1
|
Ullrich M, Brandt F, Löser R, Pietzsch J, Wodtke R. Comparative Saturation Binding Analysis of 64Cu-Labeled Somatostatin Analogues Using Cell Homogenates and Intact Cells. ACS OMEGA 2023; 8:24003-24009. [PMID: 37426243 PMCID: PMC10324063 DOI: 10.1021/acsomega.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
The development of novel ligands for G-protein-coupled receptors (GPCRs) typically entails the characterization of their binding affinity, which is often performed with radioligands in a competition or saturation binding assay format. Since GPCRs are transmembrane proteins, receptor samples for binding assays are prepared from tissue sections, cell membranes, cell homogenates, or intact cells. As part of our investigations on modulating the pharmacokinetics of radiolabeled peptides for improved theranostic targeting of neuroendocrine tumors with a high abundance of the somatostatin receptor sub-type 2 (SST2), we characterized a series of 64Cu-labeled [Tyr3]octreotate (TATE) derivatives in vitro in saturation binding assays. Herein, we report on the SST2 binding parameters measured toward intact mouse pheochromocytoma cells and corresponding cell homogenates and discuss the observed differences taking the physiology of SST2 and GPCRs in general into account. Furthermore, we point out method-specific advantages and limitations.
Collapse
Affiliation(s)
- Martin Ullrich
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| | - Florian Brandt
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Reik Löser
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
- School
of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01069, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany
| |
Collapse
|
2
|
Distinct In Vitro Binding Profile of the Somatostatin Receptor Subtype 2 Antagonist [ 177Lu]Lu-OPS201 Compared to the Agonist [ 177Lu]Lu-DOTA-TATE. Pharmaceuticals (Basel) 2021; 14:ph14121265. [PMID: 34959665 PMCID: PMC8706879 DOI: 10.3390/ph14121265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/14/2023] Open
Abstract
Treatment of neuroendocrine tumours with the radiolabelled somatostatin receptor subtype 2 (SST2) peptide agonist [177Lu]Lu-DOTA-TATE is effective and well-established. Recent studies suggest improved therapeutic efficacy using the SST2 peptide antagonist [177Lu]Lu-OPS201. However, little is known about the cellular mechanisms that lead to the observed differences. In the present in vitro study, we compared kinetic binding, saturation binding, competition binding, cellular uptake and release of [177Lu]Lu-OPS201 versus [177Lu]Lu-DOTA-TATE using HEK cells stably transfected with the human SST2. While [177Lu]Lu-OPS201 and [177Lu]Lu-DOTA-TATE exhibited comparable affinity (KD, 0.15 ± 0.003 and 0.08 ± 0.02 nM, respectively), [177Lu]Lu-OPS201 recognized four times more binding sites than [177Lu]Lu-DOTA-TATE. Competition assays demonstrated that a high concentration of the agonist displaced only 30% of [177Lu]Lu-OPS201 bound to HEK-SST2 cell membranes; an indication that the antagonist binds to additional sites that are not recognized by the agonist. [177Lu]Lu-OPS201 showed faster association and slower dissociation than [177Lu]Lu-DOTA-TATE. Whereas most of [177Lu]Lu-OPS201 remained at the cell surface, [177Lu]Lu-DOTA-TATE was almost completely internalised inside the cell. The present data identified distinct differences between [177Lu]Lu-OPS201 and [177Lu]Lu-DOTA-TATE regarding the recognition of receptor binding sites (higher for [177Lu]Lu-OPS201) and their kinetics (faster association and slower dissociation of [177Lu]Lu-OPS201) that explain, to a great extent, the improved therapeutic efficacy of [177Lu]Lu-OPS201 compared to [177Lu]Lu-DOTA-TATE.
Collapse
|
3
|
Jörg M, Madden KS. The right tools for the job: the central role for next generation chemical probes and chemistry-based target deconvolution methods in phenotypic drug discovery. RSC Med Chem 2021; 12:646-665. [PMID: 34124668 PMCID: PMC8152813 DOI: 10.1039/d1md00022e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The reconnection of the scientific community with phenotypic drug discovery has created exciting new possibilities to develop therapies for diseases with highly complex biology. It promises to revolutionise fields such as neurodegenerative disease and regenerative medicine, where the development of new drugs has consistently proved elusive. Arguably, the greatest challenge in readopting the phenotypic drug discovery approach exists in establishing a crucial chain of translatability between phenotype and benefit to patients in the clinic. This remains a key stumbling block for the field which needs to be overcome in order to fully realise the potential of phenotypic drug discovery. Excellent quality chemical probes and chemistry-based target deconvolution techniques will be a crucial part of this process. In this review, we discuss the current capabilities of chemical probes and chemistry-based target deconvolution methods and evaluate the next advances necessary in order to fully support phenotypic screening approaches in drug discovery.
