1
|
Rattanapitak R, Thong-Ngarm W. Human gingival fibroblast response on zirconia and titanium implant abutment: A systematic review. J Prosthodont 2024. [PMID: 39375915 DOI: 10.1111/jopr.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The peri-implant region, where restoration interfaces with mucosal tissue, plays an essential role in overall implant success and is just as important as osseointegration. The implant abutment materials are in intimate contact with human gingival fibroblasts (HGFs). This study compares the proliferation of HGFs between zirconia and titanium abutments used in dental implants. METHODS An electronic search was performed using PubMed, EMBASE, and Web of Science databases. English articles based on in vitro studies testing HGFs proliferation on zirconia and titanium implant abutment materials were included. A quality assessment of the selected study was performed using the web-based Science in Risk Assessment and Policy (SciRAP) tool. The HGFs proliferation and cellular morphology tests on zirconia and titanium materials from the included studies were summarized, exploring the role of material surface characteristics. RESULTS The electronic search yielded 401 studies, of which 17 were selected for inclusion. Zirconia exhibited comparable or superior efficacy in promoting the proliferation of HGFs compared to titanium. Observations on cellular morphology showed similar outcomes for both materials. Establishing a definitive relationship between contact angle, surface roughness, and their influence on cellular response remains challenging due to the varied methodological approaches in the reviewed studies. CONCLUSION Based on the findings of this systematic review, zirconia shows comparable reliability to titanium as an abutment material for HGFs proliferation, with comparable or superior HGFs proliferative outcomes.
Collapse
Affiliation(s)
- Ratanatip Rattanapitak
- Division of Crowns and Bridges, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Weeranuch Thong-Ngarm
- Division of Crowns and Bridges, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Rabel K, Blankenburg A, Steinberg T, Kohal RJ, Spies BC, Adolfsson E, Witkowski S, Altmann B. Gingival fibroblast response to (hybrid) ceramic implant reconstruction surfaces is modulated by biomaterial type and surface treatment. Dent Mater 2024; 40:689-699. [PMID: 38395737 DOI: 10.1016/j.dental.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES Surface characteristics of implant reconstructions determine the gingival fibroblast (GF) response and thus soft tissue integration (STI). However, for monolithic implant reconstructions it is unknown whether the (hybrid) ceramic biomaterial type and its surface treatment affect GF response. Therefore, this investigation examined the influence of the implant reconstruction biomaterials hybrid ceramic (HC), lithium disilicate ceramic (LS), 4 and 5 mol% yttria partially stabilized zirconiumdioxide ceramics (4/5Y-PSZ) and their surface treatment - machining, polishing or glazing - on surface characteristics and GF response. METHODS After characterization of surface topography and wettability by scanning electron microscopy, interferometry and contact angle measurement, the adhesion, morphology, metabolic activity and proliferation of GFs from six donors was investigated by fluorescent staining and a resazurin-based assay at days 1, 3 and 7. Titanium (Ti) served as control. RESULTS Biomaterial type and surface treatment affected the GF response in a topography-dependent manner. Smooth polished and glazed surfaces demonstrated enhanced GF adhesion and earlier proliferation onset compared to rough machined surfaces. Due to minor differences in surface topography of polished and glazed surfaces, however, the GF response was similar for polished and glazed HC, LS, 4- and 5Y-PSZ as well as Ti. SIGNIFICANCE Within the limits of the present investigation, polishing and glazing of machined HC, LS and 4/5Y-PSZ can be recommended to support STI-relevant cell functions in GF. Since the GF response on polished and glazed HC, LS, 4- and 5Y-PSZ surfaces and the Ti control was comparable, this investigation proofed equal cytocompatibility of these surfaces in vitro.
