3390/molecules23081881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022] Open
Abstract
To improve the chromatographic performance of an oseltamivir (OS) molecularly imprinted polymer (MIP), silica gel coated with an MIP layer for OS (OSMIP@silica gel) was prepared by the surface molecular imprinting technology on the supporter of porous silica gel microspheres. A nonimprinted polymer with the silica gel (NIP@silica gel) was also prepared for comparison. The obtained particles were characterized through FT–IR, scanning electron microscopy, specific surface area analysis, and porosity measurements. The results indicated that the polymer was successfully synthesized and revealed the structural differences between imprinted and nonimprinted polymers. The results of static adsorption experiments showed that adsorption quantity of the OSMIP@silica gel for OS was higher than that for NIP@silica gel, and the OSMIP@silica gel had two kinds of affinity sites for OS but the NIP@silica gel had one. The chromatographic performance of the OSMIP@silica gel column had significant improvement. The imprinting factor of the OSMIP@silica gel column for OS was 1.64. Furthermore, the OSMIP@silica gel column showed good affinity and selectivity for template OS and another neuraminidase inhibitor, peramivir, but not for quinocetone. These results indicated that the prepared OSMIP could be used to simulate the activity center of neuraminidase, and the OSMIP@silica gel column could be also employed in future studies to search for more active neuraminidase inhibitor analogues from traditional Chinese herbs.
Collapse
|
6
|
Wan W, Descalzo AB, Shinde S, Weißhoff H, Orellana G, Sellergren B, Rurack K. Ratiometric Fluorescence Detection of Phosphorylated Amino Acids Through Excited-State Proton Transfer by Using Molecularly Imprinted Polymer (MIP) Recognition Nanolayers. Chemistry 2017; 23:15974-15983. [PMID: 28869685 DOI: 10.1002/chem.201703041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 12/12/2022]
Abstract
A 2,3-diaminophenazine bis-urea fluorescent probe monomer (1) was developed. It responds to phenylphosphate and phosphorylated amino acids in a ratiometric fashion with enhanced fluorescence accompanied by the development of a redshifted emission band arising from an excited-state proton transfer (ESPT) process in the hydrogen-bonded probe/analyte complex. The two urea groups of 1 form a cleft-like binding pocket (Kb >1010 L2 mol-2 for 1:2 complex). Imprinting of 1 in presence of ethyl ester- and fluorenylmethyloxycarbonyl (Fmoc)-protected phosphorylated tyrosine (Fmoc-pTyr-OEt) as the template, methacrylamide as co-monomer, and ethyleneglycol dimethacrylate as cross-linker gave few-nanometer-thick molecularly imprinted polymer (MIP) shells on silica core microparticles with excellent selectivity for the template in a buffered biphasic assay. The supramolecular recognition features were established by spectroscopic and NMR studies. Rational screening of co-monomers and cross-linkers allowed to single out the best performing MIP components, giving significant imprinting factors (IF>3.5) while retaining ESPT emission and the ratiometric response in the thin polymer shell. Combination of the bead-based detection scheme with the phase-transfer assay dramatically improved the IF to 15.9, allowing sensitive determination of the analyte directly in aqueous media.
Collapse
Affiliation(s)
- Wei Wan
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| | - Ana B Descalzo
- Department of Organic Chemistry, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Sudhirkumar Shinde
- Department of Biomedical Science, Malmö University, 20506, Malmö, Sweden
| | - Hardy Weißhoff
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Guillermo Orellana
- Department of Organic Chemistry, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Börje Sellergren
- Department of Biomedical Science, Malmö University, 20506, Malmö, Sweden
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, 12489, Berlin, Germany
| |
Collapse
|
7
|
Kim DM, Moon JM, Lee WC, Yoon JH, Choi CS, Shim YB. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens Bioelectron 2017; 91:276-283. [DOI: 10.1016/j.bios.2016.12.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/22/2016] [Accepted: 12/20/2016] [Indexed: 12/29/2022]
|
8
|
Padalkar VS, Tathe AB, Sekar N. Synthesis of triazine based dialdehyde Schiff's base – new templates for Molecular Imprinting and study of their structural and photophysical properties. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2012.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Molecularly imprinted nanoparticles and their releasing properties, bio-distribution as drug carriers. Asian J Pharm Sci 2016; 12:172-178. [PMID: 32104327 PMCID: PMC7032076 DOI: 10.1016/j.ajps.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 11/26/2022] Open
Abstract
Molecular imprinted nanoparticles (MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carriers. We synthesized MINPs via precipitation polymerization with vinblastine (VBL) as a model drug, and investigated the drug loading, releasing property in vitro and bio-distribution in vivo. The obtained MINPs, from 300 to 450 nm, had smooth surface and favorable dispersibility. The entrapment efficacy and drug loading capacity of VBL loaded MINPs (MINPs-VBL) were 83.25% and 8.72% respectively. In PBS (pH7.4), MINPs-VBL showed sustained release behavior. The cumulative release percentage reached about 70% during 216 h and no burst release was observed. The releasing behavior of MINPs-VBL in vitro conformed to the first-order kinetics model. MINPs-VBL and commercially available vinblastine sulfate injection (VBL injection) were injected via tail vein of SD rats respectively to investigate the bio-distribution. MINPs-VBL group showed higher concentration of VBL in tissues and serum than VBL injection group after 60 min, and the drug level in liver was the highest. MINPs-VBL exhibited liver targeting trend to some extent, which was based on the evaluation of drug targeting index (DTI) and drug selecting index (DSI).
