1
|
Garrido M, Naranjo A, Pérez EM. Characterization of emerging 2D materials after chemical functionalization. Chem Sci 2024; 15:3428-3445. [PMID: 38455011 PMCID: PMC10915849 DOI: 10.1039/d3sc05365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical modification of 2D materials has proven a powerful tool to fine tune their properties. With this motivation, the development of new reactions has moved extremely fast. The need for speed, together with the intrinsic heterogeneity of the samples, has sometimes led to permissiveness in the purification and characterization protocols. In this review, we present the main tools available for the chemical characterization of functionalized 2D materials, and the information that can be derived from each of them. We then describe examples of chemical modification of 2D materials other than graphene, focusing on the chemical description of the products. We have intentionally selected examples where an above-average characterization effort has been carried out, yet we find some cases where further information would have been welcome. Our aim is to bring together the toolbox of techniques and practical examples on how to use them, to serve as guidelines for the full characterization of covalently modified 2D materials.
Collapse
|
2
|
|
3
|
Georghiou PE, Rahman S, Assiri Y, Valluru GK, Menelaou M, Alodhayb AN, Braim M, Beaulieu L. Development of calix[4]arenes modified at their narrow- and wide-rims as potential metal ions sensor layers for microcantilever sensors: further studies. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of a microcantilever (MCL) sensing device capable of simultaneously detecting several metal ionic species in aqueous media with low limits of detection requires a variety of sensing layers that are ion specific. Calix[4]arenes are robust molecules that can be easily modified and have been extensively studied for their ion binding properties. They are also capable of forming self-assembled monolayers (SAMs) on the gold layers of MCLs and are capable of detecting various metal ions with different anionic counterions in aqueous solutions. In this paper, we report on the effect of the alkoxy group in the narrow rim [O-(alkoxycarbonyl)methoxy] substituents of bimodal calix[4]arenes, which have been used as metal ion MCL sensing layers, using classical solution state experimental studies. A DFT computational study to compare the experimental results with several metal ions is also reported herein.
Collapse
Affiliation(s)
- Paris E. Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Shofiur Rahman
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Yousif Assiri
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Gopi Kishore Valluru
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mona Braim
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - L.Y. Beaulieu
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| |
Collapse
|
4
|
Woods JJ, Spivey JA, Wilson JJ. A [1H,15N] Heteronuclear Single Quantum Coherence NMR Study of the Solution Reactivity of the Ruthenium‐Based Mitochondrial Calcium Uniporter Inhibitor Ru265. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joshua J. Woods
- Cornell University Department of Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Jesse A. Spivey
- Cornell University Department of Chemistry and Chemical Biology 14853 Ithaca UNITED STATES
| | - Justin J. Wilson
- Cornell University Department of Chemistry and Chemical Biology G50A Baker Laboratory 14853 Ithaca UNITED STATES
| |
Collapse
|
5
|
Coccè V, Rimoldi I, Facchetti G, Ciusani E, Alessandri G, Signorini L, Sisto F, Giannì A, Paino F, Pessina A. In Vitro Activity of Monofunctional Pt-II Complex Based on 8-Aminoquinoline against Human Glioblastoma. Pharmaceutics 2021; 13:pharmaceutics13122101. [PMID: 34959382 PMCID: PMC8704014 DOI: 10.3390/pharmaceutics13122101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
A new cationic Pt(II) complex bearing 8-aminoquinoline as chelating ligand (called Pt-8AQ) was evaluated against two human carcinomas, one mesothelioma, and three glioblastoma cell lines. The in vitro comparison to the clinically approved CisPt showed a minor activity of Pt-8AQ against carcinoma and mesothelioma, whereas a significant activity of Pt-8AQ was observed on the proliferation of the three glioblastoma cell lines (U87-MG IC50 = 3.68 ± 0.69 µM; U373-MG IC50 = 11.53 ± 0.16 µM; U138-MG IC50 = 8.05 ± 0.23 µM) that was higher than that observed with the clinically approved CisPt (U87-MG IC50 = 7.27 + 1.80 µM; U373-MG IC50 = 22.69 ± 0.05 µM; U138-MG IC50 = 32.1 ± 4.44 µM). Cell cycle analysis proved that Pt-8AQ significantly affected the cell cycle pattern by increasing the apoptotic cells represented by the sub G0/G1 region related with a downregulation of p53 and Bcl-2. Moreover, an NMR investigation of Pt-8AQ interaction with 9-EtG, GSH, and Mets7 excluded DNA as the main target, suggesting a novel mechanism of action. Our study demonstrated the high stability of Pt-8AQ after incubation at 37 °C and a significant antineoplastic activity on glioblastomas. These features also make Pt-8AQ a good candidate for developing a new selective advanced cell chemotherapy approach in combination with MSCs.