Collapse
Affiliation(s)
- Kerstin Rabel
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Andrea Blankenburg
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Ralf J Kohal
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Erik Adolfsson
- Division Materials and Production, RISE Research Institutes of Sweden, Argongatan 30, 43153 Mölndal, Sweden
| | - Siegbert Witkowski
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; G.E.R.N Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| |
Collapse
|
3
|
Hofmann P, Kunz A, Schmidt F, Beuer F, Duddeck D. Influence of exposure of customized dental implant abutments to different cleaning procedures: an in vitro study using AI-assisted SEM/EDS analysis. Int J Implant Dent 2023; 9:33. [PMID: 37730937 PMCID: PMC10511398 DOI: 10.1186/s40729-023-00498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
PURPOSE Dental implant abutments are defined as medical devices by their intended use. Surfaces of custom-made CAD/CAM two-piece abutments may become contaminated during the manufacturing process in the dental lab. Inadequate reprocessing prior to patient care may contribute to implant-associated complications. Risk-adapted hygiene management is required to meet the requirements for medical devices. METHODS A total of 49 CAD/CAM-manufactured zirconia copings were bonded to prefabricated titanium bases. One group was bonded, polished, and cleaned separately in dental laboratories throughout Germany (LA). Another group was left untreated (NC). Five groups received the following hygiene regimen: three-stage ultrasonic cleaning (CP and FP), steam (SC), argon-oxygen plasma (PL), and simple ultrasonic cleaning (UD). Contaminants were detected using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) and segmented and quantified using interactive machine learning (ML) and thresholding (SW). The data were statistically analysed using non-parametric tests (Kruskal-Wallis test, Dunn's test). RESULTS Significant differences in contamination levels with the different cleaning procedures were found (p ≤ 0.01). The FP-NC/LA groups showed the most significant difference in contamination levels for both measurement methods (ML, SW), followed by CP-LA/NC and UD-LA/NC for SW and CP-LA/NC and PL-LA/NC for ML (p ≤ 0.05). EDS revealed organic contamination in all specimens; traces of aluminum, silicon, and calcium were detected. CONCLUSIONS Chemothermal cleaning methods based on ultrasound and argon-oxygen plasma effectively removed process-related contamination from zirconia surfaces. Machine learning is a promising assessment tool for quantifying and monitoring external contamination on zirconia abutments.
Collapse
Affiliation(s)
- Paul Hofmann
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.
| | - Andreas Kunz
- Private Dental Laboratory, Schumannstraße 1, 10117, Berlin, Germany
| | - Franziska Schmidt
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Florian Beuer
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
| | - Dirk Duddeck
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany
- Research Department, CleanImplant Foundation, Pariser Platz 4a, 10117, Berlin, Germany
| |
Collapse
|
4
|
Laleman I, Lambert F. Implant connection and abutment selection as a predisposing and/or precipitating factor for peri-implant diseases: A review. Clin Implant Dent Relat Res 2023; 25:723-733. [PMID: 36825512 DOI: 10.1111/cid.13185] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 02/25/2023]
Abstract
Peri-implant mucosal integration is becoming a critical aspect for long term implant health and can be triggered the selection of implant components. The aim of this review is therefore to investigate the evidence concerning implant connection and abutment characteristics (abutment materials, design, handling) as predisposing or precipitating factor for peri-implant mucositis and peri-implantitis. Although the evidence that these features can directly predispose/precipitate peri-implant diseases is limited, there are -few- studies showing a potential role of the implant connection, trans-mucosal configuration, and handling in the development of early bone loss and/or peri-implantitis. With bone level implants, conical internal connections (with inherent platform switching) might be preferred over internal flat-flat and external connections to decrease the risk of early bone loss and potentially the risk of peri-implant disease. Moreover, there is a trend suggesting moving the prosthetic interface coronally (to the juxta-mucosal level) as soon as possible to reduce the number of disconnections and to limit the risk of cements remnants. This can be achieved by choosing a tissue-level implant or to place a trans-mucosal abutment (one abutment-one time approach) to optimize the peri-implant soft tissue seal. In absence of evidence for the biocompatibility regarding several restorative materials, biocompatible materials such as titanium or zirconia should be preferred in the trans-mucosal portion. Finally, higher implants (≥2mm) with an emergence angle below 30° seem more favourable. It should however be noted that some of this information is solely based on indirect information (such as early bone loss) and more research is needed before making firm recommendations about abutment choice. [Correction added on 13 March 2023, after first online publication: 'longer implants (≥2mm)' was changed to 'higher implants (≥2mm)' in this version.].