Collapse
|
10
|
Synthesis and characterization of magnetic molecularly imprinted polymer nanoparticles for controlled release of letrozole. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0171-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zarezade V, Behbahani M, Omidi F, Abandansari HS, Hesam G. A new magnetic tailor made polymer for separation and trace determination of cadmium ions by flame atomic absorption spectrophotometry. RSC Adv 2016. [DOI: 10.1039/c6ra23688j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic ion imprinted polymers have been prepared and applied for the selective extraction and trace monitoring of cadmium ions in food samples.
Collapse
Affiliation(s)
| | - Mohammad Behbahani
- Research Center for Environmental Determinants of Health (RCEDH)
- Kermanshah University of Medical Sciences
- Kermanshah
- Iran
| | - Fariborz Omidi
- Department of Occupational Health Engineering
- School of Public Health
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hamid Sadeghi Abandansari
- Department of Stem Cells and Developmental Biology
- Cell Science Research Center
- Royan Institute
- Tehran
- Iran
| | - Ghasem Hesam
- Department of Occupational Health Engineering
- School of Public Health
- Shahroud University of Medical Sciences
- Shahroud
- Iran
| |
Collapse
|
12
|
Tang L, Zhao CY, Wang XH, Li RS, Yang JR, Huang YP, Liu ZS. Macromolecular crowding of molecular imprinting: A facile pathway to produce drug delivery devices for zero-order sustained release. Int J Pharm 2015; 496:822-33. [DOI: 10.1016/j.ijpharm.2015.10.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 11/30/2022]
|
13
|
Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules. Future Med Chem 2015; 7:123-38. [PMID: 25686002 DOI: 10.4155/fmc.14.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imprinting (MI) represents a strategy to introduce a 'molecular memory' in a polymeric system obtaining materials with specific recognition properties. MI particles can be used as drug delivery systems providing a targeted release and thus reducing the side effects. The introduction of molecular recognition properties on a polymeric drug carrier represents a challenge in the development of targeted delivery systems to increase their efficiency. This review will summarize the limited number of drug delivery MI particles described in the literature along with an overview of potential solutions for a larger exploitation of MI particles as targeted drug delivery carriers. Molecularly imprinted drug carriers can be considered interesting candidates to significantly improve the efficiency of a controlled drug treatment.
Collapse
|
14
|
Nonderivatized Sarcosine Analysis by Gas Chromatography after Solid-Phase Microextraction by Newly Synthesized Monolithic Molecularly Imprinted Polymer. Chromatographia 2015. [DOI: 10.1007/s10337-015-2936-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Tadi KK, Motghare RV, Ganesh V. Electrochemical detection of epinephrine using a biomimic made up of hemin modified molecularly imprinted microspheres. RSC Adv 2015. [DOI: 10.1039/c5ra16636e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical detection of epinephrine, an important neurotransmitter in mammalian central nervous system, is demonstrated in this study using a simple bio-mimic prepared by hemin modified microspheres of a molecularly imprinted polymer.