Collapse
Affiliation(s)
- Valentina Coccè
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Isabella Rimoldi
- Department of Pharmaceutical Science, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Giorgio Facchetti
- Department of Pharmaceutical Science, University of Milan, Via Golgi 19, 20133 Milan, Italy;
- Correspondence: (G.F.); (A.P.)
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Neurogenetic Medicine, Fondazione IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy;
| | - Giulio Alessandri
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy;
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Aldo Giannì
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
- Maxillo-Facial and Dental Unit, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Paino
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, CRC StaMeTec, 20133 Milan, Italy; (V.C.); (G.A.); (F.S.); (A.G.); (F.P.)
- Correspondence: (G.F.); (A.P.)
| |
Collapse
|
6
|
Needham RJ, Prokes I, Habtemariam A, Romero-Canelón I, Clarkson GJ, Sadler PJ. NMR studies of group 8 metallodrugs: 187Os-enriched organo-osmium half-sandwich anticancer complex. Dalton Trans 2021; 50:12970-12981. [PMID: 34581369 PMCID: PMC8477448 DOI: 10.1039/d1dt02213j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the synthesis of the organo-osmium anticancer complex [Os(η6-p-cym)(N,N-azpy-NMe2)Br]PF6 (1) containing natural abundance 187Os (1.96%), and isotopically-enriched (98%) [187Os]-1. Complex 1 and [187Os]-1 contain a π-bonded para-cymene (p-cym), a chelated 4-(2-pyridylazo)-N,N-dimethylaniline (azpy-NMe2), and a monodentate bromide as ligands. The X-ray crystal structure of 1 confirmed its half-sandwich 'piano-stool' configuration. Complex 1 is a member of a family of potent anticancer complexes, and exhibits sub-micromolar activity against A2780 human ovarian cancer cells (IC50 = 0.40 μM). Complex [187Os]-1 was analysed by high-resolution ESI-MS, 1D 1H and 13C NMR, and 2D 1H COSY, 13C-1H HMQC, and 1H-187Os HMBC NMR spectroscopy. Couplings of 1H and 13C nuclei from the azpy/p-cym ligands to 187Os were observed with J-couplings (1J to 4J) ranging between 0.6-8.0 Hz. The 187Os chemical shift of [187Os]-1 (-4671.3 ppm, determined by 2D 1H-187Os HMBC NMR) is discussed in relation to the range of values reported for related Os(II) arene and cyclopentadienyl complexes (-2000 to -5200 ppm).
Collapse
Affiliation(s)
- Russell J Needham
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Ivan Prokes
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
7
|
NMR spectroscopy to study the fate of metallodrugs in cells. Curr Opin Chem Biol 2021; 61:214-226. [PMID: 33882391 DOI: 10.1016/j.cbpa.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Metal-based drugs can modulate various biological processes and exhibit a rich variety of properties that foster their use in biomedicine and chemical biology. On the way to intracellular targets, ligand exchange and redox reactions can take place, thus making metallodrug speciation in vivo a challenging task. Advances in NMR spectroscopy have made it possible to move from solution to live-cell studies and elucidate the transport of metallodrugs and interactions with macromolecular targets in a physiological setting. In turn, the electronic properties and supramolecular chemistry of metal complexes can be exploited to characterize drug delivery nanosystems by NMR. The recent evolution of in-cell NMR methodology is presented with special emphasis on metal-related processes. Applications to paradigmatic cases of platinum and gold drugs are highlighted.
Collapse
|
8
|
Bolitho EM, Coverdale JPC, Bridgewater HE, Clarkson GJ, Quinn PD, Sanchez‐Cano C, Sadler PJ. Tracking Reactions of Asymmetric Organo-Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew Chem Int Ed Engl 2021; 60:6462-6472. [PMID: 33590607 PMCID: PMC7985874 DOI: 10.1002/anie.202016456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Most metallodrugs are prodrugs that can undergo ligand exchange and redox reactions in biological media. Here we have investigated the cellular stability of the anticancer complex [OsII [(η6 -p-cymene)(RR/SS-MePh-DPEN)] [1] (MePh-DPEN=tosyl-diphenylethylenediamine) which catalyses the enantioselective reduction of pyruvate to lactate in cells. The introduction of a bromide tag at an unreactive site on a phenyl substituent of Ph-DPEN allowed us to probe the fate of this ligand and Os in human cancer cells by a combination of X-ray fluorescence (XRF) elemental mapping and inductively coupled plasma-mass spectrometry (ICP-MS). The BrPh-DPEN ligand is readily displaced by reaction with endogenous thiols and translocated to the nucleus, whereas the Os fragment is exported from the cells. These data explain why the efficiency of catalysis is low, and suggests that it could be optimised by developing thiol resistant analogues. Moreover, this work also provides a new way for the delivery of ligands which are inactive when administered on their own.