Collapse
Affiliation(s)
- Isabelle Laleman
- Department of Periodontology and oro-dental Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), Faculty of Medicine, University of Liège, Liège, Belgium
| | - France Lambert
- Department of Periodontology and oro-dental Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), Faculty of Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
A Review on CAD/CAM Yttria-Stabilized Tetragonal Zirconia Polycrystal (Y-TZP) and Polymethyl Methacrylate (PMMA) and Their Biological Behavior. Polymers (Basel) 2022; 14:polym14050906. [PMID: 35267729 PMCID: PMC8912793 DOI: 10.3390/polym14050906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and polymethyl methacrylate (PMMA) are used very often in dentistry. Y-TZP is the most widely used zirconia dental ceramic, and PMMA has classically been used in removable prosthesis manufacturing. Both types of materials are commercialized in CAD/CAM system blocks and represent alternatives for long-lasting temporary (PMMA) or definitive (Y-TZP) implantological abutments. The aim of the present work is to reveal that human gingival fibroblasts (HGFs) have a favorable response when they are in contact with Y-TZP or PMMA as a dental implant abutment or implant-supported fixed prosthesis, and also to review their principal characteristics. We conducted an electronic search in the PubMed database. From an initial search of more than 32,000 articles, the application of filters reduced this number to 5104. After reading the abstracts and titles, we reduced the eligible articles to 23. Ultimately, we have included eight articles in this review.
Collapse
|
6
|
Evaluation of Zirconia and High Performance Polymer Abutment Surface Roughness and Stress Concentration for Implant-Supported Fixed Dental Prostheses. COATINGS 2022. [DOI: 10.3390/coatings12020238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: The High Performance Polymer is a based polymer biomaterial that was introduced as dental material to manufacture dentures superstructure and dental implants abutments. However, its surface characteristics and stress state still need to be properly described. The aim of this study was to compare the surface characteristics of a High Performance Polymer (Bio-HPP, Bredent, Senden, Germany) for computer-aided design and computer-aided manufacturing (CAD/CAM) milling and a Zirconia (Zirkonzahn, Steger, Ahrntal, Italy). Methods: The abutments surface roughness (Ra) was evaluated for each abutment material (N = 12) using a confocal laser microscope. Data were evaluated using One-Way ANOVA and Tukey tests (p < 0.05). In addition, a finite element analysis software was used to present stress measurement data as stress maps with 100 N loading. Results were generated according to Von-mises stress criteria and stress peaks were recorded from each structure. Results: Results showed a mean Ra of 0.221 ± 0.09 μm for Bio-HPP and 1.075 ± 0.24 μm for Zirconia. Both surface profiles presented a smooth characteristic regardless the measurement axis. The stress peaks from implant fixture and screw were not affected by the abutment material, however the high performance polymer showed the highest stress magnitude for the abutment region. Conclusions: Comparing the present results with the literature it is suggested that the CAD/CAM High Performance Polymer abutments present an adequate surface roughness with acceptable values of stress.
Collapse
|
7
|
Rozeik AS, Chaar MS, Sindt S, Wille S, Selhuber-Unkel C, Kern M, El-Kholy S, Dörfer C, Fawzy El-Sayed KM. Cellular properties of human gingival fibroblasts on novel and conventional implant-abutment materials. Dent Mater 2021; 38:540-548. [PMID: 34980491 DOI: 10.1016/j.dental.2021.12.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To characterize human-gingival-fibroblast-(HGFs) viability, proliferation and adhesion on polymer-infiltrated-ceramic-network-(PICN), polyetheretherketone-(PEEK), hydroxyapatite-reinforced-polyetheretherketone-(HA-PEEK), polyetherketoneketone-(PEKK), as well as conventional titanium-(Ti) and zirconia ceramic-(Zr) implant materials in-vitro. METHODS Six materials (n = 40/group, 240 specimens) were standardized for surface roughness, assessed employing water contact angle measurements (WCA) and loaded with HGFs. HGF viability and proliferation were assessed at 24 and 72 h. Cell adhesion strength was evaluated after 24 h exposure to lateral shear forces using a shaking-device at 320 and 560-rpm.and qualitatively tested by scanning-electron-microscopy-(SEM) at 3, 24 and 72 h. RESULTS PICN demonstrated the lowest mean WCA (48.2 ± 6.3º), followed by Zr (73.8 ± 5.1º), while HA-PEEK showed the highest WCA (87.2 ± 1.5º; p ≤ 0.05). After 24 h, Zr showed the highest mean HGFs-viability rate (88 ± 14%), while PEKK showed the lowest one (78 ± 7%). At 72 h, Zr continued to show the highest HGF-viability (80 ± 6%) compared to PEKK (67.5 ± 6%) and PEEK (67%±5). SEM did not reveal differences between different materials with respect to cell attachment at 3, 24 or 72 h. At 320 rpm shaking, HGFs showed to be best attached to PICN (mean%-of-detached-cells ± SD; 26 ± 11%) and worst to PEEK (54 ± 18%). At 560 rpm shaking, Zr showed the least detached cells (32 ± 4%), while HA-PEEK revealed the highest number of detached cells (58 ± 3%; ANOVA/Tukey-post-hoc-test, differences not statistically significant). SIGNIFICANCE Dental implant abutment materials and their wettability strongly affect HGF proliferation and adhesion properties. Although, PICN showed the best wettability properties, Zr exhibited the strongest adhesion strength at high shaking. Within the current study's limitations, Zr remains the most biocompatible abutment material.