Collapse
Affiliation(s)
- Kiran Kumar Tadi
- Chemistry Department
- Visvesvaraya National Institute of Technology
- Napgur – 440010
- India
| | - Ramani V. Motghare
- Chemistry Department
- Visvesvaraya National Institute of Technology
- Napgur – 440010
- India
| | - V. Ganesh
- Electrodics and Electrocatalysis (EEC) Division
- CSIR – Central Electrochemical Research Institute (CSIR – CECRI)
- Karaikudi – 630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
16
|
Zhu D, Chen Z, Zhao K, Kan B, Li H, Zhang X, Lin B, Zhang L. Adsorption and sustained release of haemoglobin imprinted polysiloxane using a calcium alginate film as a matrix. RSC Adv 2015. [DOI: 10.1039/c5ra03593g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the fabrication procedure of the CA film based MIP.
Collapse
Affiliation(s)
- Dunwan Zhu
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin Key Laboratory of Biomedical Materials
- Tianjin, 300192
- China
| | - Zhuo Chen
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin Key Laboratory of Biomedical Materials
- Tianjin, 300192
- China
| | - Kongyin Zhao
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Bohong Kan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hui Li
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Xinxin Zhang
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Beibei Lin
- State Key Laboratory of Hollow Fiber Film Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Linhua Zhang
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin Key Laboratory of Biomedical Materials
- Tianjin, 300192
- China
| |
Collapse
|
17
|
Shirangi M, Sastre Toraño J, Sellergren B, Hennink WE, Somsen GW, van Nostrum CF. Methyleneation of Peptides by N,N,N,N-Tetramethylethylenediamine (TEMED) under Conditions Used for Free Radical Polymerization: A Mechanistic Study. Bioconjug Chem 2014; 26:90-100. [DOI: 10.1021/bc500445d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mehrnoosh Shirangi
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Department
of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Javier Sastre Toraño
- Biomolecular
Analysis, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Börje Sellergren
- Institute
of Environmental Research, Faculty of Chemistry, Technical University of Dortmund, 44221 Dortmund, Germany
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Govert W. Somsen
- Biomolecular
Analysis, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
18
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
19
|
Behbahani M, Bagheri S, Amini MM, Sadeghi Abandansari H, Reza Moazami H, Bagheri A. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J Sep Sci 2014; 37:1610-6. [DOI: 10.1002/jssc.201400188] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/23/2014] [Accepted: 03/23/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Behbahani
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | - Saman Bagheri
- Department of Chemistry; Islamic Azad University, North-Tehran Branch; Tehran Iran
| | - Mostafa M. Amini
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | | | - Hamid Reza Moazami
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| | - Akbar Bagheri
- Department of Chemistry; Faculty of Science, Shahid Beheshti University; Tehran Iran
| |
Collapse
|
20
|
Pardo A, Mespouille L, Dubois P, Blankert B, Duez P. Molecularly Imprinted Polymers: Compromise between Flexibility and Rigidity for Improving Capture of Template Analogues. Chemistry 2014; 20:3500-9. [DOI: 10.1002/chem.201303216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/24/2013] [Indexed: 01/30/2023]
|
21
|
Yang YJ, Li JY, Liu XW, Zhang JY, Liu YR, Li B. A non-biological method for screening active components against influenza virus from traditional Chinese medicine by coupling a LC column with oseltamivir molecularly imprinted polymers. PLoS One 2013; 8:e84458. [PMID: 24386385 PMCID: PMC3873415 DOI: 10.1371/journal.pone.0084458] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/22/2013] [Indexed: 12/22/2022] Open
Abstract
To develop a non-biological method for screening active components against influenza virus from traditional Chinese medicine (TCM) extraction, a liquid chromatography (LC) column prepared with oseltamivir molecularly imprinted polymer (OSMIP) was employed with LC-mass spectrometry (LC-MS). From chloroform extracts of compound TCM liquid preparation, we observed an affinitive component m/z 249, which was identified to be matrine following analysis of phytochemical literatures, OSMIP-LC column on-line of control compounds and MS/MS off-line. The results showed that matrine had similar bioactivities with OS against avian influenza virus H9N2 in vitro for both alleviating cytopathic effect and hemagglutination inhibition and that the stereostructures of these two compounds are similar while their two-dimensional structures were different. In addition, our results suggested that the bioactivities of those affinitive compounds were correlated with their chromatographic behaviors, in which less difference of the chromatographic behaviors might have more similar bioactivities. This indicates that matrine is a potential candidate drug to prevent or cure influenza for human or animal. In conclusion, the present study showed that molecularly imprinted polymers can be used as a non-biological method for screening active components against influenza virus from TCM.
