1
|
Li H, Huang J, Zhang H, Hang R, Wang Y. Preparation of Al-doped mesoporous silica spheres (Al-MSSs) for the improvement of mechanical properties and aging resistance of dental resin composites. J Mech Behav Biomed Mater 2024; 157:106624. [PMID: 38861785 DOI: 10.1016/j.jmbbm.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE The purpose of this study was to synthesize Al-doped mesoporous silica spheres (Al-MSSs) and evaluate the effect of them as functional fillers on the mechanical properties and aging resistance of dental resin composites. METHODS Al-MSSs were prepared by a two-step method. The effect of Al-MSSs on the performance of the composites was evaluated using neat resin matrix, commercial composites 3M Z350XT and samples containing mesoporous silica spheres (MSSs) and nonporous silica spheres (NSSs) as control. The neat resin matrix consisted of resin monomer (Bisphenol A glycerolate dimethacrylate/triethylene glycol dimethacrylate, 49.5/49.5, wt%) and photoinitiator (camphor quinone/Ethyl-4-dimethylaminobenzoate, 0.2/0.8, wt%). The mechanical properties (flexural strength, flexural modulus, compressive strength and microhardness) of them were evaluated by a universal testing machine and microhardness tester. The mechanical stabilities of the prepared composites in wet environment were evaluated by immersing them in deionized water at 37 °C. In addition, we evaluated the effect of Al-MSSs on other properties of the dental resin composites such as polymerization shrinkage, degree of conversion, curing depth, contact angle, water sorption and solubility according to ISO 4049: 2019. RESULTS The synthesized Al-MSSs possessed good dispersibility with an average particle size of about 505 ± 16 nm. The mechanical properties of resin composites gradually increased with the increase of the loading amounts of inorganic fillers. The reinforcing effect of Al-MSSs was similar to that of MSSs and better than that of the NSSs groups at the same filler loading. After aging in deionized water at 37 °C for 30 days, the mechanical properties of all resin composites decreased. However, the decrease percentage of the composites filled with Al-MSSs was significantly lower than the other groups, indicating that the stability of the dental composites in wet environments was significantly improved by the Al-MSSs fillers. Furthermore, Al-MSSs had no obvious influence on the biocompatibility and other properties of dental resins. SIGNIFICANCE The prepared Al-MSSs could effectively improve the mechanical properties and aging resistance without sacrificing other physic-chemical properties of dental resin composites.
Collapse
Affiliation(s)
- Huaizhu Li
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Jiahui Huang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Hongxia Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Yueyue Wang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China.
| |
Collapse
|
2
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B. Effects of Hexagonal Boron Nitride and Mesoporous Silica Nanoparticles on the Morphology, Mechanical Properties and Antimicrobial Activity of Dental Composites. J CLUST SCI 2024. [DOI: 10.1007/s10876-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 07/26/2024]
Abstract
AbstractHexagonal boron nitride (HBN), an artificial material with unique properties, is used in many industries. This article focuses on the extent to which hexagonal boron nitride and silica nanoparticles (MSN) affect the physicochemical and mechanical properties and antimicrobial activity of prepared dental composites. In this study, HBN, and MSN were used as additives in dental composites. 5% and 10% by weight of HBN are added to the structure of the composite materials. FTIR analysis were performed to determine the components of the produced boron nitride powders, hexagonal boron nitride-containing composites, and filling material applications. The structural and microstructural properties of dental composites have been extensively characterized using X-ray diffractometry (XRD). Surface morphology and distributions of nano boron nitride were determined by scanning electron microscopy (SEM)-EDS. In addition, the solubility of dental composites in water and their stability in water and chemical solution (Fenton) were determined by three repetitive experiments. Finally, the antimicrobial activity of dental composites was detected by using Minimum Inhibitory Concentration (MIC) measurement, as well as Minimum Fungicidal Concentration (MFC) method against yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration (MBC) method against bacteria strains, Staphylococcus aureus and Escherichia coli. Since the HMP series have better antimicrobial activity than the HP series, they are more suitable for preventing dental caries and for long-term use of dental composites. In addition, when HMP and HP series added to the composite are compared, HMP-containing dental composites have better physicochemical and mechanical properties and therefore have a high potential for commercialization.