Collapse
Affiliation(s)
- Elizabeth M. Bolitho
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- I14 Imaging BeamlineDiamond Light SourceOxfordOX11 0DEUK
| | | | | | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Paul D. Quinn
- I14 Imaging BeamlineDiamond Light SourceOxfordOX11 0DEUK
| | - Carlos Sanchez‐Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramon 18220014San SebastiánSpain
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
9
|
Bolitho EM, Coverdale JPC, Bridgewater HE, Clarkson GJ, Quinn PD, Sanchez‐Cano C, Sadler PJ. Tracking Reactions of Asymmetric Organo‐Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elizabeth M. Bolitho
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- I14 Imaging Beamline Diamond Light Source Oxford OX11 0DE UK
| | | | | | - Guy J. Clarkson
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Paul D. Quinn
- I14 Imaging Beamline Diamond Light Source Oxford OX11 0DE UK
| | - Carlos Sanchez‐Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 San Sebastián Spain
| | - Peter J. Sadler
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
10
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Cheng L, Li C, Xi Z, Wei K, Yuan S, Arnesano F, Natile G, Liu Y. Cisplatin reacts with histone H1 and the adduct forms a ternary complex with DNA. Metallomics 2020; 11:556-564. [PMID: 30672544 DOI: 10.1039/c8mt00358k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin is an anticancer drug widely used in clinics; it induces the apoptosis of cancer cells by targeting DNA. However, its interaction with proteins has been found to be crucial in modulating the pre and post-target activity. Nuclear DNA is tightly assembled with histone proteins to form nucleosomes in chromatin; this can impede the drug to access DNA. On the other hand, the linker histone H1 is considered 'the gate to nucleosomal DNA' due to its exposed location and dynamic conformation; therefore, this protein can influence the platination of DNA. In this study, we performed a reaction of cisplatin with histone H1 and investigated the interaction of the H1/cisplatin adduct with DNA. The reactions were conducted on the N-terminal domains of H1.4 (sequence 1-90, H1N90) and H1.0 (sequence 1-7, H1N7). The results show that H1 readily reacts with cisplatin and generates bidentate and tridentate adducts, with methionine and glutamate residues as the preferential binding sites. Chromatographic and NMR analyses show that the platination rate of H1 is slightly higher than that of DNA and the platinated H1 can form H1-cisplatin-DNA ternary complexes. Interestingly, cisplatin is more prone to form H1-Pt-DNA ternary complexes than trans-oriented platinum agents. The formation of H1-cisplatin-DNA ternary complexes and their preference for cis- over trans-oriented platinum agents suggest an important role of histone H1 in the mechanism of action of cisplatin.
Collapse
Affiliation(s)
- Lanjun Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Höfer D, Cseh K, Hejl M, Roller A, Jakupec MA, Galanski MS, Keppler BK. Synthesis, characterization, cytotoxic activity, and 19F NMR spectroscopic investigations of (OC-6-33)-diacetato(ethane-1,2-diamine)bis(3,3,3-trifluoropropanoato)platinum(IV) and its platinum(II) counterpart. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Yao X, Tracy CM, Bierbach U. Cysteine-Directed Bioconjugation of a Platinum(II)-Acridine Anticancer Agent. Inorg Chem 2018; 58:43-46. [PMID: 30543413 DOI: 10.1021/acs.inorgchem.8b02717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Classical maleimide Michael addition chemistry in conjunction with copper-free click chemistry was investigated as a synthetic strategy to attach cytotoxic platinum-acridine hybrid agents to carrier proteins. The structural integrity and selectivity of the model payloads, which were validated in human serum albumin (HSA) using mass spectrometric analysis and heteronuclear 2D 1H-15N HSQC NMR experiments, may have broad utility for the targeted delivery of highly cytotoxic platinum acridines and other nonclassical platinum containing anticancer agents.
