1
|
Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, Pfeifer CS, Mazzoni A. The evolution of adhesive dentistry: From etch-and-rinse to universal bonding systems. Dent Mater 2025; 41:141-158. [PMID: 39632207 DOI: 10.1016/j.dental.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES This review aimed at presenting the mechanisms and pitfalls of adhesion to enamel and dentin, advances in the materials science and in the development of strategies to improve hybrid layer (HL) longevity. METHODS Search of the literature was performed on PubMed, Scopus and Web of Science with keywords related to the structure of the dental substrate, HL degradation mechanisms and strategies to contrast them. RESULTS Albeit the advances in the dental materials' properties, HL degradation is still a relevant and current issue in adhesive dentistry. However, adhesive materials have become more resistant and less operator sensitive, and good adhesion is currently in the hands of every practitioner. Numerous novel strategies are being developed, able to improve the resistance of adhesive resins to degradation, their ability to infiltrate and chemically bond to dentin, to remove the unbound/residual water within the HL, reinforce the dentin collagen matrix, and inhibit endogenous metalloproteinases. Many of the strategies have turned to nature in search for powerful biomodifying compounds, and for the inspiration as to mimic naturally occurring regenerative processes. SIGNIFICANCE Extensive knowledge on the structure of the dental substrate and the complexity of adhesion to dentin has led to the development of improved formulations of dental adhesives and numerous valid strategies to improve the strength and longevity of the HL. Nevertheless, for many of them the road from bench to chairside still seems long. We encourage practitioners to know their materials well and use the strategies readily available to them.
Collapse
Affiliation(s)
- Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Carmem S Pfeifer
- School of Dentistry, Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
2
|
Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. COATINGS 2022. [DOI: 10.3390/coatings12081094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified.
Collapse
|
3
|
Favarão J, Oliveira DCRSD, Zanini MM, Rocha MG, Ogliari FA, Correr-Sobrinho L, Sinhoreti MAC. Effect of light attenuation through veneers on bond strength of adhesives with photoinitiator combinations. Braz Oral Res 2022; 36:e075. [PMID: 35703702 DOI: 10.1590/1807-3107bor-2022.vol36.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the effect of light attenuation through ceramic veneers and resin cement on degree of conversion (DC), cohesive strength (CS), and microshear bond strength (μSBS) of experimental adhesive systems. Experimental etch-and-rinse and self-etch adhesives were combined with different ratios of camphorquinone (CQ) and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) photoinitiators: CQ-only; 3CQ:1TPO; 1CQ:1TPO; 1CQ:3TPO and TPO-only. Square-shaped ceramic veneer (IPS Empress Esthetic, Ivoclar Vivadent) (n = 10; 10mm long x 10mm wide x 0.5mm thick) and resin cement specimens (Variolink Esthetic LC, Ivoclar Vivadent) (n = 10; 10 mm long x 10 mm wide and 0.3 mm thick) were prepared. Light transmittance of a multiple-peak LED (Bluephase G2, Ivoclar Vivadent) was measured through restorative materials using a spectrometer (n = 5). Adhesive specimens were analyzed for DC, CS, and μSBS by light-curing the adhesive with or without (control) ceramic veneer, and with resin cement fixed to output region of the light-curing tip (n = 10). Data were submitted to ANOVA and Tukey's test (α = 0.05). Total light transmittance through the restorative materials was attenuated, and this attenuation was more evident for the violet spectrum. The DC for the TPO groups in ratios up to 1CQ:1TPO was similar to the control. 1CQ:3TPO showed lower values for CS. μSBS was reduced for all groups with light attenuation, but lower values were observed for 1CQ:3TPO and TPO-only. In conclusion, light transmission was reduced with interposed restorative materials. Adhesives combined with CQ and TPO up to 1CQ:1TPO showed greater cure efficiency and mechanical properties compared with a higher amount of TPO.
Collapse
Affiliation(s)
- Jamille Favarão
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School , Department of Restorative Dentistry , Piracicaba , SP , Brazil
| | | | - Mauricio Matté Zanini
- Universidade Estadual do Oeste do Paraná - Unioeste, Dental School , Cascavel , PR , Brazil
| | - Mateus Garcia Rocha
- University of Florida , College of Dentistry , Department of Restorative Dental Sciences , Gainesville , FL , USA
| | - Fabrício Aulo Ogliari
- Universidade Federal de Pelotas - UFPel, Department of Materials Engineering , Pelotas , RS , Brazil
| | - Lourenço Correr-Sobrinho
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School , Department of Restorative Dentistry , Piracicaba , SP , Brazil
| | - Mário Alexandre Coelho Sinhoreti
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School , Department of Restorative Dentistry , Piracicaba , SP , Brazil
| |
Collapse
|
4
|
Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers (Basel) 2022; 14:polym14101998. [PMID: 35631880 PMCID: PMC9145974 DOI: 10.3390/polym14101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
This work is devoted to the study of two copper complexes (Cu) bearing pyridine ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin samples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths are considered to be safe to produce polymer materials. The photoinitiation abilities of these organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine (e.g., N-phenylglycine—NPG). Interestingly, high final conversions and high polymerization rates were obtained for both compounds using two and three-component photoinitiating systems (Cu1 (or Cu2)/Iodonium salt (Iod) (0.1%/1% w/w) and Cu1 (or Cu2)/Iod/amine (0.1%/1%/1% w/w/w)). The new proposed copper complexes were also used for direct laser write experiments involving a laser diode at 405 nm, and for the photocomposite synthesis with glass fibers using a UV-conveyor at 395 nm. To explain the obtained polymerization results, different methods and characterization techniques were used: steady-state photolysis, real-time Fourier transform infrared spectroscopy (RT-FTIR), emission spectroscopy and cyclic voltammetry.
Collapse
|
5
|
|
6
|
Porto ICCDM, Rocha ABDB, Ferreira IIS, de Barros BM, Ávila EC, da Silva MC, de Oliveira MPS, Lôbo TDLGF, Oliveira JMDS, do Nascimento TG, de Freitas JMD, de Freitas JD. Polyphenols and Brazilian red propolis incorporated into a total-etching adhesive system help in maintaining bonding durability. Heliyon 2021; 7:e06237. [PMID: 33665421 PMCID: PMC7898005 DOI: 10.1016/j.heliyon.2021.e06237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/21/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives The aim of this study was to evaluate the degree of conversion and bond strength of a commercial dental adhesive modified by the incorporation of quercetin, resveratrol (RES), and Brazilian red propolis (BRP). Methods BRP markers were identified using ultra-performance liquid chromatography coupled with a diode array detector, and the antioxidant activity (AAO) of the three substances was analyzed. Single Bond 2 adhesive (3M ESPE) was modified by adding BRP, quercetin, and RES, separately, at 20 μg/mL, 250 μg/mL, and 500 μg/mL, respectively. The degree of conversion (DC) was measured using near-infrared spectroscopy 24 h after photopolymerization. Measurements of the resin-dentin microtensile bond strength (μTBS) were carried out after 1 day and 1 year. Student's t test and ANOVA with Tukey's test were used for data analysis (α = 0.05). Results The markers daidzein, liquiritigenin, pinobanksin, isoliquiritigenin, formononetin, pinocembrin, and biochanin A were found in the ethanolic extract of BRP. Quercetin, RES, and BRP showed high AAO. The DC of the tested adhesives remained adequate for this category of material, with a slight increase in the DC of adhesives with quercetin and BRP (P > 0.05). Comparisons between μTBS measurements made at 1 day and 1 year showed that, contrary to the control group, μTBS values for all modified adhesives were maintained after 1 year in distilled water (P > 0.05). Conclusions These findings suggest that quercetin, RES, or BRP might be useful in adhesive dentistry to help improve hybrid layer resistance. Clinical significance Dentin bonding agents with quercetin, RES, and BRP have potential to increase the longevity of composite restorations.
