1
|
|
2
|
Yadav R, Meena A, Patnaik A. Biomaterials for dental composite applications: A comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ramkumar Yadav
- Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Anoj Meena
- Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Amar Patnaik
- Department of Mechanical Engineering Malaviya National Institute of Technology Jaipur Rajasthan India
| |
Collapse
|
3
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
4
|
Guo X, Cheng Q, Wang H, Yu G, Tian Z, Shi Z, Cui Z, Zhu S. Synthesis, characterization, and aging resistance of the polyurethane dimethacrylate layer for dental restorations. Eur J Oral Sci 2020; 128:89-99. [PMID: 32032451 DOI: 10.1111/eos.12674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 01/22/2023]
Abstract
In this study, polyurethane dimethacrylate (PUDMA) was synthetized from different components and incorporated into a direct resin composite restoration system with the aim to buffer tooth-resin interfacial stresses and maintain the marginal adaptation. The tensile strength, elongation at fracture (ε), and thermal stability of the PUDMA layer were characterized, showing a tensile strength of 22 MPa, an ε of 112%, and a thermal decomposition temperature of about 282°C. In addition, the degree of conversion, water sorption/solubility, hydrophobicity, microtensile bond strength (μTBS), marginal leakage, and cytotoxicity in vitro were evaluated for the PUDMA layer. The data were analyzed using one-way ANOVA, except for leakage depths (which were analyzed using the Wilcoxon paired-rank test). The level of significance was set at 0.05. Compared with dental adhesives, PUDMA displayed a higher degree of conversion, lower water sorption/solubility, and improved hydrophobicity and biocompatibility in vitro. After thermocycling, the μTBS of the restoration system containing PUDMA had increased compared with the μTBS at 24 h. Restorations containing PUDMA showed lower leakage depths than those which did not contain PUDMA. In conclusion, because of its hydrophobic and elastic nature, the PUDMA layer, when used as an intermediate between tooth and resin restoratives, may buffer interfacial stresses, improve the stability and durability of the bonding interface, and reduce microleakage.
Collapse
Affiliation(s)
- Xiaowei Guo
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiuli Cheng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Han Wang
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Gaigai Yu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zilu Tian
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zuosen Shi
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Zhanchen Cui
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Song Zhu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
The functions of hydrophobic elastic polyurethane combined with an antibacterial triclosan derivative in the dentin restoration interface. J Mech Behav Biomed Mater 2019; 102:103471. [PMID: 31622860 DOI: 10.1016/j.jmbbm.2019.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022]
Abstract
Dentin restoration produces weak interfaces because of the effects of bacterial microflora, biofilms, and mechanical, thermal, and shrinkage stresses. This results in secondary caries. Therefore, hydrophobic elastic polyurethane (PU) containing different concentrations of triclosan derivatives was synthesized and applied to solve this problem. The antibacterial PU was characterized according to its tensile strength (TS) and elasticity (ε) via a universal testing machine, and water sorption (Wsp) and solubility testing (Wsl) was performed according to ISO 4049: 2009. Additionally, this study evaluated the antibacterial properties of PU against Streptococcus mutans (ATCC35668) and Escherichia coli (ATCC25922). A marginal leakage test was performed to evaluate the leakage prevention property. As a result, the antibacterial PU showed high TS (>17 MPa), high elasticity (ε > 65%), and low Wsp (>81.06 μg/mm3) and Wsl (>11.22 μg/mm3). The PU exhibited antibacterial effects against both Streptococcus mutans and Escherichia coli. The antibacterial rates were over 90% and >99% for the 3% and 5% groups, respectively. Moreover, the marginal level of leakage was 0. Based on the mechanical properties, Wsp and Wsl values and the antibacterial properties, the 3% group exhibited satisfactory performance and has been deemed a possible solution to reduce the occurrence of secondary caries.
Collapse
|
6
|
Synthesis of chemically modified BisGMA analog with low viscosity and potential physical and biological properties for dental resin composite. Dent Mater 2019; 35:1532-1544. [PMID: 31421956 DOI: 10.1016/j.dental.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The currently available commercial dental resin composites have limitations in use owing to the high viscosity and water sorption of Bisphenol A glycidyl methacrylate (BisGMA). The objective of this study was to obtain a BisGMA analog with reduced viscosity and hydrophilicity for potential use as an alternative to BisGMA in dental resin composites. METHODS The targeted chlorinated BisGMA (Cl-BisGMA) monomer was synthesized via the Appel reaction. The structural modification was confirmed via 1H- and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and mass spectrometry. Five resin mixtures (70:30wt.%: F1=BisGMA/TEGDMA; F2=Cl-BisGMA/TEGDMA; F3=Cl-BisGMA only; F4=Cl-BisGMA/BisGMA; F5 contained 15% TEGDMA with equal amounts of BisGMA and Cl-BisGMA) were prepared. The viscosity, degree of double-bond conversion (DC), water sorption (WSP), and solubility (WSL) were tested. Cell viability and live/dead assays, as well as cell attachment and morphology assessments, were applied for cytotoxicity evaluation. RESULTS Cl-BisGMA was successfully synthesized with the viscosity reduced to 7.22 (Pas) compared to BisGMA (909.93,Pas). Interestingly, the DC of the F2 resin was the highest (70.6%). By the addition of equivalence concentration of Cl-BisGMA instead of BisGMA, the WSP was decreased from 2.95% (F1) to 0.41% (F2) with no significant change in WSL. However, the WSL increased with high Cl-BisGMA content. Biological tests revealed that all the resins were biocompatible during CL1 incubation. SIGNIFICANCE The experimental resins based on Cl-BisGMA exhibited improved properties compared with the control samples, e.g., biocompatibility and lower viscosity, indicating that Cl-BisGMA can be considered as a potential monomer for application in dental resin composites.