Collapse
Affiliation(s)
- Ahmed Said Rozeik
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University at Kiel, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| | - Mohamed Sad Chaar
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dental Medicine, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Sandra Sindt
- Institute of Materials Science, Biocompatible Nanomaterials, Christian-Albrechts University at Kiel, Kiel, Germany; Institute for Molecular Systems Engineering, Heidelberg University, Heidelberg, Germany
| | - Sebastian Wille
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dental Medicine, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute of Materials Science, Biocompatible Nanomaterials, Christian-Albrechts University at Kiel, Kiel, Germany; Institute for Molecular Systems Engineering, Heidelberg University, Heidelberg, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dental Medicine, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Samar El-Kholy
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University at Kiel, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Biocompatibility of Lithium Disilicate and Zirconium Oxide Ceramics with Different Surface Topographies for Dental Implant Abutments. Int J Mol Sci 2021; 22:ijms22147700. [PMID: 34299319 PMCID: PMC8306444 DOI: 10.3390/ijms22147700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 01/11/2023] Open
Abstract
Gingivafibroblasts were cultured on lithium disilicate, on zirconia dioxide, and on titanium with two different surface roughnesses (0.2 µm and 0.07 µm); Proliferation (MTT), Living/Dead staining, cytotoxicity (LDH), proliferation (FGF2), and inflammation (TNFα) were analyzed after 1 day and 21 days. Furthermore, alteration in cell morphology (SEM) was analyzed. The statistical analysis was performed by a Kruskal-Wallis test. The level of significance was set at p < 0.05. There were no distinct differences in cellular behavior between the tested roughness. There were slight differences between tested materials. Cells grown on zirconia dioxide showed higher cytotoxic effects. Cells grown on lithium disilicate showed less expression of TNFα compared to those grown on zirconia dioxide or titanium. These effects persisted only during the first time span. The results indicate that the two tested high-strength ceramics and surface properties are biologically suitable for transmucosal implant components. The findings may help clinicians to choose the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications.
Collapse
|
9
|
Boyd JD, Stromberg AJ, Miller CS, Grady ME. Biofilm and cell adhesion strength on dental implant surfaces via the laser spallation technique. Dent Mater 2021; 37:48-59. [PMID: 33208265 PMCID: PMC7775913 DOI: 10.1016/j.dental.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aims of this study are to quantify the adhesion strength differential between an oral bacterial biofilm and an osteoblast-like cell monolayer to a dental implant-simulant surface and develop a metric that quantifies the biocompatible effect of implant surfaces on bacterial and cell adhesion. METHODS High-amplitude short-duration stress waves generated by laser pulse absorption are used to spall bacteria and cells from titanium substrates. By carefully controlling laser fluence and calibration of laser fluence with applied stress, the adhesion difference between Streptococcus mutans biofilms and MG 63 osteoblast-like cell monolayers on smooth and rough titanium substrates is obtained. The ratio of cell adhesion strength to biofilm adhesion strength (i.e., Adhesion Index) is determined as a nondimensionalized parameter for biocompatibility assessment. RESULTS Adhesion strength of 143 MPa, with a 95% C.I. (114, 176), is measured for MG 63 cells on smooth titanium and 292 MPa, with a 95% C.I. (267, 306), on roughened titanium. Adhesion strength for S. mutans on smooth titanium is 320 MPa, with a 95% C.I. (304, 333), and remained relatively constant at 332 MPa, with a 95% C.I. (324, 343), on roughened titanium. The calculated Adhesion Index for smooth titanium is 0.451, with a 95% C.I. (0.267, 0.622), which increased to 0.876, with a 95% C.I. (0.780, 0.932), on roughened titanium. SIGNIFICANCE The laser spallation technique provides a platform to examine the tradeoffs of adhesion modulators on both biofilm and cell adhesion. This tradeoff is characterized by the Adhesion Index, which is proposed to aid biocompatibility screening and could help improve implantation outcomes. The Adhesion Index is implemented to determine surface factors that promote favorable adhesion of cells greater than biofilms. Here, an Adhesion Index ≫ 1 suggests favorable biocompatibility.