Collapse
Affiliation(s)
- Isabel Cristina Celerino de Moraes Porto
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil.,Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Arthur Bezerra de Barros Rocha
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Iverson Iago Soares Ferreira
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Bruna Muritiba de Barros
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Eryck Canabarra Ávila
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Matheus Corrêa da Silva
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Marcos Paulo Santana de Oliveira
- Laboratoty of Characterization and Analysis of Biomaterials, Faculty of Dentistry, Federal University of Alagoas, Campus AC Simões, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Teresa de Lisieux Guedes Ferreira Lôbo
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - José Marcos Dos Santos Oliveira
- Postgraduate Program in Health Research, Cesmac University Center, Rua Prof. Ângelo Neto, 51, Farol, CEP 57051-530, Maceió, Alagoas, Brazil
| | - Ticiano Gomes do Nascimento
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Jeniffer Mclaine Duarte de Freitas
- Laboratory of Pharmaceutical and Food Analysis, Postgraduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Campus A. C. Simões, CEP 57072-970, Maceió, Alagoas, Brazil
| | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Rua Mizael Domingues, 75, Campus Maceió, CEP 57020-600, Maceió, Alagoas, Brazil
| |
Collapse
|
7
|
Interfacial Adhesion of a Semi-Interpenetrating Polymer Network-Based Fiber-Reinforced Composite with a High and Low-Gradient Poly(methyl methacrylate) Resin Surface. Polymers (Basel) 2021; 13:polym13030352. [PMID: 33499112 PMCID: PMC7865923 DOI: 10.3390/polym13030352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/03/2022] Open
Abstract
The research aimed to determine the tensile bond strength (TBS) between polymerized intact and ground fiber-reinforced composite (FRC) surfaces. FRC prepregs (a reinforcing fiber pre-impregnated with a semi-interpenetrating polymer network (semi-IPN) resin system; everStick C&B) were divided into two groups: intact FRCs (with a highly PMMA-enriched surface) and ground FRCs (with a low PMMA gradient). Each FRC group was treated with: StickRESIN and G-Multi PRIMER. These groups were further divided into four subgroups based on the application time of the treatment agents: 0.5, 1, 2, and 5 min. Next, a resin luting cement was applied to the FRC substrates on the top of the photo-polymerized treating agent. Thereafter, weight loss, surface microhardness, and TBS were evaluated. Three-factor analysis of variance (p ≤ 0.05) revealed significant differences in the TBS among the FRC groups. The highest TBS was recorded for the intact FRC surface treated with G-Multi PRIMER for 2 min (13.0 ± 1.2 MPa). The monomers and solvents of G-Multi PRIMER showed a time-dependent relationship between treatment time and TBS. They could diffuse into the FRC surface that has a higher PMMA gradient, further resulting in a high TBS between the FRC and resin luting cement.
Collapse
|
8
|
Soto-Montero J, Nima G, Dias CTS, Price RBT, Giannini M. Influence of beam homogenization on bond strength of adhesives to dentin. Dent Mater 2020; 37:e47-e58. [PMID: 33143939 DOI: 10.1016/j.dental.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study evaluated the effect of beam homogeneity on the microtensile bond strength (μTBS) of two adhesive resins to dentin. METHODS One polywave light-emitting-diode (LED) LCU (Bluephase Style, Ivoclar Vivadent AG) was used with two different light guides: a regular tip (RT, 1010 mW/cm2 emittance) and a homogenizer tip (HT, 946 mW/cm2 emittance). The emission spectra and beam profiles were measured from both light guides. Extracted third molars were prepared for μTBS evaluation using two adhesive systems: Excite F (EXF) and Adhese Universal (ADU). Bond strength was calculated for each specimen (n = 10) at locations that correlated with the output of the two LED chips emitting blue (455 nm) and the one chip that emitted violet light (409 nm) after 24-hs and after one-year water-storage. The μTBS was analyzed using a four-way analysis of variance (factors: adhesive system, light guide, LED wavelength, and storage time) and post-hoc Tukey test (α = 0.05). RESULTS EXF always delivered a higher μTBS than ADU (p < 0.0001), with the μTBS of ADU being about 20% lower than EXF. The light guide (p = 0.0259) and storage time (p = 0.0009) significantly influenced the μTBS. The LED wavelengths had no influence on the μTBS (p > 0.05). SIGNIFICANCE Homogeneity of the emitted light beam was associated with higher 24-h μTBS to dentin, regardless of the adhesive tested. Also, differences in the composition of adhesives can affect their compatibility with restorative composites and their ability to maintain bonding over one year.
Collapse
Affiliation(s)
- Jorge Soto-Montero
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Avenida Limeira 901, 13414-903 Piracicaba, SP, Brazil; Department of Restorative Dentistry, Faculty of Dentistry, University of Costa Rica, Instalaciones Deportivas, 11501-2060, Montes de Oca, San José, Costa Rica.
| | - Gabriel Nima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Avenida Limeira 901, 13414-903 Piracicaba, SP, Brazil.
| | - Carlos T S Dias
- Department of Statistical Mathematics, Luiz de Queiroz Higher School of Agriculture, University of São Paulo, Avenida Pádua Dias 11, 13418-900 Piracicaba, SP, Brazil.
| | - Richard B T Price
- Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University. 5981 University Avenue, 15000, Halifax, NS, Canada.
| | - Marcelo Giannini
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Avenida Limeira 901, 13414-903 Piracicaba, SP, Brazil.
| |
Collapse
|
9
|
Hussain N, Khalid H, AlMaimouni YK, Ikram S, Khan M, Din SU, Talal A, Khan AS. Microwave assisted urethane grafted nano-apatites for dental adhesives. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520956263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objectives were to synthesize urethane grafted nano-apatite in shortest possible time duration using the microwave irradiation method and to utilize them for synthesis of experimental dental adhesives. The structural, morphological, thermal, and mechanical behavior of synthesized grafted nano-apatite were investigated. Then, these grafted nano-apatite particles were incorporated in various concentrations that is, 5wt.%, 10wt.%, and 15wt.% into dimethacrylate resins to develop bioactive adhesives. The weight measurement analysis in deionized water and phosphate buffer saline, Knoop micro-hardness, and degree of conversion were evaluated. The bacterial adhesion was investigated with Streptococcus mutans at 6h, 24h, and 48h. Statistical analysis was conducted using one-way ANOVA. The urethane dimethacrylate was successfully grafted on the nano-apatite surface and spectroscopic analysis confirmed the presence of urethane and phosphate peaks. An inverse relationship was found in both media between the concentration of grafted fillers and weight loss. No significant difference was observed in the micro-hardness and degree of conversion among the groups, whereby the degree of conversion for all groups was in the range of 83% to 86%. The mean number of bacterial colonies was significantly lower in the 15wt.% group compared to 5wt.% and 10wt.%. The grafted nano-apatite presented favorable results for adhesive resin incorporation, where 15wt.% group comparatively showed superior results than other groups.
