1
|
de Moraes L, Burch JE, Delgadillo DA, Rodriguez IH, Mai H, Smith AG, Caille S, Walker SD, Wurz RP, Cee VJ, Rodriguez JA, Gostovic D, Quasdorf K, Nelson HM. Structural Elucidation and Absolute Stereochemistry for Pharma Compounds Using MicroED. Org Lett 2024; 26:6944-6949. [PMID: 39116344 PMCID: PMC11348424 DOI: 10.1021/acs.orglett.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Microcrystal electron diffraction (microED) is an emerging technique for rapid crystallographic analysis of small molecule micro- and nanocrystals. In this report, we evaluate the applicability of microED to pharmaceutical compounds through the analysis of 30 samples obtained from the process and medicinal chemistry groups at Amgen Inc. Using only 40 h of microscope time, 15 of 30 crystal structures were elucidated. From these crystal structures, all chiral compounds had the correct absolute stereochemistry assigned by dynamical refinement of continuous rotation electron diffraction data, confirming dynamical refinement as a promising tool for the absolute stereochemistry determination of pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Lygia
Silva de Moraes
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jessica E. Burch
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- MicroEDLab.com, 1623
Central Avenue Suite 18, Cheyenne, Wyoming 82001, United States
| | - David A. Delgadillo
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Hernandez Rodriguez
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Huanghao Mai
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Austin G. Smith
- Drug
Substance Technologies - Synthetics, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Seb Caille
- Drug
Substance Technologies - Synthetics, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Shawn D. Walker
- Drug
Substance Technologies - Synthetics, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ryan P. Wurz
- Medicinal
Chemistry, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Victor J. Cee
- Medicinal
Chemistry, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jose A. Rodriguez
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dan Gostovic
- MicroEDLab.com, 1623
Central Avenue Suite 18, Cheyenne, Wyoming 82001, United States
| | - Kyle Quasdorf
- Drug
Substance Technologies - Synthetics, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Hogan-Lamarre P, Luo Y, Bücker R, Miller RJD, Zou X. STEM SerialED: achieving high-resolution data for ab initio structure determination of beam-sensitive nanocrystalline materials. IUCRJ 2024; 11:62-72. [PMID: 38038991 PMCID: PMC10833385 DOI: 10.1107/s2052252523009661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.
Collapse
Affiliation(s)
- Pascal Hogan-Lamarre
- Department of Physics, University of Toronto, 80 George Street, Toronto, Ontario M5S 3H6, Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106, Sweden
| | - Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - R. J. Dwayne Miller
- Department of Physics, University of Toronto, 80 George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario M5S 3H6, Canada
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106, Sweden
| |
Collapse
|
3
|
Luo Y, Wang B, Smeets S, Sun J, Yang W, Zou X. High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction. Nat Chem 2023; 15:483-490. [PMID: 36717616 PMCID: PMC10070184 DOI: 10.1038/s41557-022-01131-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/16/2022] [Indexed: 02/01/2023]
Abstract
Rapid phase elucidation of polycrystalline materials is essential for developing new materials of chemical, pharmaceutical and industrial interest. Yet, the size and quantity of many crystalline phases are too small for routine X-ray diffraction analysis. This has become a workflow bottleneck in materials development, especially in high-throughput synthesis screening. Here we demonstrate the application of serial rotation electron diffraction (SerialRED) for high-throughput phase identification of complex polycrystalline zeolite products. The products were prepared from a combination of multiple framework T atoms ([Si,Ge,Al] or [Si,Ge,B]) and a simple organic structure-directing agent. We show that using SerialRED, five zeolite phases can be identified from a highly complex mixture. This includes phases with ultra-low contents undetectable using X-ray diffraction and phases with identical crystal morphology and similar unit cell parameters. By automatically and rapidly examining hundreds of crystals, SerialRED enables high-throughput phase analysis and allows the exploration of complex synthesis systems. It provides new opportunities for rapid development of polycrystalline materials.
Collapse
Affiliation(s)
- Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, China
| | - Bin Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Stef Smeets
- Netherlands eScience Center, Amsterdam, Netherlands
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, China.