Collapse
|
3
|
Majeed HF, Hamad TI, Bairam LR. Enhancing 3D-printed denture base resins: A review of material innovations. Sci Prog 2024; 107:368504241263484. [PMID: 39043200 PMCID: PMC11271118 DOI: 10.1177/00368504241263484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The limited physical and mechanical properties of polymethyl methacrylate (PMMA), the current gold standard, necessitates exploring improved denture base materials. While three-dimensional (3D) printing offers accuracy, efficiency, and patient comfort advantages, achieving superior mechanics in 3D-printed denture resins remains challenging despite good biocompatibility and esthetics. This review investigates the potential of innovative materials to address the limitations of 3D-printed denture base materials. Thus, this article is organized to provide a comprehensive overview of recent efforts to enhance 3D-printed denture base materials, highlighting advancements. It critically examines the impact of incorporating various nanoparticles (zirconia, titania, etc.) on these materials' physical and mechanical properties. Additionally, it delves into recent strategies for nanofiller surface treatment and biocompatibility evaluation and explores potential future directions for polymeric composites in denture applications. The review finds that adding nanoparticles significantly improves performance compared to unmodified resins, and properties can be extensively enhanced through specific modifications, particularly silanized nanoparticles. Optimizing 3D-printed denture acrylics requires a multifaceted approach, with future research prioritizing novel nanomaterials and surface modification techniques for a novel generation of superior performance, esthetically pleasing, and long-lasting dentures.
Collapse
Affiliation(s)
- Hadeel Fikrat Majeed
- Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Thekra Ismael Hamad
- Department of Prosthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Latifa R Bairam
- Department of Restorative Dentistry, School of Dental Medicine, University of New York at Buffalo, NY, USA
| |
Collapse
|
4
|
Ma Z, Chen Y, Wang R, Zhu M. Synthesis of polymerizable betulin maleic diester derivative for dental restorative resins with antibacterial activity. Dent Mater 2024; 40:941-950. [PMID: 38719709 DOI: 10.1016/j.dental.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Wang R, Li Z, Tian Q, Ma Z, Zhu M. Making graphene oxide (GO)-cladded SiO 2 spheres (SiO 2 @GO) as inorganic fillers for dental restorative resin composites. Dent Mater 2023; 39:1076-1084. [PMID: 37827873 DOI: 10.1016/j.dental.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE Graphene oxide (GO) is of great interest in dentistry as the functional filler, mainly owing to its ability to inhibit the formation of cariogenic bacteria and possess low cytotoxicity to different cells, such as human dental pulp cells, HeLa cells, etc. However, its typical brown color limits the practical application. METHODS Here, the refractive-index-matched monodisperse SiO2 were used as the supporting substrates to synthesize GO-cladded SiO2 spheres (xSiO2 @ yGO) through a mild electrostatic self-assembly process, where x and y represent the amount of SiO2 and GO in the reaction mixture, respectively. The morphology and the optical performance of the obtained xSiO2 @ yGO particles were modulated by varying the mass ratio of SiO2 and GO (5:1, 10:1, 50:1, and 100:1). All developed hybrid particles were silanized and formulated with dimethacrylate-based resins. These were tested for curing depth, polymerization conversion, mechanical performance, in vitro cell viability, and antibacterial activity. RESULTS Of all xSiO2 @ yGO materials, increasing the mass ratio to 100:1 made the 100SiO2 @GO particles appear light brown and possess the lowest light absorbance from 300 to 800 nm. The results of CIEL*a*b* system showed that all these hybrid particles exhibited obvious discoloration compared with SiO2 and GO, where 100SiO2 @GO possessed the smallest color difference. Furthermore, following the results of curing depth, polymerization conversion, and mechanical performance of dental composites, the optimal filler composition was 100SiO2 @GO at 5 wt% filler loading. The resultant 100SiO2 @GO-filled composite produced the highest flexural strength (115 ± 12 MPa) and the lowest bacterial concentration (6.7 × 108 CFU/mL) than those of the resin matrix (78 ± 11 MPa; 9.2 × 108 CFU/mL) and 5 wt% SiO2-filled composite (106 ± 9 MPa; 9.1 × 108 CFU/mL), respectively, without affecting in vitro cell viability. SIGNIFICANCE The facile and mild synthesis of xSiO2 @ yGO hybrid particles provided a convenient way to tune their optical property. The optimal 100SiO2 @GO particles could be considered as the promising antibacterial filler to be applied in dental care and therapy.