Collapse
Affiliation(s)
- Ya-Jun Yang
- Gansu Provincial Engineering Research Center for New Animal Drug, Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, Gansu Province, China
| | - Jian-Yong Li
- Gansu Provincial Engineering Research Center for New Animal Drug, Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, Gansu Province, China
- * E-mail:
| | - Xi-Wang Liu
- Gansu Provincial Engineering Research Center for New Animal Drug, Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, Gansu Province, China
| | - Ji-Yu Zhang
- Gansu Provincial Engineering Research Center for New Animal Drug, Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, Gansu Province, China
| | - Yu-Rong Liu
- Gansu Provincial Engineering Research Center for New Animal Drug, Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, Gansu Province, China
| | - Bing Li
- Gansu Provincial Engineering Research Center for New Animal Drug, Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, Gansu Province, China
| |
Collapse
|
22
|
Affiliation(s)
- Romana Schirhagl
- Physics
Department, ETH-Zurich, Schafmattstrasse
16, 8046 Zurich
| |
Collapse
|
23
|
Rational synthesis of pindolol imprinted polymer by non-covalent protocol based on computational approach. J Mol Model 2013; 19:3385-96. [PMID: 23686281 DOI: 10.1007/s00894-013-1856-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Pindolol (PDL) is a potent and specific adrenoreceptor blocking agent. It is widely used in the treatment of hypertension, cardiac arrhythmia and angina pectoris. Molecularly imprinted polymers (MIPs) are synthetic receptors having potential applications in drug delivery systems and devices such as diagnostic sensors. In the present work, ab initio quantum mechanical simulations and computational screening were used to identify functional monomer having best interactions with PDL. A virtual library of 16 functional monomers was built and the possible minimum energy conformation of the monomers and PDL were calculated using Hartree-Fock (HF) method for the synthesis of PDL imprinted polymer. The interaction energy between functional monomer and the template were corrected by means of basis set superposition error (BSSE) in all pre-polymerization complexes. The hydrogen bonding between PDL and functional monomer was evaluated by changes in bond lengths before and after complex formation. The virtual template-monomer complex with highest interaction energy is more stable during the polymerization and leads to high selectivity and specificity toward the template. The interaction energy of PDL was found to be the highest with itaconic acid followed by 4-vinyl pyridine and least with acrylonitrile. Taking a spectroscopic viewpoint, results obtained from analysis of the harmonic infrared spectrum were examined. Red and blue shifts related to the stretching frequencies of either donors or acceptors of protons were identified and compared experimentally. Stoichiometric mole ratio of template to functional monomer was optimized and confirmed by UV visible spectra titrations. The theoretical results were correlated by evaluation of binding parameters of MIPs. The experimental binding results were in good agreement with theoretical computations.
Collapse
|
24
|
Moczko E, Poma A, Guerreiro A, Perez de Vargas Sansalvador I, Caygill S, Canfarotta F, Whitcombe MJ, Piletsky S. Surface-modified multifunctional MIP nanoparticles. NANOSCALE 2013; 5:3733-41. [PMID: 23503559 PMCID: PMC4724934 DOI: 10.1039/c3nr00354j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.
Collapse
Affiliation(s)
- Ewa Moczko
- Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
TADI KIRANKUMAR, MOTGHARE RV. Computational and experimental studies on oxalic acid imprinted polymer. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0381-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Mehdinia A, Baradaran Kayyal T, Jabbari A, Aziz-Zanjani MO, Ziaei E. Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples. J Chromatogr A 2013; 1283:82-8. [DOI: 10.1016/j.chroma.2013.01.093] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
27
|
Wang Z, Li J, Liu X, Yang J, Lu X. Preparation of an amperometric sensor for norfloxacin based on molecularly imprinted grafting photopolymerization. Anal Bioanal Chem 2013; 405:2525-33. [DOI: 10.1007/s00216-012-6678-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/13/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022]
|
28
|
Potterat O, Hamburger M. Concepts and technologies for tracking bioactive compounds in natural product extracts: generation of libraries, and hyphenation of analytical processes with bioassays. Nat Prod Rep 2013; 30:546-64. [DOI: 10.1039/c3np20094a] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Verheyen E, Schillemans JP, van Wijk M, Demeniex MA, Hennink WE, van Nostrum CF. Challenges for the effective molecular imprinting of proteins. Biomaterials 2011; 32:3008-20. [PMID: 21288565 DOI: 10.1016/j.biomaterials.2011.01.007] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Molecular imprinting is a technique that is used to create artificial receptors by the formation of a polymer network around a template molecule. This technique has proven to be particularly effective for molecules with low molecular weight (<1500 Da), and during the past five years the number of research articles on the imprinting of larger (bio)templates is increasing considerably. However, expanding the methodology toward imprinted materials for selective recognition of proteins, DNA, viruses and bacteria appears to be extremely challenging. This paper presents a critical analysis of data presented by several authors and our own experiments, showing that the molecular imprinting of proteins still faces some fundamental challenges. The main topics of concern are proper monomer selection, washing method/template removal, quantification of the rebinding and reproducibility. Use of charged monomers can lead to strong electrostatic interactions between monomers and template but also to undesired high aspecific binding. Up till now, it has not been convincingly shown that electrostatic interactions lead to better imprinting results. The combination of a detergent (SDS) and AcOH, commonly used for template removal, can lead to experimental artifacts, and should ideally be avoided. In many cases template rebinding is unreliably quantified, results are not evaluated critically and lack statistical analysis. Therefore, it can be argued that presently, in numerous publications the scientific evidence of molecular imprinting of proteins is not convincing.