Collapse
Affiliation(s)
- Natasha Hussain
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Hina Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Samman Ikram
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore, Pakistan
| | - Shahab Ud Din
- Dentistry and Allied Disciplines, Shaheed Zulfiqar Ali Bhutto Medical University/ Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Ahmed Talal
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Farina AP, Cecchin D, Vidal CMP, Leme-Kraus AA, Bedran-Russo AK. Removal of water binding proteins from dentin increases the adhesion strength of low-hydrophilicity dental resins. Dent Mater 2020; 36:e302-e308. [PMID: 32811665 DOI: 10.1016/j.dental.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/05/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the role of proteoglycans (PGs) on the physical properties of the dentin matrix and the bond strength of methacrylate resins with varying hydrophilicities. METHODS Dentin were obtained from crowns of human molars. Enzymatic removal of PGs followed a standard protocol using 1 mg/mL trypsin (Try) for 24 h. Controls were incubated in ammonium bicarbonate buffer. Removal of PGs was assessed by visualization of glycosaminoglycan chains (GAGs) in dentin under transmission electron microscopy (TEM). The dentin matrix swelling ratio was estimated using fully demineralized dentin. Dentin wettability was assessed on wet, dry and re-wetted dentin surfaces through water contact angle measurements. Microtensile bond strength test (TBS) was performed with experimental adhesives containing 6% HEMA (H6) and 18% HEMA (H18) and a commercial dental adhesive. Data were statistically analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS The enzymatic removal of PGs was confirmed by the absence and fragmentation of GAGs. There was statistically significant difference between the swelling ratio of Try-treated and control dentin (p < 0.001). Significantly lower contact angle was found for Try-treated on wet and dry dentin (p < 0.002). The contact angle on re-wet dentin was not recovered in Try-treated group (p = 0.9). Removal of PGs significantly improved the TBS of H6 (109% higher, p < 0.001) and H18 (29% higher, p = 0.002) when compared to control. The TBS of commercial adhesive was not affected by trypsin treatment (p = 0.9). SIGNIFICANCE Changing the surface energy of dentin by PGs removal improved resin adhesion, likely due to more efficient water displacement, aiding to improved resin infiltration and polymerization.
Collapse
Affiliation(s)
- Ana Paula Farina
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA; Department of Restorative Dentistry, Passo Fundo Dental School, University of Passo Fundo, UPF, Passo Fundo, RS, Brazil
| | - Doglas Cecchin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA; Department of Restorative Dentistry, Passo Fundo Dental School, University of Passo Fundo, UPF, Passo Fundo, RS, Brazil
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA
| | - Ariene Arcas Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA.
| |
Collapse
|
11
|
Ibrahim MS, Balhaddad AA, Garcia IM, Hefni E, Collares FM, Martinho FC, Weir MD, Xu HHK, Melo MAS. Tooth sealing formulation with bacteria‐killing surface and on‐demand ion release/recharge inhibits early childhood caries key pathogens. J Biomed Mater Res B Appl Biomater 2020; 108:3217-3227. [DOI: 10.1002/jbm.b.34659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/15/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Preventive Dental Sciences, College of Dentistry Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Abdulrahman A. Balhaddad
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Restorative Dental Sciences, College of Dentistry Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Isadora M. Garcia
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Eman Hefni
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
| | - Fabricio M. Collares
- Department of Conservative Dentistry, Dental Materials Laboratory, School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Frederico C. Martinho
- Department of Advanced Oral Sciences and Therapeutics University of Maryland School of Dentistry Baltimore Maryland USA
| | - Michael D. Weir
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Advanced Oral Sciences and Therapeutics University of Maryland School of Dentistry Baltimore Maryland USA
| | - Hockin H. K. Xu
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Department of Advanced Oral Sciences and Therapeutics University of Maryland School of Dentistry Baltimore Maryland USA
| | - Mary Anne S. Melo
- PhD Program in Dental Biomedical Sciences University of Maryland School of Dentistry Baltimore Maryland USA
- Division of Operative Dentistry, Department of General Dentistry University of Maryland School of Dentistry Baltimore Maryland USA
| |
Collapse
|
12
|
Tichy A, Hosaka K, Abdou A, Nakajima M, Tagami J. Degree of Conversion Contributes to Dentin Bonding Durability of Contemporary Universal Adhesives. Oper Dent 2020; 45:556-566. [DOI: 10.2341/19-165-l] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 11/23/2022]
Abstract
Clinical Relevance
The degree of conversion of contemporary universal adhesives positively correlates with the bond strength to dentin. The correlation is more marked after thermocycling, suggesting that a high degree of conversion is required for long-term dentin bonding durability.
SUMMARY
Purpose: The objectives of this study were to evaluate the micro-tensile bond strength (μTBS) of five contemporary universal adhesives to dentin after 24 hours and thermocycling (TC), to measure their degrees of conversion (DC) and to test the correlation between μTBS and DC.
Methods and Materials: Four commercially available universal adhesives, Prime&Bond universal (PBU), Ecosite Bond (EB), G-Premio Bond (GPB), and Clearfil Universal Bond Quick (UBQ), and one experimental adhesive, UBQ without an amide monomer (UBQ-A), were used in this study. For the μTBS test, midcoronal dentin of 50 human molars was exposed, ground using 600-grit SiC paper, and the adhesives were applied according to the manufacturers’ instructions. After resin-composite buildup and 24-hour water storage, one-half of the specimens were subjected to 15,000 thermal cycles. The specimens were sectioned into beams and stressed in tension at a crosshead speed of 1 mm/min until failure. The DC of adhesives applied to dentin was evaluated using attenuated total reflectance Fourier-transform infrared spectroscopy immediately after light-curing. All data were statistically analyzed at a significance level of 0.05.
Results: The highest μTBSs were obtained with UBQ, UBQ-A, and PBU, which were not significantly different from each other both after 24 hours and TC. The μTBS of GPB was lower compared with the aforementioned adhesives, but significantly only after TC, and the lowest μTBSs were obtained with EB. TC did not affect the μTBSs of UBQ, UBQ-A, and PBU significantly, but a significant decrease was observed with GPB and EB. The highest DC was obtained with PBU and UBQ, followed by 2-hydroxyethyl methacrylate–rich adhesives UBQ-A and EB, which exhibited significantly lower DCs. The DC of GPB could not be determined because the reference peak at 1608 cm−1 was not detected in its spectra. A significant positive correlation was shown between μTBS and DC after 24 hours (r=0.716) and TC (r=0.856).
Conclusion: μTBS and DC were positively correlated, more markedly after TC, which suggests that DC may be an important factor for bond durability.