Collapse
Affiliation(s)
- Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zhihao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingyi Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Shekofteh K, Kashi TJ, Behroozibakhsh M, Sadr A, Najafi F, Bagheri H. Evaluation of physical/mechanical properties of an experimental dental composite modified with a zirconium-based metal-organic framework (MOF) as an innovative dental filler. Dent Mater 2023; 39:790-799. [PMID: 37455205 DOI: 10.1016/j.dental.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES This study aimed to modify an experimental dental composite using a synthesized nano-structured methacrylated zirconium-based MOF to enhance physical/mechanical properties. METHODS The previously known Uio-66-NH2 MOF was first synthesized and post-modified with Glycidyl Methacrylate (GMA). Fourier Transform Infrared (FTIR) Spectroscopy and CHNS analysis confirmed the post-modification reaction. The prepared filler was investigated by XRD, BET, SEM-EDS, and TEM. The experimental composite was prepared by mixing 60% wt. of resin matrix with 40% wt. of fillers, including silanized silica (SS) or Uio-66-NH-Me (UM). The experimental composites' depth of cure (DPC) was investigated in five groups (G1 =40% SS, G2 =30%SS+10%UM, G3 =20%SS+20%UM, G4 =10%SS+30%UM, G5 =40%UM). Then flexural strength(FS), Elastic Modulus(EM), solubility(S), water sorption(WS), degree of conversion(DC), polymerization shrinkage(PS), and polymerization stress(PSR) of the groups with DPC of more than 1 mm were investigated. Finally, the cytotoxicity of composites was studied. RESULTS The groups with more than 20% wt. UM, filler (G4, G5) had lesser than 1 mm DPC. Therefore, we investigated three groups' physical and mechanical properties with lower than 20% UM filler (G1-G3). Within these groups, G3 has a higher FS, EM (P < 0.05), and lower WS and S (P < 0.05). DC dropped in G2 and G3 compared to G1 (p < 0.05), but there was no significant difference between G2 and G3 (P = 0.594). SIGNIFICANCE This new filler is an innovative coupling-agent free filler and can be part of dental filler technology itself. It can also introduce a new group of dental fillers based on MOFs, but it still needs a complete investigation to be widely used.