Collapse
Affiliation(s)
- Ellen Verheyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Isolation of hypoxia-inducible factor 1 (HIF-1) inhibitors from frankincense using a molecularly imprinted polymer. Invest New Drugs 2010; 29:1081-9. [PMID: 20437079 DOI: 10.1007/s10637-010-9440-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/21/2010] [Indexed: 12/31/2022]
Abstract
Hypoxia-Inducible Factor 1 (HIF-1), a transcriptional activator, is highly involved in the pathology of cancer. Inhibition of HIF-1 retards tumor growth and enhances treatment efficiency when used in combination with chemo- or radiation therapy. The recent validation of HIF-1 as an important drug target in cancer treatment has stimulated efforts to identify and isolate natural or synthetic HIF-1 inhibitors. In the present study, quercetin, a known inhibitor of HIF-1, was imprinted in a polymer matrix in order to prepare a Molecularly Imprinted Polymer (MIP), which was subsequently used for the selective isolation of new inhibitors from frankincense, a gum resin used as anticancer remedy in traditional medicine. The frankincense components isolated by Solid Phase Extraction on MIP (MIP-SPE), efficiently inhibited the transcriptional activity of HIF-1 and decreased the protein levels of HIF-1α, the regulated subunit of HIF-1. The selective retention of acetyl 11-ketoboswellic acid (AKBA, one of the main bioactive components of frankincense) by MIP led to the revealing of its inhibitory activity on the HIF-1 signaling pathway. AKBA was selectively retained by SPE on the quercetin imprinted polymer, with an imprinting effect of 8.1 ± 4.6. Overall, this study demonstrates the potential of MIP application in the screening, recognition and isolation of new bioactive compounds that aim selected molecular targets, a potential that has been poorly appreciated until.
Collapse
|
31
|
Chemical synthesis in nanosized cavities. Curr Opin Chem Biol 2008; 12:332-9. [DOI: 10.1016/j.cbpa.2008.04.602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/19/2022]
|
32
|
18 Molecularly imprinted polymers as sorbents for separations and extractions. SEP SCI TECHNOL 2007. [DOI: 10.1016/s0149-6395(07)80024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register]
|
33
|
Schillemans JP, van Nostrum CF. Molecularly imprinted polymer particles: synthetic receptors for future medicine. Nanomedicine (Lond) 2006; 1:437-47. [PMID: 17716146 DOI: 10.2217/17435889.1.4.437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular imprinting is a relatively new and rapidly evolving technique used to create synthetic receptors; it also possesses great potential in a number of applications in the life sciences. Traditionally, molecularly imprinted polymers are prepared by bulk polymerization, followed by crushing and sieving to obtain polymer beads. However, several methods can be used to synthesize polymer micro- and nano-particles directly, thereby avoiding the time- and labor-consuming process of crush sieving. Possible applications are foreseen in enhanced drug loading, controlled drug delivery and drug targeting. This review describes the different methods of synthesis of molecularly imprinted micro- and nano-particles and discusses how these methods challenge the outstanding issues that molecular imprinting is facing today, thereby facilitating biomedical applications in the future.