Collapse
|
13
|
Zhang J, Zhao Y, Tian Z, Zhu J, Shi Z, Cui Z, Zhu S. Enhancement performance of application mussel-biomimetic adhesive primer for dentin adhesives. RSC Adv 2020; 10:12035-12046. [PMID: 35496601 PMCID: PMC9050876 DOI: 10.1039/c9ra10992g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/17/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, a bioinspired adhesive primer monomer was prepared and evaluated for durable adhesion between dentin and composite resins.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Prosthetic Dentistry
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- P. R. China
| | - Ying Zhao
- Department of Prosthetic Dentistry
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- P. R. China
| | - Zilu Tian
- Department of Prosthetic Dentistry
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- P. R. China
| | - Jiufu Zhu
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Zuosen Shi
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Zhanchen Cui
- State Key Lab of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Song Zhu
- Department of Prosthetic Dentistry
- School and Hospital of Stomatology
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
14
|
Tichy A, Hosaka K, Bradna P, Ikeda M, Abdou A, Nakajima M, Tagami J. Subsequent application of bonding agents to a one-step self-etch adhesive — Its effect with/without previous light-curing. Dent Mater 2019; 35:e299-e309. [DOI: 10.1016/j.dental.2019.08.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/05/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
15
|
Li M, Xu J, Zhang L, Wang C, Jin X, Hong Y, Fu B, Hannig M. Effect of a novel prime‐and‐rinse approach on short‐ and long‐term dentin bond strength of self‐etch adhesives. Eur J Oral Sci 2019; 127:547-555. [PMID: 31670441 DOI: 10.1111/eos.12660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mingxing Li
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Jingqiu Xu
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Ling Zhang
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Chaoyang Wang
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Xiaoting Jin
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Yan Hong
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Baiping Fu
- Hospital of Stomatology Affiliated to Zhejiang University School of Medicine Hangzhou China
- Key Laboratory for Oral Biomedical Research of Zhejiang Province Hangzhou China
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry University of Saarland Homburg Germany
| |
Collapse
|
16
|
Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, Ferracane J, Breschi L. The role of polymerization in adhesive dentistry. Dent Mater 2019; 35:e1-e22. [DOI: 10.1016/j.dental.2018.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
17
|
Ye Q, Abedin F, Parthasarathy R, Spencer P. Photoinitiators in Dentistry: Challenges and Advances. PHOTOPOLYMERISATION INITIATING SYSTEMS 2018. [DOI: 10.1039/9781788013307-00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photopolymerization is used in a wide range of clinical applications in dentistry and the demand for dental materials that can restore form, function and esthetics is increasing rapidly. Simultaneous with this demand is the growing need for photoinitiators that provide effective and efficient in situ polymerization of dental materials using visible light irradiation. This chapter reviews the fundamentals of Type I and II photoinitiators. The advantages and disadvantages of these photoinitiators will be considered with a particular focus on parameters that affect the polymerization process in the oral cavity. The chapter examines recent developments in photoinitiators and opportunities for future research in the design and development of photoinitiators for dental applications. Future research directions that employ computational models in conjunction with iterative synthesis and experimental methods will also be explored in this chapter.
Collapse
Affiliation(s)
- Qiang Ye
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| | - Farhana Abedin
- Electromechanical Engineering Technology program, College of Engineering, California State Polytechnic University Pomona 3801 W. Temple Ave Pomona CA 91768 USA
| | - Ranganathan Parthasarathy
- Nanomaterials Research Lab, Tennessee State University 3500 John A Merritt Blvd Nashville TN 37209 USA
| | - Paulette Spencer
- Institute for Bioengineering Research, School of Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
- Department of Mechanical Engineering, University of Kansas 1530 W. 15th St Lawrence KS 66045 USA
| |
Collapse
|
18
|
Pongprueksa P, De Munck J, Inokoshi M, Van Meerbeek B. Polymerization efficiency affects interfacial fracture toughness of adhesives. Dent Mater 2018; 34:684-692. [DOI: 10.1016/j.dental.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/15/2018] [Indexed: 11/12/2022]
|
19
|
Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent Mater 2018; 34:78-96. [DOI: 10.1016/j.dental.2017.11.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
20
|
Freitas SAAD, Lanza MDS, Carneiro KK, Loguercio AD, Bauer J. Evaluation of degree of conversion, microtensile bond strength and mechanical properties of three etch-and-rinse dental adhesives. POLIMEROS 2017. [DOI: 10.1590/0104-1428.02316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - José Bauer
- Universidade Federal do Maranhão, Brazil
| |
Collapse
|
21
|
Study of visible light activated polymerization in BisGMA-TEGDMA monomers with Type 1 and Type 2 photoinitiators using Raman spectroscopy. Dent Mater 2017; 33:1-11. [DOI: 10.1016/j.dental.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022]
|
22
|
Degree of Conversion and Oxygen-Inhibited Layer Effect of Three Dental Adhesives. Dent J (Basel) 2016; 4:dj4040037. [PMID: 29563479 PMCID: PMC5806956 DOI: 10.3390/dj4040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022] Open
Abstract
This study investigated the effect of the oxygen-inhibited layer on the degree of conversion (DC) of three dental adhesives, comparing two different protocols. Quartz–tungsten–halogen (QTH) light curing and light-emitting diode (LED) were used to cure three adhesives: OptiBond All in One (OAIO), Adper Easy Bond (AEB) and ExciteF (EXF). The DC was calculated utilizing Fourier Transform infrared spectroscopy (FTIR) (n = 12). The two protocols used were as follows: (i) prevent the oxygen-inhibited layer using a Mylar plastic strip pushed onto each bonding adhesive; and (ii) polymerize samples without a plastic strip. The data was analyzed statistically by a three-way ANOVA, and Tukey Test (a = 0.05). The presence of an oxygen-inhibited layer reduced the DC of the adhesives by 64% for EXF, 46% for AEB and 32% for OAIO. This study suggests that there are differences among the oxygen-inhibited layers present for the adhesives tested.
Collapse
|
23
|
Navarra CO, Cadenaro M, Frassetto A, Fontanive L, Di Lenarda R, Breschi L. Degree of Conversion of Self-etch Adhesives: In Situ Micro-Raman Analysis. Oper Dent 2016; 41:501-510. [DOI: 10.2341/15-165-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
Purpose: Degree of conversion (DC) affects the physicochemical properties of dental adhesives. The aim of this study was to measure the DC within the hybrid layer of four one-step self-etch adhesives using Raman microspectroscopy. The hypothesis tested was that there was no difference among the tested adhesives.
Methods and Materials: The selected one-step self-etch adhesives (Clearfil S3 Bond Plus, I-BOND, G-BOND, and Adper Easy Bond) were applied on human dentin disks and polymerized in accordance with the manufacturers' instructions. Specimens were transversally cut to expose the bonded interfaces to the micro-Raman beam, and Raman spectra were collected along the dentin/adhesive interface. Measurements were performed at 1-μm intervals. The relative intensities of bands associated with the C=C bond (at 1640 cm−1) and an internal stable peak (1610 cm−1) were determined to calculate the degree of conversion within the hybrid layer. Data were statistically analyzed with Kolmogorov-Smirnov and Bartlett tests and Kruskal-Wallis and Mann-Whitney U-tests.
Results: The DC ranked as follows: G-BOND (93%±6%) ≥ Adper Easy Bond (92%±6%) ≥ I-BOND (89%±7%) > Clearfil S3 Bond Plus (80%±14%) (p<0.05).
Conclusions: Based on the results of this study, all of the tested self-etch adhesives showed a clinically acceptable DC that was material dependent.