Collapse
Affiliation(s)
- Manuela Jörg
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| | - Katrina S Madden
- School of Natural and Environmental Sciences, Newcastle University Bedson Building Newcastle upon Tyne NE1 7RU UK
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Victoria 3052 Australia
| |
Collapse
|
4
|
Sugasawa Y, Cheng WW, Bracamontes JR, Chen ZW, Wang L, Germann AL, Pierce SR, Senneff TC, Krishnan K, Reichert DE, Covey DF, Akk G, Evers AS. Site-specific effects of neurosteroids on GABA A receptor activation and desensitization. eLife 2020; 9:55331. [PMID: 32955433 PMCID: PMC7532004 DOI: 10.7554/elife.55331] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study examines how site-specific binding to three identified neurosteroid-binding sites in the α1β3 GABAA receptor (GABAAR) contributes to neurosteroid allosteric modulation. We found that the potentiating neurosteroid, allopregnanolone, but not its inhibitory 3β-epimer epi-allopregnanolone, binds to the canonical β3(+)–α1(-) intersubunit site that mediates receptor activation by neurosteroids. In contrast, both allopregnanolone and epi-allopregnanolone bind to intrasubunit sites in the β3 subunit, promoting receptor desensitization and the α1 subunit promoting effects that vary between neurosteroids. Two neurosteroid analogues with diazirine moieties replacing the 3-hydroxyl (KK148 and KK150) bind to all three sites, but do not potentiate GABAAR currents. KK148 is a desensitizing agent, whereas KK150 is devoid of allosteric activity. These compounds provide potential chemical scaffolds for neurosteroid antagonists. Collectively, these data show that differential occupancy and efficacy at three discrete neurosteroid-binding sites determine whether a neurosteroid has potentiating, inhibitory, or competitive antagonist activity on GABAARs.
Collapse
Affiliation(s)
- Yusuke Sugasawa
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Wayland Wl Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - John R Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Lei Wang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Allison L Germann
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Spencer R Pierce
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Thomas C Senneff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States
| | - David E Reichert
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Radiology, Washington University in St. Louis, St. Louis, United States
| | - Douglas F Covey
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States.,Department of Psychiatry, Washington University in St. Louis, St. Louis, United States
| | - Gustav Akk
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States
| | - Alex S Evers
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, United States.,Department of Developmental Biology, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
5
|
Essential role of the C148–C227 disulphide bridge in the human 5-HT2A homodimeric receptor. Biochem Pharmacol 2020; 177:113985. [DOI: 10.1016/j.bcp.2020.113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/15/2020] [Indexed: 01/12/2023]
|
6
|
Luo L, Li W, Xiang D, Ma Y, Zhou Y, Xu Y, Chen N, Wang Q, Huang J, Liu J, Yang X, Wang K. Sensitive and specific detection of tumour cells based on a multivalent DNA nanocreeper and a multiplexed fluorescence supersandwich. Chem Commun (Camb) 2020; 56:3693-3696. [PMID: 32123883 DOI: 10.1039/c9cc08618h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A self-assembled DNA nanostructure based on a DNA nanocreeper and multiplexed fluorescence supersandwich was designed for the sensitive and specific detection of tumour cells. This nanostructure could improve the binding affinity of current aptamers and trigger signal amplification, which provide potential for the discrimination of low abundant target cells in liquid biopsy.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
8
|
Mocking TAM, Verweij EWE, Vischer HF, Leurs R. Homogeneous, Real-Time NanoBRET Binding Assays for the Histamine H 3 and H 4 Receptors on Living Cells. Mol Pharmacol 2018; 94:1371-1381. [PMID: 30249614 DOI: 10.1124/mol.118.113373] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022] Open
Abstract
Receptor-binding affinity and ligand-receptor residence time are key parameters for the selection of drug candidates and are routinely determined using radioligand competition-binding assays. Recently, a novel bioluminescence resonance energy transfer (BRET) method utilizing a NanoLuc-fused receptor was introduced to detect fluorescent ligand binding. Moreover, this NanoBRET method gives the opportunity to follow fluorescent ligand binding on intact cells in real time, and therefore, results might better reflect in vivo conditions as compared with the routinely used cell homogenates or purified membrane fractions. In this study, a real-time NanoBRET-based binding assay was established and validated to detect binding of unlabeled ligands to the histamine H3 receptor (H3R) and histamine H4 receptor on intact cells. Obtained residence times of clinically tested H3R antagonists were reflected by their duration of H3R antagonism in a functional receptor recovery assay.
Collapse
Affiliation(s)
- Tamara A M Mocking
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eléonore W E Verweij
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Prashanth JR, Hasaballah N, Vetter I. Pharmacological screening technologies for venom peptide discovery. Neuropharmacology 2017; 127:4-19. [PMID: 28377116 DOI: 10.1016/j.neuropharm.2017.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023]
Abstract
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jutty Rajan Prashanth
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Nojod Hasaballah
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, 20 Cornwall St, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
10
|
Vauquelin G. Cell membranes… and how long drugs may exert beneficial pharmacological activity in vivo. Br J Clin Pharmacol 2016; 82:673-82. [PMID: 27135195 PMCID: PMC5338106 DOI: 10.1111/bcp.12996] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
The time course of the beneficial pharmacological effect of a drug has long been considered to depend merely on the temporal fluctuation of its free concentration. Only in the last decade has it become widely accepted that target-binding kinetics can also affect in vivo pharmacological activity. Although current reviews still essentially focus on genuine dissociation rates, evidence is accumulating that additional micro-pharmacokinetic (PK) and -pharmacodynamic (PD) mechanisms, in which the cell membrane plays a central role, may also increase the residence time of a drug on its target. The present review provides a compilation of otherwise widely dispersed information on this topic. The cell membrane can intervene in drug binding via the following three major mechanisms: (i) by acting as a sink/repository for the drug; (ii) by modulating the conformation of the drug and even by participating in the binding process; and (iii) by facilitating the approach (and rebinding) of the drug to the target. To highlight these mechanisms, we focus on drugs that are currently used in clinical therapy, such as the antihypertensive angiotensin II type 1 receptor antagonist candesartan, the atypical antipsychotic agent clozapine and the bronchodilator salmeterol. Although the role of cell membranes in PK-PD modelling is gaining increasing interest, many issues remain unresolved. It is likely that novel biophysical and computational approaches will provide improved insights in the near future.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
11
|
Guo D, Heitman LH, IJzerman AP. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev 2016; 117:38-66. [DOI: 10.1021/acs.chemrev.6b00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|