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Andrusenko I, Gemmi M. 3D electron diffraction for structure determination of small-molecule nanocrystals: A possible breakthrough for the pharmaceutical industry. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1810. [PMID: 35595285 PMCID: PMC9539612 DOI: 10.1002/wnan.1810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Nanomedicine is among the most fascinating areas of research. Most of the newly discovered pharmaceutical polymorphs, as well as many new synthesized or isolated natural products, appear only in form of nanocrystals. The development of techniques that allow investigating the atomic structure of nanocrystalline materials is therefore one of the most important frontiers of crystallography. Some unique features of electrons, like their non-neutral charge and their strong interaction with matter, make this radiation suitable for imaging and detecting individual atoms, molecules, or nanoscale objects down to sub-angstrom resolution. In the recent years the development of three-dimensional (3D) electron diffraction (3D ED) has shown that electron diffraction can be successfully used to solve the crystal structure of nanocrystals and most of its limiting factors like dynamical scattering or limited completeness can be easily overcome. This article is a review of the state of the art of this method with a specific focus on how it can be applied to beam sensitive samples like small-molecule organic nanocrystals. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Iryna Andrusenko
- Center for Materials Interfaces, Electron CrystallographyIstituto Italiano di TecnologiaPontedera
| | - Mauro Gemmi
- Center for Materials Interfaces, Electron CrystallographyIstituto Italiano di TecnologiaPontedera
| |
Collapse
|
5
|
Structure-driven approaches and technologies for drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:25-26. [PMID: 34916016 DOI: 10.1016/j.ddtec.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Clark LJ, Bu G, Nannenga BL, Gonen T. MicroED for the study of protein–ligand interactions and the potential for drug discovery. Nat Rev Chem 2021; 5:853-858. [PMID: 37117388 DOI: 10.1038/s41570-021-00332-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Microcrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) technique used to determine molecular structures with crystals that are a millionth the size needed for traditional single-crystal X-ray crystallography. An exciting use of MicroED is in drug discovery and development, where it can be applied to the study of proteins and small molecule interactions, and for structure determination of natural products. The structures are then used for rational drug design and optimization. In this Perspective, we discuss the current applications of MicroED for structure determination of protein-ligand complexes and potential future applications in drug discovery.
Collapse
|
7
|
Gruene T, Mugnaioli E. 3D Electron Diffraction for Chemical Analysis: Instrumentation Developments and Innovative Applications. Chem Rev 2021; 121:11823-11834. [PMID: 34533919 PMCID: PMC8517952 DOI: 10.1021/acs.chemrev.1c00207] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 01/26/2023]
Abstract
In the past few years, many exciting papers reported results based on crystal structure determination by electron diffraction. The aim of this review is to provide general and practical information to structural chemists interested in stepping into this emerging field. We discuss technical characteristics of electron microscopes for research units that would like to acquire their own instrumentation, as well as those practical aspects that appear different between X-ray and electron crystallography. We also include a discussion about applications where electron crystallography provides information that is different, and possibly complementary, with respect to what is available from X-ray crystallography.
Collapse
Affiliation(s)
- Tim Gruene
- University
of Vienna, Faculty of Chemistry,
Department of Inorganic Chemistry, AT-1090 Vienna, Austria
| | - Enrico Mugnaioli
- Center
for Nanotechnology Innovation@NEST, Istituto
Italiano di Tecnologia, Piazza S. Silvestro 12, IT-56127 Pisa, Italy
| |
Collapse
|
8
|
Zhao J, Xu H, Lebrette H, Carroni M, Taberman H, Högbom M, Zou X. A simple pressure-assisted method for MicroED specimen preparation. Nat Commun 2021; 12:5036. [PMID: 34413316 PMCID: PMC8377027 DOI: 10.1038/s41467-021-25335-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-crystal electron diffraction (MicroED) has shown great potential for structure determination of macromolecular crystals too small for X-ray diffraction. However, specimen preparation remains a major bottleneck. Here, we report a simple method for preparing MicroED specimens, named Preassis, in which excess liquid is removed through an EM grid with the assistance of pressure. We show the ice thicknesses can be controlled by tuning the pressure in combination with EM grids with appropriate carbon hole sizes. Importantly, Preassis can handle a wide range of protein crystals grown in various buffer conditions including those with high viscosity, as well as samples with low crystal concentrations. Preassis is a simple and universal method for MicroED specimen preparation, and will significantly broaden the applications of MicroED.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Helena Taberman
- Max Delbrück Centrum for Molecular Medicine, Berlin, Germany
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Berlin, Germany
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
Gruene T, Holstein JJ, Clever GH, Keppler B. Establishing electron diffraction in chemical crystallography. Nat Rev Chem 2021; 5:660-668. [PMID: 37118416 DOI: 10.1038/s41570-021-00302-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The emerging field of 3D electron diffraction (3D ED) opens new opportunities for structure determination from sub-micrometre-sized crystals. Although the foundations of this technology emerged earlier, the past decade has seen developments in cryo-electron microscopy and (X-ray) crystallography that particularly enable the widespread use of 3D ED. This Perspective describes to chemists and chemical crystallographers just how similar electron and X-ray diffraction are and discusses their complementary aspects. We wish to establish 3D ED in the broader chemistry community, such that electron crystallography becomes a common part of the analytical chemistry toolkit. With a suitable instrument at their disposal, every skilled crystallographer can quickly learn to perform structure determinations using 3D ED.
Collapse
|