Collapse
Affiliation(s)
- CO Navarra
- Chiara Ottavia Navarra, DDS, MS, PhD, University of Trieste, Department of Medical Sciences, Trieste, Italy
| | - M Cadenaro
- Milena Cadenaro, associate professor, DDS, MS, PhD, University of Trieste, Department of Medical Sciences, Trieste, Italy
| | - A Frassetto
- Andrea Frassetto, University of Trieste, Department of Medical Sciences, Trieste, Italy
| | - L Fontanive
- Luca Fontanive, University of Trieste, Department of Medical Sciences, Trieste, Italy
| | - R Di Lenarda
- Roberto Di Lenarda, professor, DDS, MS, University of Trieste, Department of Medical Sciences, Trieste, Italy
| | - L Breschi
- Lorenzo Breschi, University of Bologna, Department of Biomedical and Neuromotor Sciences, DIBINEM, Bologna, Italy
| |
Collapse
|
24
|
Performance of a universal adhesive on etched and non-etched surfaces: Do the results match the expectations? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:199-205. [DOI: 10.1016/j.msec.2016.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/26/2016] [Accepted: 04/06/2016] [Indexed: 11/24/2022]
|
25
|
Meereis CT, Leal FB, Ogliari FA. Stability of initiation systems in acidic photopolymerizable dental material. Dent Mater 2016; 32:889-98. [DOI: 10.1016/j.dental.2016.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/19/2015] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
|
26
|
Besse V, Derbanne MA, Pham TN, Cook WD, Le Pluart L. Photopolymerization study and adhesive properties of self-etch adhesives containing bis(acyl)phosphine oxide initiator. Dent Mater 2016; 32:561-9. [DOI: 10.1016/j.dental.2016.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/16/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
|
27
|
Taneja S, Kumar P, Kumar A. Comparative evaluation of the microtensile bond strength of bulk fill and low shrinkage composite for different depths of Class II cavities with the cervical margin in cementum: An in vitro study. J Conserv Dent 2016; 19:532-535. [PMID: 27994314 PMCID: PMC5146768 DOI: 10.4103/0972-0707.194023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim: The aim of this study was to evaluate the microtensile bond strength (μTBS) of bulk fill and low shrinkage composite for different depths of Class II cavities with the cervical margin in cementum. Materials and Methods: Standardized conservative box-shaped Class II cavities were prepared on sixty sound-impacted human third molars. The samples were randomly divided into two groups: Group I (n = 30) - horizontal incremental technique and Group II (n = 30) - bulk fill technique (SonicFill). They were further subdivided into three subgroups of (n = 10) samples each according to the different occluso-gingival height: subgroup (A - 4 mm, B - 5 mm, and C - 6 mm). The gingival margins for all the samples were located 1 mm below the cementoenamel junction. The restored samples were subjected to thermocycling (500 cycles) followed by μTBS testing. The scores were statistically analyzed using ANOVA and post hoc test using SPSS software version 16. Results: Subgroups IA and IB showed lower μTBS than subgroups IIA and IIB (P < 0.05) whereas subgroup IC showed higher μTBS than subgroup IIC (P < 0.05). SonicFill showed a significant reduction in μTBS as the depth increased. Conclusion: SonicFill should be used in two increments for cavities with a depth of more than 5 mm.
Collapse
Affiliation(s)
- Sonali Taneja
- Department of Conservative Dentistry and Endodontics, ITS-CDSR, Ghaziabad, Uttar Pradesh, India
| | - Pragya Kumar
- Department of Conservative Dentistry and Endodontics, ITS-CDSR, Ghaziabad, Uttar Pradesh, India
| | - Avnish Kumar
- Department of Conservative Dentistry and Endodontics, ITS-CDSR, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
28
|
Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives. J Appl Biomater Funct Mater 2015; 13:e287-92. [PMID: 26108431 DOI: 10.5301/jabfm.5000235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. METHODS Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. RESULTS Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). CONCLUSIONS Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.
Collapse
|
29
|
El-Damanhoury HM, Gaintantzopoulou M. Effect of Thermocycling, Degree of Conversion, and Cavity Configuration on the Bonding Effectiveness of All-in-One Adhesives. Oper Dent 2015; 40:480-91. [DOI: 10.2341/14-185-lr1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
The aim of this study was to compare five all-in-one bonding agents with respect to microleakage, microtensile bond strength (μTBS), degree of conversion (DC) and the impact of cavity configuration. The materials tested were Adper Easy Bond, Clearfil S3 Bond, iBond, Optibond All-in-One, Xeno IV, and Adper Single Bond Plus as a control. The DC of each adhesive was measured on the surfaces of dentin discs (n=5) by attenuated total reflectance Fourier transform infrared spectroscopy. One hundred and forty-four extracted human molars were randomly divided and assigned to one of the five tested adhesives and the control group. The μTBS to dentin was measured on flat occlusal dentin with and without thermocycling and to the gingival floor dentin of class II cavities (n=8). All specimens were restored with Filtek Z250 resin composite. Class II samples were immersed in a 5% methylene blue dye solution for 24 hours, and microleakage was examined under a stereomicroscope. Micromorphological analysis of demineralized/deproteinized specimens was done using scanning electron microscopy. The DC and microleakage data were statistically analyzed by one-way analysis of variance (ANOVA) and μTBS data by two-way ANOVA followed by a Bonferroni multiple comparison post hoc test (α=0.05) and Weibull-distribution survival analysis. The relation between different variables and μTBS and microleakage was tested by the Pearson correlation coefficient and regression statistics. A moderate direct relation between DC and μTBS durability was found for all the adhesives tested. Significant wide variations exist among the results obtained for single-bottle adhesives tested regarding their μTBS and microleakage. Some of the all-in-one materials tested have shown significantly inferior results under a high C-factor or after aging. The use of these materials should be carefully considered.
Collapse
Affiliation(s)
- HM El-Damanhoury
- Hatem M El-Damanhoury, BDS, MS, PhD, assistant professor, Department of General and Specialist Dental Practice, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates, and Department of Operative Dentistry, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
30
|
Van Landuyt KL, Krifka S, Hiller KA, Bolay C, Waha C, Van Meerbeek B, Schmalz G, Schweikl H. Evaluation of cell responses toward adhesives with different photoinitiating systems. Dent Mater 2015; 31:916-27. [PMID: 26026799 DOI: 10.1016/j.dental.2015.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 03/13/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. METHODS A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. RESULTS Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. SIGNIFICANCE Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier.
Collapse
Affiliation(s)
- Kirsten L Van Landuyt
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany; KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium.
| | - Stephanie Krifka
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Carola Bolay
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Claudia Waha
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| | - Bart Van Meerbeek
- KU Leuven BIOMAT, Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven, Kapucijnenvoer 7, 3000 Leuven, Belgium
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany; School of Dental Medicine -ZMK Bern, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Helmut Schweikl
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, D-93042, 93042 Regensburg, Germany
| |
Collapse
|
31
|
Yazdi FM, Moosavi H, Atai M, Zeynali M. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems. J Clin Exp Dent 2015; 7:e243-9. [PMID: 26155340 PMCID: PMC4483331 DOI: 10.4317/jced.51842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/04/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. MATERIAL AND METHODS Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. RESULTS A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (P<.05). Clearfil S3 Bond and 10% MDP had a significantly greater degree of conversion than other groups (P<.05). CONCLUSIONS The amount of functional monomer in 1-SEAs influences both the bonding performance and degree of conversion; 10% 10-MDP showed the best combination of bond strength and degree of conversion. Key words:Self-etch adhesives, 10-MDP, bond strength, degree of conversion.