Collapse
Affiliation(s)
- J D Boyd
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - A J Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - C S Miller
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA; Department of Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - M E Grady
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
The Effect of Different Cleaning Protocols of Polymer-Based Prosthetic Materials on the Behavior of Human Gingival Fibroblasts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217753. [PMID: 33114133 PMCID: PMC7660342 DOI: 10.3390/ijerph17217753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Dental implant abutment and prosthetic materials, their surface treatment, and cleaning modalities are important factors for the formation of a peri-implant soft tissue seal and long-term stability of bone around the implant. This study aimed to investigate the influence of a polymeric material surface cleaning method on the surface roughness, water contact angle, and human gingival fibroblasts (HGF) proliferation. Polymeric materials tested: two types of milled polymethylmethacrylate (PMMA-Ker and PMMA-Bre), three-dimensionally (3D) printed polymethylmethacrylate (PMMA-3D), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). Titanium (Ti) and zirconia oxide ceramics (ZrO-HT) were used as positive controls. A conventional surface cleaning protocol (CCP) was compared to a multi-step research cleaning method (RCP). Application of the RCP method allowed to reduce Sa values in all groups from 0.14-0.28 µm to 0.08-0.17 µm (p < 0.05 in PMMA-Ker and PEEK groups). Moreover, the water contact angle increased in all groups from 74-91° to 83-101° (p < 0.05 in the PEKK group), except ZrO-HT-it was reduced from 98.7 ± 4.5° to 69.9 ± 6.4° (p < 0.05). CCP resulted in higher variability of HGF viability after 48 and 72 h. RCP application led to higher HGF viability in PMMA-3D and PEKK groups after 48 h, but lower for the PMMA-Ker group (p < 0.05). After 72 h, no significant differences in HGF viability between both cleaning methods were observed. It can be concluded that the cleaning method of the polymeric materials affected surface roughness, contact angle, and HGF viability at 48 h.
Collapse
|
11
|
Sariisik E, Zistl D, Docheva D, Schilling AF, Benoit M, Sudhop S, Clausen-Schaumann H. Inadequate tissue mineralization promotes cancer cell attachment. PLoS One 2020; 15:e0237116. [PMID: 32857787 PMCID: PMC7454967 DOI: 10.1371/journal.pone.0237116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
Bone metastases are a frequent complication in prostate cancer, and several studies have shown that vitamin D deficiency promotes bone metastases. However, while many studies focus on vitamin D’s role in cell metabolism, the effect of chronically low vitamin D levels on bone tissue, i.e. insufficient mineralization of the tissue, has largely been ignored. To investigate, whether poor tissue mineralization promotes cancer cell attachment, we used a fluorescence based adhesion assay and single cell force spectroscopy to quantify the adhesion of two prostate cancer cell lines to well-mineralized and demineralized dentin, serving as biomimetic bone model system. Adhesion rates of bone metastases-derived PC3 cells increased significantly on demineralized dentin. Additionally, on mineralized dentin, PC3 cells adhered mainly via membrane anchored surface receptors, while on demineralized dentin, they adhered via cytoskeleton-anchored transmembrane receptors, pointing to an interaction via exposed collagen fibrils. The adhesion rate of lymph node derived LNCaP cells on the other hand is significantly lower than that of PC3 and not predominately mediated by cytoskeleton-linked receptors. This indicates that poor tissue mineralization facilitates the adhesion of invasive cancer cells by the exposure of collagen and emphasizes the disease modifying effect of sufficient vitamin D for cancer patients.