Collapse
|
7
|
Kim JS, Park HW, Lee JH, Lee SH, Cho JK, Shin S. Synthesis of a novel isosorbide-based dental material with improved water sorption. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Song L, Ye Q, Ge X, Misra A, Tamerler C, Spencer P. New silyl-functionalized BisGMA provides autonomous strengthening without leaching for dental adhesives. Acta Biomater 2019; 83:130-139. [PMID: 30366133 DOI: 10.1016/j.actbio.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for direct restorative dentistry. In spite of this popularity the clinical lifetime of composite restorations is threatened by recurrent decay. Degradation of the adhesive leads to gaps at the composite/tooth interface-bacteria, bacterial by-products and fluids infiltrate the gaps leading to recurrent decay and composite restoration failure. The durability of resin-dentin bonds is a major problem. We address this problem by synthesizing silyl-functionalized BisGMA (e.g., silyl-BisGMA), formulating dental adhesives with the new monomer and determining the physicochemical properties and leaching characteristics of the silyl-BisGMA adhesives. Silyl-BisGMA was synthesized by stoichiometric amounts of BisGMA and 3-isocyanatopropyl trimethoxysilane (IPTMS). The control adhesive was a mixture based on HEMA/BisGMA (45/55, w/w). In the experimental formulations, BisGMA was partially or completely replaced by silyl-BisGMA. Water miscibility, polymerization behavior (Fourier transform infrared spectroscopy, FTIR), thermal property (modulated differential scanning calorimetry, MDSC), mechanical properties in dry and wet conditions (dynamic mechanical analysis, DMA), and leached species (HPLC) were investigated. Data from all tests were submitted to appropriate statistical analysis (α = 0.05). Silyl-BisGMA-containing adhesives exhibited comparable water miscibility, lower viscosities, and significantly improved degree of conversion of CC bond as compared to the control. After 4 weeks aqueous aging, the glass transition temperature and rubbery moduli of the experimental copolymers were significantly greater than the control (p < 0.05). HPLC results indicated a substantial reduction of leached HEMA (up to 99 wt%) and BisGMA (up to 90 wt%). By introducing silyl-functional group, the new BisGMA derivative exhibited potential as a monomer that can lead to dental adhesives with improved mechanical properties and reduced leaching under conditions relevant to the oral environment. STATEMENT OF SIGNIFICANCE: The low-viscosity adhesive that bonds the composite to the tooth (enamel and dentin) is intended to seal and stabilize the composite/tooth interface, but it degrades leading to a breach at the composite/tooth margin. As the most popular crosslinking monomer in adhesives, Bisphenol A-glycerolate dimethacrylate (BisGMA) has limitations, e.g. susceptible to hydrolysis and concomitant property degradation. A methoxysilyl-functionalized BisGMA derivative (silyl-BisGMA) was introduced in this work to respond to these limitations. Our results indicated that by introducing silyl-BisGMA, higher crosslinked networks were obtained without sacrificing the homogeneity, and the leached amount of HEMA was reduced up to 99%. This novel resin offers potential benefits including prolonging the functional lifetime of dental resin materials.
Collapse
|
9
|
Pérez-Mondragón AA, Cuevas-Suárez CE, Suárez Castillo OR, González-López JA, Herrera-González AM. Evaluation of biocompatible monomers as substitutes for TEGDMA in resin-based dental composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:80-87. [PMID: 30274114 DOI: 10.1016/j.msec.2018.07.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 10/28/2022]
Abstract
This works reports the synthesis and characterization of diallyl(5-(hydroxymethyl)-1,3-phenylene) dicarbonate (HMFBA) and 5-(hydroxymethyl)-1,3-phenylene bis(2-methylacrylate) (HMFBM) monomers and its evaluation as Bis-GMA eluents in the formulation of composite resins for dental use. The experimental materials formulated with HMFBA and HMFBM monomers presented flexural strength values similar to those of the control group formulated with Bis-GMA/TEGDMA. Regarding volumetric contraction percentage, the values obtained of experimental materials with HMFBA was 1.88% and for HMFBM was 4.15%, both lower than control resin (4.68%). In the case of double bond conversion, the resin formulated with HMFBA monomer exhibited a greater degree of conversion (87%). Besides, the DMA analyses proved that the values for Tg guarantee a good mechanical performance at body temperature. The new resins formulated with HMFBA and HMFBM monomers exhibit a cellular viability close to 100%, which indicates the absence of cytotoxicity towards fibroblastic cells.