Collapse
Affiliation(s)
- Fatemeh-Maleknejad Yazdi
- Professor, Dental Materials Research Center, Department of Operative Dentistry, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Horieh Moosavi
- Associate Professor, Dental Materials Research Center, Department of Operative Dentistry, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Atai
- Department of Polymer Sciences, Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran, Iran
| | - Mahsa Zeynali
- Assistant Professor, Dental Materials Research Center, Department of Operative Dentistry, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Lucey SM, Santini A, Roebuck EM. Degree of conversion of resin-based materials cured with dual-peak or single-peak LED light-curing units. Int J Paediatr Dent 2015; 25:93-102. [PMID: 24666808 DOI: 10.1111/ipd.12104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). OBJECTIVE To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. METHODS Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. RESULTS With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. CONCLUSIONS Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures.
Collapse
Affiliation(s)
- Siobhan M Lucey
- Department of Paediatric Dentistry, Edinburgh Dental Institute, Edinburgh, UK
| | | | | |
Collapse
|
33
|
Hoshika T, Nishitani Y, Yoshiyama M, Key WO, Brantley W, Agee KA, Breschi L, Cadenaro M, Tay FR, Rueggeberg F, Pashley DH. Effects of quaternary ammonium-methacrylates on the mechanical properties of unfilled resins. Dent Mater 2014; 30:1213-23. [PMID: 25199439 DOI: 10.1016/j.dental.2014.08.365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/22/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Adding antimicrobial/anti-MMP quaternary ammonium methacrylates (QAMs) to comonomer blends should not weaken the mechanical properties of dental resins. This work evaluated the degree conversion and mechanical properties of BisGMA/TEGDMA/HEMA (60:30:10) containing 0-15 mass% QAMs A-E (A: 2-acryloxyethyltrimethyl ammonium chloride; B: [3-(methacryloylamino)propyl]trimethylammonium chloride; C: [2-(methacryloxy)ethyl] trimethyl ammonium chloride; D: diallyldimethyl ammonium chloride; E: 2-(methacryloyloxy) ethyltrimethyl ammonium methyl sulfate. METHODS Unfilled resins with and without QAM were placed on ATR-FTIR and light-polymerized for 20s in a thin film at 30°C. Unfilled resin beams were casted from square hollow glass tubings. Half of the beams were tested after 3 days of drying (control); the other half were tested wet after 3 days of water storage. RESULTS Addition of QAMs in control resins significantly increased conversion 600 s after light termination, with the exception of 5% MAPTAC (p<0.05). Increase of QAM content within a formulation significantly increased conversion. Control beams gave dry Young's moduli of ∼700 MPa. Addition of 5, 10 or 15 mass% QAMs produced significant reductions in dry Young's moduli except for 5% B or C. 15 mass% A, B and C lowered the wet Young's moduli of the resin beams by more than 30%. The ultimate tensile stress (UTS) of control dry resin was 89±11 MPa. Addition of 5-10 mass% QAMs had no adverse effect on the dry UTS. After water storage, the UTS of all resin blends fell significantly (p<0.05), especially when 15 wt% QAMs was added. Control dry beams gave fracture toughness (KIC) values of 0.88±0.1 MPa m(1/2). Wet values were significantly higher at 1.02±0.06 (p<0.05). KIC of dry beams varied from 0.85±0.08 at 5% QAMs to 0.49±0.05 at 15% QAMs. Wet beams gave KIC values of 1.02±0.06 MPa m(1/2) that fell to 0.23±0.01 at 15% QAMs. SIGNIFICANCE Addition of 10% QAMs increased the degree of conversion of unfilled resins, but lowered wet toughness and UTS; addition of 15% QAMs lowered the mechanical properties of wet resins below acceptable levels.
Collapse
Affiliation(s)
- Tomohiro Hoshika
- Department of Operative Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Nishitani
- Department of Operative Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Yoshiyama
- Department of Operative Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - William O Key
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - William Brantley
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Kelli A Agee
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Biomedicine, University of Trieste and IGM-CNR, Unit of Bologna, c/o IOR, Bologna, Italy
| | - Milena Cadenaro
- Department of Biomedicine, Unit of Dental Sciences and Biomaterials, University of Trieste, Trieste, Italy
| | - Franklin R Tay
- Department of Endodontics, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Frederick Rueggeberg
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA.
| |
Collapse
|
34
|
Brambilla E, Ionescu A, Mazzoni A, Cadenaro M, Gagliani M, Ferraroni M, Tay F, Pashley D, Breschi L. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation. Dent Mater 2014; 30:926-35. [PMID: 24954666 PMCID: PMC4128410 DOI: 10.1016/j.dental.2014.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/10/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. METHODS Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch-and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24h-incubation at 37°C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). RESULTS R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. CONCLUSIONS The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors.
Collapse
Affiliation(s)
| | - Andrei Ionescu
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Annalisa Mazzoni
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Massimo Gagliani
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Monica Ferraroni
- Dipartimento di Medicina del Lavoro, University of Milan, Milan, Italy
| | - Franklin Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA, USA
| | - David Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Alma Mater Studiorum, Bologna, Italy.
| |
Collapse
|
35
|
Santini A, McGuinness N, Nor NAM. Degree of conversion of resin-based orthodontic bonding materials cured with single-wave or dual-wave LED light-curing units. J Orthod 2014; 41:292-8. [PMID: 25074905 DOI: 10.1179/1465313314y.0000000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AIM To evaluate the degree of conversion (DC) of orthodontic adhesives (RBOAs) cured with dual peak or single peak light-emitting diode (LED) light-curing units (LCUs). MATERIALS AND METHODS Standardized samples of RBOAs, APCPlus, Opal® Bond® and LightBond(TM) were prepared (n = 3) and cured with one of two dual peak LCUs (bluephase® G2-Ivoclar-Vivadent or Valo-Ultradent) or a single peak control (bluephase® Ivoclar-Vivadent). The DC was determined using micro-Raman spectroscopy. The presence or absence of initiators other than camphorquinone was confirmed by high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Data were analysed using general linear model in Minitab 15 (Minitab Inc., State College, PA, USA). RESULTS There was no significant difference in DC between APCPlus, and Opal® Bond (confidence interval: -3.89- to 2.48); significant difference between APCPlus and LightBond(TM) (-18.55 to -12.18) and Opal® Bond and Lightbond(TM) (-17.85 to -11.48); no significant difference between bluephase (single peak) and dual peak LCUs, bluephase G2 (-4.896 to 1.476) and Valo (-3.935 to 2.437) and between bluephase G2 and Valo (-2.225 to 4.147). APCPlus and Opal® Bond showed higher DC values than LightBond(TM) (P<0.05). Lucirin® TPO was found only in Vit-l-escence. CONCLUSION Lucirin® TPO was not identified in the three orthodontic adhesives. All three LCUs performed similarly with the orthodontic adhesives: orthodontic adhesive make had a greater effect on DC than the LCUs. It is strongly suggested that manufacturers of resin-based orthodontic materials test report whether or not dual peak LCUs should be used with their materials. Dual peak LED LCUs, though suitable in the majority of cases, may not be recommended for certain non Lucirin® TPO-containing materials.