Collapse
Affiliation(s)
- Ediz Sariisik
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Chair of Applied Physics, Ludwig-Maximilians-Universität, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Domenik Zistl
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
| | - Denitsa Docheva
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Department of Trauma Surgery, Experimental Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Arndt F. Schilling
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Clinic for Trauma Surgery, Orthopaedics, and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Benoit
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Chair of Applied Physics, Ludwig-Maximilians-Universität, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
12
|
Single-cell adhesion of human osteoblasts on plasma-conditioned titanium implant surfaces in vitro. J Mech Behav Biomed Mater 2020; 109:103841. [PMID: 32543406 DOI: 10.1016/j.jmbbm.2020.103841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study aimed to demonstrate the effect of treating titanium-implant surfaces with plasma from two different sources on wettability and initial single-cell adhesion of human osteoblasts and to investigate whether aging affects treatment outcomes. METHODS Titanium disks with sandblasted and acid-etched (SLA) surfaces were treated with atmospheric pressure plasma (APP) and low-pressure plasma (LPP). For wetting behavior of the specimens after plasma treatment, the water contact angle was measured. The single-cell detachment force and amount of work of detachment of human osteoblasts were determined with single-cell force spectroscopy (SCFS). To evaluate the aging effect in APP-treated specimens, SCFS was conducted 10 and 60 min after treatment. RESULTS Significantly higher hydrophilicity was observed in the APP and LPP treatment groups than in the control group, but no significant difference was observed between the APP and LPP groups. No significant difference in cell-detachment force or work of detachment was observed, and there were no significant differences according to the conditioning mechanisms and storage time. SIGNIFICANCE Conditioning of the titanium surfaces with APP or LPP was not a significant influencing factor in the initial adhesion of the osteoblasts.
Collapse
|
13
|
Rohr N, Bertschinger N, Fischer J, Filippi A, Zitzmann NU. Influence of Material and Surface Roughness of Resin Composite Cements on Fibroblast Behavior. Oper Dent 2020; 45:528-536. [DOI: 10.2341/19-113-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2019] [Indexed: 11/23/2022]
Abstract
Clinical Relevance
A well-polished cement surface increases the viability and spreading of gingival fibroblasts. The tested resin composite cements did not reveal any cytotoxic effects.
SUMMARY
Objective: This in vitro study aimed to investigate the effect of cement type and roughness on the viability and cell morphology of human gingival fibroblasts (HGF-1).
Methods and Materials: Discs of three adhesive (Panavia V5 [PV5], Multilink Automix [MLA], RelyX Ultimate [RUL] and three self-adhesive (Panavia SA plus [PSA], SpeedCem plus [SCP], RelyX Unicem [RUN]) resin composite cements were prepared with three different roughnesses using silica paper grit P180, P400, or P2500. The cement specimens were characterized by surface roughness and energy-dispersive X-ray spectroscopic mapping. A viability assay was performed after 24 hours of incubation of HGF-1 cells on cement specimens. Cell morphology was examined with scanning electron microscopy.
Results: The roughness of the specimens did not differ significantly among the different resin composite cements. Mean Ra values for the three surface treatments were 1.62 ± 0.34 μm for P180, 0.79 ± 0.20 μm for P400, and 0.17 ± 0.08 μm for P2500. HGF-1 viability was significantly influenced by the cement material and the specimens’ roughness, with the highest viability for PSA ≥ RUN = MLA ≥ SCP = PV5 > RUL (p<0.05) and for P2500 = P400 > P180 (p<0.001). Cell morphology did not vary among the materials but was affected by the surface roughness.
Conclusion: The composition of resin composite cements significantly affects the cell viability of HGF-1. Smooth resin composite cement surfaces with an Ra of 0.2–0.8 μm accelerate flat cell spreading and formation of filopodia.
Collapse
|
14
|
Rizo-Gorrita M, Herráez-Galindo C, Torres-Lagares D, Serrera-Figallo MÁ, Gutiérre-Pérez JL. Biocompatibility of Polymer and Ceramic CAD/CAM Materials with Human Gingival Fibroblasts (HGFs). Polymers (Basel) 2019; 11:polym11091446. [PMID: 31484458 PMCID: PMC6780389 DOI: 10.3390/polym11091446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 01/24/2023] Open
Abstract
Four polymer and ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials from different manufacturers (VITA CAD-Temp (polymethyl methacrylate, PMMA), Celtra Duo (zirconia-reinforced lithium silicate ceramic, ZLS), IPS e.max CAD (lithium disilicate (LS2)), and VITA YZ (yttrium-tetragonal zirconia polycrystal, Y-TZP)) were tested to evaluate the cytotoxic effects and collagen type I secretions on human gingival fibroblasts (HGFs). A total of 160 disc-shaped samples (Ø: 10 ± 2 mm; h: 2 mm) were milled from commercial blanks and blocks. Direct-contact cytotoxicity assays were evaluated at 24, 48, and 72 h, and collagen type I (COL1) secretions were analysed by cell-based ELISA at 24 and 72 h. Both experiments revealed statistically significant differences (p < 0.05). At 24 and 48 h of contact, cytotoxic potential was observed for all materials. Later, at 72 h, all groups reached biologically acceptable levels. LS2 showed the best results regarding cell viability and collagen secretion in all of the time evaluations, while Y-TZP and ZLS revealed intermediate results, and PMMA exhibited the lowest values in both experiments. At 72 h, all groups showed sharp decreases in COL1 secretion regarding the 24-h values. According to the results obtained and the limitations of the present in vitro study, it may be concluded that the ceramic materials revealed a better cell response than the polymers. Nevertheless, further studies are needed to consolidate these findings and thus extrapolate the results into clinical practice.