Collapse
Affiliation(s)
- Joris P Schillemans
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Fazal FM, Hansen DE. Glucose-specific poly(allylamine) hydrogels--a reassessment. Bioorg Med Chem Lett 2006; 17:235-8. [PMID: 17035016 PMCID: PMC1828204 DOI: 10.1016/j.bmcl.2006.09.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 11/20/2022]
Abstract
Polymer hydrogels synthesized by crosslinking poly(allylamine hydrochloride) with (+/-)-epichlorohydrin in the presence of d-glucose-6-phosphate monobarium salt do not show imprinting on the molecular level. A series of hydrogels was prepared using the following five templates: d-glucose-6-phosphate monobarium salt, d-glucose, l-glucose, barium hydrogen phosphate (BaHPO(4)), and d-gluconamide; a hydrogel was also prepared in the absence of a template. For all six hydrogels, batch binding studies were conducted with d-glucose, l-glucose, d-fructose, and d-gluconamide. The extent of analyte sugar binding was determined using (1)H NMR. Each hydrogel shows approximately the same relative binding affinity for the different sugar derivatives, and none displays selectivity for either glucose enantiomer. The results of the binding studies correlate with the octanol-water partition coefficients of the sugars, indicative that differential solubilities in the bulk polymer account for the binding affinities observed. Thus, in contrast to templated hydrogels prepared using methacrylate- or acrylamide-based reagents, true imprinting does not occur in this novel, crosslinked-poly(allylamine hydrochloride) system.
Collapse
Affiliation(s)
| | - David E. Hansen
- *Corresponding author. Tel.: +1-413-542-2731; fax: +1-413-542-2735; e-mail address:
| |
Collapse
|
35
|
Alvarez-Lorenzo C, Yañez F, Barreiro-Iglesias R, Concheiro A. Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release 2006; 113:236-44. [PMID: 16777254 DOI: 10.1016/j.jconrel.2006.05.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/25/2022]
Abstract
Soft contact lenses are receiving an increasing attention not only for correcting mild ametropia but also as drug delivery devices. To provide poly(hydroxyethyl methacrylate), PHEMA, lenses with the ability to load norfloxacin (NRF) and to control its release, functional monomers were carefully chosen and then spatially ordered applying the molecular imprinting technology. Isothermal titration calorimetry (ITC) studies revealed that maximum binding interaction between NRF and acrylic acid (AA) occurs at a 1:1, and that the process saturates at 1:4 molar ratio. Hydrogels were synthesized using different NRF:AA molar ratios (1:2 to 1:16), at two fix AA total concentrations (100 and 200 mM), and using moulds of different thicknesses (0.4 and 0.9 mm). The cross-linker molar concentration was 1.6 times that of AA. Control (non-imprinted) hydrogels were prepared similarly but with the omission of NRF. All hydrogels showed a similar degree of swelling (55%) and, once hydrated, presented adequate optical and viscoelastic properties. After immersion in 0.025, 0.050 and 0.10 mM drug solutions, imprinted hydrogels loaded greater amounts of NRF than the non-imprinted ones. Imprinted hydrogels synthesized using NRF:AA 1:3 and 1:4 molar ratios showed the greatest ability to control the release process, sustaining it for more than 24 h. These results prove that ITC is a useful tool for the optimization of the structure of the imprinted cavities in order to obtain efficient therapeutic soft contact lenses.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
36
|
Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted materials as advanced excipients for drug delivery systems. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:225-68. [PMID: 17045196 DOI: 10.1016/s1387-2656(06)12007-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The application of the molecular imprinting technology in the design of new drug delivery systems (DDS) and devices useful in closely related fields, such as diagnostic sensors or biological traps, is receiving increasing attention. Molecular imprinting technology can provide polymeric materials with the ability to recognize specific bioactive molecules and with a sorption/release behaviour that can be made sensitive to the properties of the surrounding medium. In this review, an introduction to the imprinting technology presenting the different approaches in preparing selective polymers of different formats is given, and the key factors involved in obtaining of imprinted binding sites in materials useful for pharmaceutical applications are analysed. Examples of DDS based on molecularly imprinted polymers (MIPs) can be found for the three main approaches developed to control the moment at which delivery should begin and/or the drug release rate; i.e., rate-programmed, activation-modulated or feedback-regulated drug delivery. This review seeks to highlight the most remarkable advantages of the imprinting technique in the development of new efficient DDS as well as to point out some possibilities of adapting the synthesis procedures to create systems compatible with both the relative instable drug molecules, especially of peptide nature, and the sensitive physiological tissues with which MIP-based DDS would enter into contact when administered. The prospects for future development are also analysed.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | | |
Collapse
|
37
|
|