Collapse
Affiliation(s)
- Ario Santini
- Director Biomaterial Research, Edinburgh Dental Institute, Lauriston Buildings, Lauriston Place, Edinburgh EH3 9HA
| | - Niall McGuinness
- Orthodontic Consultant , Edinburgh Dental Institute, Lauriston Buildings, Lauriston Place, Edinburgh EH3 9HA
| | - Noor Azreen Md Nor
- Postgraduate Student, Department of Orthodontics, Edinburgh Dental Institute, Lauriston Buildings, Lauriston Place, Edinburgh EH3 9HA
| |
Collapse
|
36
|
Pongprueksa P, Miletic V, Janssens H, Van Landuyt KL, De Munck J, Godderis L, Van Meerbeek B. Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dent Mater 2014; 30:695-701. [DOI: 10.1016/j.dental.2014.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/21/2013] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
|
37
|
Vale MRL, Afonso FAC, Borges BCD, Freitas AC, Farias-Neto A, Almeida EO, Souza-Junior EJ, Geraldeli S. Preheating impact on the degree of conversion and water sorption/solubility of selected single-bottle adhesive systems. Oper Dent 2014; 39:637-43. [PMID: 24819598 DOI: 10.2341/13-201-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study evaluated the degree of conversion (DC) and the water sorption/solubility of preheated single-bottle adhesive systems. METHODS AND MATERIALS Five adhesive systems were tested: Adper Easy One and Adper Single Bond 2 (3M ESPE), Excite and Tetric N-Bond (Ivoclar/Vivadent), and XP Bond (Dentsply/Caulk). After storage for two hours at 25°C or 60°C, 50 samples (n=5) were prepared for all adhesive systems and stored dry in lightproof containers at 37°C for 24 hours. Fourier transform infrared/attenuated total reflectance spectroscopy was used to evaluate the DC, and water sorption/solubility was measured by means of mass loss and gain after water storage. The data were analyzed by two-way analysis of variance followed by Tukey's test (p<0.05). RESULTS Preheated adhesive systems showed statistically significantly higher DC than those kept at 25°C. Except for XP Bond, preheated adhesive systems presented statistically significantly lower water sorption/solubility means. CONCLUSIONS Preheating improved the DC for all tested adhesive systems. Also, it promoted a decrease of water sorption/solubility, except for the XP Bond adhesive system.
Collapse
|
38
|
Manso AP, Grande RHM, Bedran-Russo AK, Reis A, Loguercio AD, Pashley DH, Carvalho RM. Can 1% chlorhexidine diacetate and ethanol stabilize resin-dentin bonds? Dent Mater 2014; 30:735-41. [PMID: 24815823 DOI: 10.1016/j.dental.2014.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVES To examine the effects of the combined use of chlorhexidine and ethanol on the durability of resin-dentin bonds. METHODS Forty-eight flat dentin surfaces were etched (32% phosphoric acid), rinsed (15 s) and kept wet until bonding procedures. Dentin surfaces were blot-dried with absorbent paper and re-wetted with water (water, control), 1% chlorhexidine diacetate in water (CHD/water), 100% ethanol (ethanol), or 1% chlorhexidine diacetate in ethanol (CHD/ethanol) solutions for 30 s. They were then bonded with All Bond 3 (AB3, Bisco) or Excite (EX, Ivoclar-Vivadent) using a smooth, continuous rubbing application (10 s), followed by 15 s gentle air stream to evaporate solvents. The adhesives were light-cured (20 s) and resin composite build-ups constructed for the microtensile method. Bonded beams were obtained and tested after 24-h, 6-months and 15-months of water storage at 37°C. Storage water was changed every month. Effects of treatment and testing periods were analyzed (ANOVA, Holm-Sidak, p<0.05) for each adhesive. RESULTS There were no interactions between factors for both etch-and-rinse adhesives. AB3 was significantly affected only by storage (p=0.003). Excite was significantly affected only by treatments (p=0.048). AB3 treated either with ethanol or CHD/ethanol resulted in reduced bond strengths after 15 months. The use of CHD/ethanol resulted in higher bond strengths values for Excite. CONCLUSIONS Combined use of ethanol/1% chlorhexidine diacetate did not stabilize bond strengths after 15 months.
Collapse
Affiliation(s)
- Adriana Pigozzo Manso
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Division of Biomaterials, Vancouver, BC, Canada; University of São Paulo, School of Dentistry, Department of Dental Biomaterials and Biochemistry, São Paulo, SP, Brazil
| | - Rosa Helena Miranda Grande
- University of São Paulo, School of Dentistry, Department of Dental Biomaterials and Biochemistry, São Paulo, SP, Brazil
| | - Ana Karina Bedran-Russo
- University of Illinois at Chicago, College of Dentistry, Department of Restorative Dentistry, Chicago, IL, USA
| | - Alessandra Reis
- University of Ponta Grossa, School of Dentistry, Department of Restorative Dentistry, Ponta Grossa, PR, Brazil
| | - Alessandro D Loguercio
- University of Ponta Grossa, School of Dentistry, Department of Restorative Dentistry, Ponta Grossa, PR, Brazil
| | - David Henry Pashley
- Georgia Regents University, College of Dental Medicine, Department of Oral Biology and Maxillofacial Pathology, Augusta, GA, USA
| | - Ricardo Marins Carvalho
- University of British Columbia, Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Division of Biomaterials, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system. J Dent 2013; 41:918-26. [DOI: 10.1016/j.jdent.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
|
40
|
Fluid flow through dentin–self-etch resin interface during long term in vitro aging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3711-5. [DOI: 10.1016/j.msec.2013.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/11/2013] [Accepted: 05/02/2013] [Indexed: 11/21/2022]
|
41
|
Loguercio AD, Stanislawczuk R, Mittelstadt FG, Meier MM, Reis A. Effects of diphenyliodonium salt addition on the adhesive and mechanical properties of an experimental adhesive. J Dent 2013; 41:653-8. [DOI: 10.1016/j.jdent.2013.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022] Open
|
42
|
Reis A, Carrilho M, Breschi L, Loguercio AD. Overview of Clinical Alternatives to Minimize the Degradation of the Resin-dentin Bonds. Oper Dent 2013; 38:E1-E25. [DOI: 10.2341/12-258-lit] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
The incorporation of hydrophilic and acidic resin monomers substantially improved the initial bonding of contemporary etch-and-rinse (ER) and self-etch (SE) adhesives to intrinsically wet dental substrates, providing quite favorable immediate results, regardless of the bonding approach used. However, in the long term, the bonding effectiveness of most simplified ER and SE adhesives drop dramatically. This review examines the fundamental processes that are responsible for the aging mechanisms involved in the degradation of the resin-bonded interfaces and some possible clinical approaches that have been effective in minimizing or even preventing the degradation of the adhesive interfaces produced with simplified adhesives. The incorporation of some of the feasible approaches - described in this review - may improve the quality of the adhesive restorations performed in clinical practice, while manufacturers develop bonding materials that are less susceptible to the aging mechanisms present in the oral environment.