Collapse
Affiliation(s)
- María Rizo-Gorrita
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena, s/n, 41009 Seville, Spain.
| | - Cristina Herráez-Galindo
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena, s/n, 41009 Seville, Spain.
| | - Daniel Torres-Lagares
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena, s/n, 41009 Seville, Spain.
| | | | - José-Luis Gutiérre-Pérez
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena, s/n, 41009 Seville, Spain.
| |
Collapse
|
15
|
Study of Surface Structure Changes for Selected Ceramics Used in the CAD/CAM System on the Degree of Microbial Colonization, In Vitro Tests. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9130806. [PMID: 31309119 PMCID: PMC6594334 DOI: 10.1155/2019/9130806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 01/25/2023]
Abstract
In the article has been presented an analysis of susceptibility of selected dental materials, made in the CAD/CAM technology. The morphology and structural properties of selected dental materials and their composites were determined by using XRPD (X-ray powder diffraction) techniques, as well as the IR (infrared) spectroscopy. Moreover, an adhesion as well as development of biofilm by oral microorganisms has been studied. It has been shown that a degree of the biofilm development on the tested dental materials depended on microorganism genus and species. Streptococcus mutans has demonstrated the best adhesion to the tested materials in comparison with Candida albicans and Lactobacillus rhamnosus. However, the sintered materials such as IPS e.max® and the polished IPS e.max® have showed the best "anti-adhesive properties" in relation to S. mutans and L. rhamnosus that have not formed the biofilm on the polished IPS e.max® sample. Furthermore, S. mutans have not formed the biofilm on both surfaces. On the contrary to S. mutans and L. rhamnosus, C. albicans has demonstrated the adhesive properties in relation to the above-mentioned surfaces. Moreover, in contrast to S. mutans and C. albicans, L. rhamnosus has not formed the biofilm on the polished IPS Empress material.
Collapse
|
16
|
In vitro Comparative Study of Fibroblastic Behaviour on Polymethacrylate (PMMA) and Lithium Disilicate Polymer Surfaces. Polymers (Basel) 2019; 11:polym11040744. [PMID: 31027245 PMCID: PMC6523339 DOI: 10.3390/polym11040744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Polymethyl methacrylate (PMMA) and lithium disilicate are widely used materials in the dental field. PMMA is mainly used for the manufacture of removable prostheses; however, with the incorporation of CAD-CAM technology, new applications have been introduced for this material, including as a provisional implant attachment. Lithium disilicate is considered the gold standard for definitive attachment material. On the other hand, PMMA has begun to be used in clinics as a provisional attachment until the placement of a definitive one occurs. Although there are clinical studies regarding its use, there are few studies on cell reorganization around this type of material. This is why we carried out an in vitro comparative study using discs of both materials in which human gingival fibroblasts (HGFs) were cultured. After processing them, we analyzed various cellular parameters (cell count, cytoskeleton length, core size and coverage area). We analyzed the surface of the discs together with their composition. The results obtained were mostly not statistically significant, which shows that the qualities of PMMA make it a suitable material as an implant attachment.