Collapse
Affiliation(s)
- Xiyuan Yao
- Department of Chemistry , Wake Forest University , Wake Downtown Campus , Winston-Salem , North Carolina 27101 , United States
| | - Christopher M Tracy
- Department of Chemistry , Wake Forest University , Wake Downtown Campus , Winston-Salem , North Carolina 27101 , United States
| | - Ulrich Bierbach
- Department of Chemistry , Wake Forest University , Wake Downtown Campus , Winston-Salem , North Carolina 27101 , United States
| |
Collapse
|
14
|
Trujillo LDC, Jios JL, Franca CA, Güida JA. New NMR investigation of [RuF5NO]2− anion. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Cullinane C, Deacon GB, Drago PR, Erven AP, Junk PC, Luu J, Meyer G, Schmitz S, Ott I, Schur J, Webster LK, Klein A. Synthesis and antiproliferative activity of a series of new platinum and palladium diphosphane complexes. Dalton Trans 2018; 47:1918-1932. [PMID: 29340396 DOI: 10.1039/c7dt04615d] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
New organometallic complexes [M(dppe)(R)2] {where M = Pt or Pd, dppe = 1,2-bis(diphenylphosphano)ethane, and R = C6F4H-x (x = 6,5,4), C6F3H2-3,5, C6F3H2-5,6, C6F3H2-3,6, C6F4(OMe)-4, and C6F4(cyclo-C5H10N)-4, the numbers x refer to the positions of the protons in the polyfluoroaryl ligands} were synthesised either through transmetalation from the dichlorido complexes [M(dppe)Cl2] or through ligand exchange using [M(diene)Cl2] precursor complexes with diene = 1,5-cyclooctadiene (cod) or 1,5-hexadiene (hex). Alternatively, [M(dppX)Cl(R)] complexes with dppX = dppm (1,1-bis(diphenylphosphano)methane), dppe, dppp (1,3-bis(diphenylphosphano)propane), and dppb (1,4-bis(diphenylphosphano)butane) were prepared in decarboxylation reactions from thallium(i) carboxylates Tl(O2CR). The different preparative methods were compared in terms of yield and purity. Structural and spectroscopic data are reported for the new dppX- and diene-M(R)2 complexes. Antiproliferative activity was investigated for these new complexes against the HT-29 (colon carcinoma) and MCF-7 (breast adenocarcinoma) cell lines, and the active compounds of this first series together with organometallic dppX or hex PtII or PdII complexes were then included in cell tests using L1210 (leukaemia cells) and the cisplatin-resistant L1210/DDP cell line. Remarkably, promising antiproliferative results were found for a few PtII and PdII complexes, while structurally closely related compounds were essentially nontoxic.
Collapse
Affiliation(s)
- Carleen Cullinane
- Peter MacCallum Cancer Center, 305 Grattan Street, Melbourne Vic 3000, Australia and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne Vic 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Altaf M, Monim-Ul-Mehboob M, Kawde AN, Corona G, Larcher R, Ogasawara M, Casagrande N, Celegato M, Borghese C, Siddik ZH, Aldinucci D, Isab AA. New bipyridine gold(III) dithiocarbamate-containing complexes exerted a potent anticancer activity against cisplatin-resistant cancer cells independent of p53 status. Oncotarget 2018; 8:490-505. [PMID: 27888799 PMCID: PMC5341752 DOI: 10.18632/oncotarget.13448] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/12/2016] [Indexed: 11/25/2022] Open
Abstract
We synthesized, characterized and tested in a panel of cancer cell lines, nine new bipyridine gold(III) dithiocarbamate-containing complexes. In vitro studies demonstrated that compounds 1, 2, 4, 5, 7 and 8 were the most cytotoxic in prostate, breast, ovarian cancer cell lines and in Hodgkin lymphoma cells with IC50 values lower than the reference drug cisplatin. The most active compound 1 was more active than cisplatin in ovarian (A2780cis and 2780CP-16) and breast cancer cisplatin-resistant cells. Compound 1 determined an alteration of the cellular redox homeostasis leading to increased ROS levels, a decrease in the mitochondrial membrane potential, cytochrome-c release from the mitochondria and activation of caspases 9 and 3. The ROS scavenger NAC suppressed ROS generation and rescued cells from damage. Compound 1 resulted more active in tumor cells than in normal human Mesenchymal stromal cells. Gold compounds were active independent of p53 status: exerted cytotoxic effects on a panel of non-small cell lung cancer cell lines with different p53 status and in the ovarian A2780 model where the p53 was knocked out. In conclusion, these promising results strongly indicate the need for further preclinical evaluation to test the clinical potential of these new gold(III) complexes.