Collapse
Affiliation(s)
- A Reis
- Alessandra Reis, DDS, PhD, adjunct professor, State University of Ponta Grossa, Restorative Dentistry, Ponta Grossa, Brazil
| | - M Carrilho
- Marcela Rocha Carrilho, DDS, PhD, professor, GEO/Bandeirante University of São Paulo and School of Dentistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - L Breschi
- Lorenzo Breschi, DDS, PhD, professor, University of Trieste, Dental Sciences and Biomaterials, Trieste, Italy
| | - AD Loguercio
- Alessandro D. Loguercio, DDS, MS, PhD, adjunct professor, State University of Ponta Grossa, Restorative Dentistry, Ponta Grossa, Brazil
| |
Collapse
|
43
|
Marchesi G, Frassetto A, Visintini E, Diolosà M, Turco G, Salgarello S, Di Lenarda R, Cadenaro M, Breschi L. Influence of ageing on self-etch adhesives: one-step vs. two-step systems. Eur J Oral Sci 2012; 121:43-9. [DOI: 10.1111/eos.12009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Giulio Marchesi
- Department of Medical Sciences; University of Trieste; Trieste; Italy
| | - Andrea Frassetto
- Department of Medical Sciences; University of Trieste; Trieste; Italy
| | - Erika Visintini
- Department of Medical Sciences; University of Trieste; Trieste; Italy
| | - Marina Diolosà
- Department of Medical Sciences; University of Trieste; Trieste; Italy
| | - Gianluca Turco
- Department of Medical Sciences; University of Trieste; Trieste; Italy
| | | | | | - Milena Cadenaro
- Department of Medical Sciences; University of Trieste; Trieste; Italy
| | | |
Collapse
|
44
|
Hass V, Luque-Martinez I, Sabino NB, Loguercio AD, Reis A. Prolonged exposure times of one-step self-etch adhesives on adhesive properties and durability of dentine bonds. J Dent 2012; 40:1090-102. [DOI: 10.1016/j.jdent.2012.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 08/28/2012] [Accepted: 09/09/2012] [Indexed: 10/27/2022] Open
|
45
|
Borges BCD, Souza-Junior EJ, Brandt WC, Loguercio AD, Montes MAJR, Puppin-Rontani RM, Sinhoreti MAC. Degree of Conversion of Simplified Contemporary Adhesive Systems as Influenced by Extended Air-Activated or Passive Solvent Volatilization Modes. Oper Dent 2012; 37:246-52. [DOI: 10.2341/11-248-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fouriertransform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (p<0.05). The DC of GO and Stae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems.
Collapse
|
46
|
Lima AF, de Andrade KMG, da Cruz Alves LE, Soares GP, Marchi GM, Aguiar FHB, Peris AR, Mitsui FHO. Influence of light source and extended time of curing on microhardness and degree of conversion of different regions of a nanofilled composite resin. Eur J Dent 2012; 6:153-7. [PMID: 22509117 PMCID: PMC3327489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effects of different light sources and curing time on the degree of conversion and microhardness of two surfaces within a nanofilled composite resin. METHODS Four experimental groups (n=10) were formed in accordance with the light source (quartz-tungsten halogen (QTH - 600mW/cm(2)), or light-emitting-diode (LED - 800mW/cm(2))) and the time of curing (20 s or 40 s). The specimens were prepared with a circular mould (5 mm ∅ and 2 mm thick), according to the respective protocol, and the Knoop microhardness and degree of conversion was measured at the top and the base of the specimens. The degree of conversion was evaluated by the Fourier transform infrared spectrometer (FTIR). The results were analyzed by ANOVA two-way repeated measures and Tukey's test (α=,05). RESULTS Both the degree of conversion and microhardness were higher at the top than at the bottom of the specimens. The QTH light source presented better values on the degree of conversion evaluation, but this result was not observed in the microhardness evaluation. Although forty seconds of curing promotes an increased level of microhardness, it did not influence the degree of conversion. CONCLUSION It could be concluded that increasing the time of curing to 40 s promotes an increase in microhardness, but it does not influence the degree of conversion of a nanofilled composite resin. QTH promote better monomeric conversion; however, the microhardness values are similar to LED curing. For all situations tested, the bottom of the specimens presented lower results than the top.
Collapse
Affiliation(s)
- Adriano Fonseca Lima
- Department of Restorative Dentistry, Piracicaba School of Dentistry, State University of Campinas, BRAZIL
| | | | | | - Giulliana Panfiglio Soares
- Department of Restorative Dentistry, Piracicaba School of Dentistry, State University of Campinas, BRAZIL
| | - Giselle Maria Marchi
- Department of Restorative Dentistry, Piracicaba School of Dentistry, State University of Campinas, BRAZIL
| | | | | | - Fábio Hiroyuki Ogata Mitsui
- Department of Restorative Dentistry, Amazonas State, University, UEA, Manaus, AM, BRAZIL,Corresponding author: Dr. Fábio Hiroyuki Ogata Mitsui, Department of Restorative Dentistry, Amazonas State University, UEA, Av Carvalho Leal, 1777 - Cachoeirinha. CEP 69065-001, Manaus, AM, BRAZIL., Tel: +55 92 8114 0802,
| |
Collapse
|
47
|
Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J Dent 2012; 40:106-13. [DOI: 10.1016/j.jdent.2011.10.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/21/2022] Open
|
48
|
MILETIC V, SANTINI A. Optimizing the concentration of 2,4,6-trimethylbenzoyldiphenylphosphine oxide initiator in composite resins in relation to monomer conversion. Dent Mater J 2012; 31:717-23. [DOI: 10.4012/dmj.2012-064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Network structures of Bis-GMA/TEGDMA resins differ in DC, shrinkage-strain, hardness and optical properties as a function of reducing agent. Dent Mater 2011; 27:497-506. [PMID: 21388670 DOI: 10.1016/j.dental.2011.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/11/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To evaluate the influence of different tertiary amines on degree of conversion (DC), shrinkage-strain, shrinkage-strain rate, Knoop microhardness, and color and transmittance stabilities of experimental resins containing BisGMA/TEGDMA (3:1wt), 0.25wt% camphorquinone, 1wt% amine (DMAEMA, CEMA, DMPT, DEPT or DABE). Different light-curing protocols were also evaluated. METHODS DC was evaluated with FTIR-ATR and shrinkage-strain with the bonded-disk method. Shrinkage-strain-rate data were obtained from numerical differentiation of shrinkage-strain data with respect to time. Color stability and transmittance were evaluated after different periods of artificial aging, according to ISO 7491:2000. Results were evaluated with ANOVA, Tukey, and Dunnett's T3 tests (α=0.05). RESULTS Studied properties were influenced by amines. DC and shrinkage-strain were maximum at the sequence: CQ<DEPT<DMPT≤CEMA≈DABE<DMAEMA. Both DC and shrinkage were also influenced by the curing protocol, with positive correlations between DC and shrinkage-strain and DC and shrinkage-strain rate. Materials generally decreased in L* and increased in b*. The strong exception was the resin containing DMAEMA that did not show dark and yellow shifts. Color varied in the sequence: DMAEMA<DEPT<DMPT<CEMA<DABE. Transmittance varied in the sequence: DEPT≈DABE<DABE≈DMPT≈CEMA<DMPT≈CEMA≈DMAEMA, being more evident at the wavelength of 400nm. No correlations between DC and optical properties were observed. SIGNIFICANCE The resin containing DMAEMA showed higher DC, shrinkage-strain, shrinkage-strain rate, and microhardness, in addition to better optical properties.
Collapse
|
50
|
Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 2011; 90:953-68. [PMID: 21220360 DOI: 10.1177/0022034510391799] [Citation(s) in RCA: 423] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.
Collapse
Affiliation(s)
- Y Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou District, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|