Collapse
Affiliation(s)
- Alma A Pérez-Mondragón
- Doctorado en Ciencias de los Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km, 4.5 Colonia Carboneras, Mineral de la Reforma Hidalgo C.P. 42184, Mexico
| | - Carlos E Cuevas-Suárez
- Área Académica de Odontología, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito ex-Hacienda la Concepción Km, 1.5 San Agustín Tlaxiaca, Hidalgo C.P. 42160, Mexico
| | - Oscar R Suárez Castillo
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km, 4.5 Colonia Carboneras, Mineral de la Reforma Hidalgo C.P. 42184, Mexico
| | - J Abraham González-López
- Doctorado en Ciencias de los Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km, 4.5 Colonia Carboneras, Mineral de la Reforma Hidalgo C.P. 42184, Mexico
| | - Ana M Herrera-González
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km, 4.5 Colonia Carboneras, Mineral de la Reforma Hidalgo C.P. 42184, Mexico.
| |
Collapse
|
10
|
Song L, Ye Q, Ge X, Misra A, Tamerler C, Spencer P. Fabrication of hybrid crosslinked network with buffering capabilities and autonomous strengthening characteristics for dental adhesives. Acta Biomater 2018; 67:111-121. [PMID: 29229545 PMCID: PMC5963517 DOI: 10.1016/j.actbio.2017.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
Abstract
Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives. STATEMENT OF SIGNIFICANCE The interfacial gaps between the restorative composite biomaterial and the tooth structure contributes to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic and aciduric bacteria. This paper reports a novel, synthetic resin that provides buffering capability and autonomous strengthening characteristics. In this work, two amino functional silanes were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel reaction was investigated. We evaluated the neutralization capability (monitoring the pH of lactic acid solution) and the autonomous strengthening property (monitoring the mechanical properties of the hybrid copolymers under wet conditions and quantitatively analyzing the leachable species by HPLC). The novel resin investigated in this study offers the potential benefits of reducing the risk of recurrent decay and prolonging the functional lifetime of dental adhesives.
Collapse
Affiliation(s)
- Linyong Song
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Qiang Ye
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.
| | - Xueping Ge
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Anil Misra
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; University of Kansas, Department of Civil Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Candan Tamerler
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; University of Kansas, Department of Mechanical Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA
| | - Paulette Spencer
- University of Kansas, Institute for Bioengineering Research, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA; University of Kansas, Department of Mechanical Engineering, 1530 W. 15th Street, Lawrence, KS 66045-7609, USA.
| |
Collapse
|
11
|
|
12
|
Biodegradation Studies of Novel Fluorinated Di-Vinyl Urethane Monomers and Interaction of Biological Elements with Their Polymerized Films. Polymers (Basel) 2017; 9:polym9080365. [PMID: 30971044 PMCID: PMC6418586 DOI: 10.3390/polym9080365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022] Open
Abstract
The monomeric components of resin composites in dental restorative materials are susceptible to hydrolysis in the oral cavity. The main objective of this study was to assess the bio-stability of fluorinated urethane dimethacrylates and determine the nature of fluoro-chemistry interactions with protein and bacterial adhesion (both sources of hydrolytic activity) onto cured resin. Degradation studies were performed in the presence of either albumin (in a mildly alkaline pH) or cholesterol esterase (CE). The surface chemistry of the polymers was assessed by water contact angle measurements, pre- and post- incubation with albumin. Adhesion of Streptococcus mutans to cured resin was investigated. The fluorinated monomers were more stable against degradation when compared to the commercial monomer bisphenol A-diglycidyl methacrylate (BisGMA). While fluorinated monomers showed hydrolytic stability with respect to CE, all fluorinated monomers underwent some degree of degradation with albumin. The fluoro-chemistry did not reduce protein and/or bacterial adhesion onto the surface, however post incubation with albumin, the fluorinated surfaces still presented hydrophobic character as determined by the high contact angle values ranging from 79° to 86°. These monomers could potentially be used to increase the hydrophobicity of polymeric composites and provide a means to moderate esterolytic degradation associated with the monomeric component of the polymers within the oral cavity.
Collapse
|
13
|
Property enhancement of dental composite prepared with an isosorbide-based photocurable compound by mixing with TEGDMA. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|