Collapse
Affiliation(s)
- Muhammad Altaf
- Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Abdel-Nasser Kawde
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Giuseppe Corona
- Department of Translational Research, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Roberto Larcher
- Center for Technological Transfer, Edmund Mach Foundation, Trento, Italy
| | - Marcia Ogasawara
- The University of Texas MD Anderson Cancer Center, Department of Experimental Therapeutics, Houston, Texas, USA
| | - Naike Casagrande
- Department of Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Marta Celegato
- Department of Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Cinzia Borghese
- Department of Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Zahid H Siddik
- The University of Texas MD Anderson Cancer Center, Department of Experimental Therapeutics, Houston, Texas, USA
| | - Donatella Aldinucci
- Department of Experimental Oncology 2, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Anvarhusein A Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
17
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Höfer D, Galanski M, Keppler BK. Synthesis, Characterization, and Time-Dependent NMR Spectroscopy Studies of (SP-4-2)-[(trans-1R,2R/1S,2S-15N2)-Cyclohexane-1,2-diamine][(13C2)oxalato]platinum(II). Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Doris Höfer
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Str. 42 1090 Vienna Austria
| | - Markus Galanski
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Str. 42 1090 Vienna Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Str. 42 1090 Vienna Austria
- Research Platform “Translational Cancer Therapy Research”; University of Vienna; Waehringer Str. 42 1090 Vienna Austria
| |
Collapse
|
19
|
Abbehausen C, Manzano C, Corbi P, Farrell N. Effects of coordination mode of 2-mercaptothiazoline on reactivity of Au(I) compounds with thiols and sulfur-containing proteins. J Inorg Biochem 2016; 165:136-145. [DOI: 10.1016/j.jinorgbio.2016.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/13/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
|
20
|
Interactions between proteins and Ru compounds of medicinal interest: A structural perspective. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Bardakçı T, Kumru M, Altun A. Molecular structures, charge distributions, and vibrational analyses of the tetracoordinate Cu(II), Zn(II), Cd(II), and Hg(II) bromide complexes of p-toluidine investigated by density functional theory in comparison with experiments. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Lingen V, Lüning A, Krest A, Deacon GB, Schur J, Ott I, Pantenburg I, Meyer G, Klein A. Labile Pd-sulphur and Pt-sulphur bonds in organometallic palladium and platinum complexes [(COD)M(alkyl)(S-ligand)] n+-A speciation study. J Inorg Biochem 2016; 165:119-127. [PMID: 27338203 DOI: 10.1016/j.jinorgbio.2016.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
Reaction of various sulphur ligands L (SEt-, SPh-, SC6F4H-4-, SEt2, StBu2, SnBu2, DMSO, DPSO) with the precursors [(COD)M(R)Cl] (COD=1,5-cyclooctadiene, M=Pd or Pt; R=methyl (Me) or benzyl (Bn); DMSO=dimethyl sulfoxide; DPSO=diphenyl sulfoxide) allowed isolation and characterisation of mononuclear neutral (n=0) or cationic (n=1) complexes [(COD)Pt(R)(L)]n+. Reaction of l-cysteine (HCys) with [(COD)Pt(Me)Cl] under similar conditions gave the binuclear cationic complex in [{(COD)Pt(Me)}2(μ-Cys)]Cl. Detailed NMR spectroscopy and single crystal X-ray diffraction in the case of [(COD)Pt(Me)(SEt2)][SbF6] and [(COD)Pt(Me)(DMSO)][SbF6] reveal markedly labilised Pt-S bonds as a consequence of the highly covalent Pt-C bonds of the R coligands in these organometallic species. Cationic charge (n=1) seems to lower the Pt-S bond strength further. Consequently, most of these complexes are not stable long-term in aqueous DMF (N,N-dimethylformamide) solutions. This made the evaluation of their antiproliferative properties towards HT-29 colon carcinoma and MCF-7 breast adenocarcinoma cell lines impossible. Only the two complexes [(COD)Pt(R)(SC6F4H-4)] with R=Me or SC6F4H-4 coligands could be tested with the R=Me complex showing promising activity (in the range of cisplatin), while the R=SC6F4H-4 derivative is largely inactive, as were the phosphane complexes [(dppe)Pt(SC6F4H-4)2] (dppe=1,2-bis(diphenylphosphino)ethane), cis-[(PPh3)2Pt(SC6F4H-4)2] and cis-[(PPh3)2PtCl2] which were tested for comparison. In turn, our findings might pave the way to new Pt anti-cancer drugs with largely reduced unwanted depletion of incorporated drugs and reduced side-effects from binding to S-containing biomolecules.
Collapse
Affiliation(s)
- Verena Lingen
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Anna Lüning
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Alexander Krest
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Glen B Deacon
- School of Chemistry, Monash University, PO Box 23, Victoria 3800, Australia
| | - Julia Schur
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany
| | - Ingo Pantenburg
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Gerd Meyer
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany
| | - Axel Klein
- Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne, Germany.
| |
Collapse
|