Collapse
|
17
|
Ba Z, Chen Z, Huang Y, Feng D, Zhao Q, Zhu J, Wu D. Nanoporous diopside modulates biocompatibility, degradability and osteogenesis of bioactive scaffolds of gliadin-based composites for new bone formation. Int J Nanomedicine 2018; 13:3883-3896. [PMID: 30013342 PMCID: PMC6038888 DOI: 10.2147/ijn.s162262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION It is predicted that with increased life expectancy in the whole world, there will be a greater demand for synthetic biomedical materials to repair or regenerate lost, injured or diseased tissues. Natural polymers, as biomedical materials, have been widely applied in the field of regenerative medicine. MATERIALS AND METHODS By incorporation of nanoporous diopside bioglass (nDPB) into glia-din (GL) matrix, macro-nanoporous scaffolds of nDPB/GL composites (DGC) were fabricated by method of solution compressing and particles leaching. RESULTS The results revealed that the DGC scaffolds possessed well-interconnected macropores of 200-500 μm and nanopores of 4 nm, and the porosity and degradability of DGC scaffolds remarkably increased with the increase in nDPB content. In addition, in vitro cell experiments revealed that the adhesion and growth of MC3T3-E1 cells on DGC scaffolds were significantly promoted, which depended on nDPB content. Moreover, the results of histological evaluations confirmed that the osteogenic properties and degradability of DGC scaffolds in vivo significantly improved, which were nDPB content dependent. Furthermore, the results of immunohistochemical analysis demonstrated that, with the increase in nDPB content, the type I collagen expression in DGC scaffolds in vivo obviously enhanced, indicating excellent osteogenesis. DISCUSSION AND CONCLUSION The results demonstrated that the DGC scaffolds containing 30 wt% nDPB (30nDGC) exhibited good biocompatibility and new bone formation ability, which might have a great potential for applications in bone regeneration.
Collapse
Affiliation(s)
- Zhaoyu Ba
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Zhaoxiong Chen
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Yufeng Huang
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Qinghui Zhao
- Biobank, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianguang Zhu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Desheng Wu
- Department of Spinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,
| |
Collapse
|
18
|
Gehrke P, Spanos E, Fischer C, Storck H, Tebbel F, Duddeck D. Influence of scaling procedures on the integrity of titanium nitride coated CAD/CAM abutments. J Adv Prosthodont 2018; 10:197-204. [PMID: 29930789 PMCID: PMC6004353 DOI: 10.4047/jap.2018.10.3.197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/07/2017] [Accepted: 02/27/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine the extent of treatment traces, the roughness depth, and the quantity of titanium nitride (TiN) removed from the surface of CAD/CAM abutments after treatment with various instruments. MATERIALS AND METHODS Twelve TiN coated CAD/CAM abutments were investigated for an in vitro study. In the test group (9), each abutment surface was subjected twice (150 g vs. 200 g pressure) to standardized treatment in a simulated prophylaxis measure with the following instruments: acrylic scaler, titanium curette, and ultrasonic scaler with steel tip. Three abutments were used as control group. Average surface roughness (Sa) and developed interfacial area ratio (Sdr) of treated and untreated surfaces were measured with a profilometer. The extent of treatment traces were analyzed by scanning electron microscopy. RESULTS Manipulation with ultrasonic scalers resulted in a significant increase of average surface roughness (Sa, P<.05) and developed interfacial area ratio (Sdr, P<.018). Variable contact pressure did not yield any statistically significant difference on Sa-values for all instruments (P=.8). Ultrasonic treatment resulted in pronounced surface traces and partially detachment of the TiN coating. While titanium curettes caused predominantly moderate treatment traces, no traces or detectable substance removal has been determined after manipulation with acrylic curettes. CONCLUSION Inappropriate instruments during regular plaque control may have an adverse effect on the integrity of the TiN coating of CAD/CAM abutments. To prevent defects and an increased surface roughness at the transmucosal zone of TiN abutments, only acrylic scaling instruments can be recommended for regular maintenance care.
Collapse
Affiliation(s)
| | | | - Carsten Fischer
- Dental Laboratory, Sirius Ceramics, Frankfurt am Main, Germany
| | | | | | - Dirk Duddeck
- Medical Materials Research Institute, Berlin, Germany
| |
Collapse
|
19
|
Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res 2017; 29:20-27. [DOI: 10.1111/clr.13034] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Adham Elsayed
- Department of Prosthodontics, Propaedeutics and Dental Materials; School of Dentistry; Christian-Albrechts University; Kiel Germany
| | - Sebastian Wille
- Department of Prosthodontics, Propaedeutics and Dental Materials; School of Dentistry; Christian-Albrechts University; Kiel Germany
| | - Majed Al-Akhali
- Department of Prosthodontics, Propaedeutics and Dental Materials; School of Dentistry; Christian-Albrechts University; Kiel Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Materials; School of Dentistry; Christian-Albrechts University; Kiel Germany
| |
Collapse
|