Collapse
Affiliation(s)
- Kiana Shekofteh
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Jafarzadeh Kashi
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadr
- Department of Restorative Dentistry, Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, School of Dentistry, University of Washington, WA, USA
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Hossein Bagheri
- Dental Materials Research Center; Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Ren J, Guo X. The germicidal effect, biosafety and mechanical properties of antibacterial resin composite in cavity filling. Heliyon 2023; 9:e19078. [PMID: 37662807 PMCID: PMC10474440 DOI: 10.1016/j.heliyon.2023.e19078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, dental resin materials have become increasingly popular for cavity filling. However, these materials can shrink during polymerization, leading to microleakages that enable bacteria to erode tooth tissue and cause secondary caries. As a result, there is great clinical demand for the development of antibacterial resins. The principle of antibacterial resin includes contact killing and filler-release killing of bacteria. For contact killing, quaternary ammonium salts (QACs) and antibacterial peptides (AMPs) can be added. For filler-release killing, chlorhexidine (CHX) and nanoparticles are used. These antibacterial agents are effective against gram-positive bacteria, gram-negative bacteria, fungi, and more. Among them, QACs has a lasting antibacterial effect, and silver nanoparticles even have a certain ability to kill viruses. Biocompatibility-wise, QACs, AMPs, and CHX have low cytotoxicity to cells when added into the resin. However, nanoparticles with smaller particle sizes have higher cytotoxicity. In terms of mechanical properties, QACs, AMPs, and CHX do not negatively affect the resin. However, the addition of magnesium oxide can have a negative impact. This paper reviews the types and antibacterial principles of commonly used antibacterial resins in recent years, evaluates their antibacterial effect, biological safety, and mechanical properties, and provides references for selecting clinical filling materials.
Collapse
Affiliation(s)
- Jiamu Ren
- Yanbian University, Jilin, 133002, China
| | - Xinwei Guo
- Peking University, Haidian District, Beijing, 100871, China
| |
Collapse
|
9
|
Chen H, Luo J, Yang J, Zeng C, Jiang X. Synthesis of Pore-Size-Tunable Porous Silica Particles and Their Effects on Dental Resin Composites. Biomolecules 2023; 13:1290. [PMID: 37759690 PMCID: PMC10526776 DOI: 10.3390/biom13091290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The filler/resin matrix interface interaction plays a vital role in the properties of dental resin composites (DRCs). Porous particles are promising fillers due to their potential in constructing micromechanical interlocking at filler/resin matrix interfaces, therefore improving the properties of the resulting DRCs, where the pore size is significantly important. However, how to control the pore size of porous particles via a simple synthesis method is still a challenge, and how their pore sizes affect the properties of resulting DRCs has not been studied. In this study, porous silica (DPS) with a dendritic structure and an adjustable pore size was synthesized by changing the amounts of catalyst in the initial microemulsion. These synthesized DPS particles were directly used as unimodal fillers and mixed with a resin matrix to formulate DRCs. The results showed that the DPS pore size affects the properties of DRCs, especially the mechanical property. Among various DPS particles with different pore sizes, DPS6 resulted in 19.5% and 31.4% improvement in flexural strength, and 24.4% and 30.7% enhancement in compression strength, respectively, compared to DPS1 and DPS9. These DPS particles could help to design novel dental restorative materials and have promising applications in biomedicine, catalysis, and adsorption.
Collapse
Affiliation(s)
- Hongyan Chen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiaxin Luo
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiawei Yang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chen Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinquan Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
10
|
Zhang S, Wang X, Yang J, Chen H, Jiang X. Micromechanical interlocking structure at the filler/resin interface for dental composites: a review. Int J Oral Sci 2023; 15:21. [PMID: 37258568 DOI: 10.1038/s41368-023-00226-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Dental resin composites (DRCs) are popular materials for repairing caries or dental defect, requiring excellent properties to cope with the complex oral environment. Filler/resin interface interaction has a significant impact on the physicochemical/biological properties and service life of DRCs. Various chemical and physical modification methods on filler/resin interface have been introduced and studied, and the physical micromechanical interlocking caused by the modification of fillers morphology and structure is a promising method. This paper firstly introduces the composition and development of DRCs, then reviews the chemical and physical modification methods of the filler/resin interface, mainly discusses the interface micromechanical interlocking structures and their enhancement mechanism for DRCs, finally give a summary on the existing problems and development potential.
Collapse
Affiliation(s)
- Shuning Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyan Chen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
11
|
Kerdmuanglek F, Chomtong T, Boonsith S, Chutimasakul T, Iemsam-Arng J, Thepwatee S. Non-ionic surfactant-assisted controlled release of oxyresveratrol on dendritic fibrous silica for topical applications. J Colloid Interface Sci 2023; 646:342-353. [PMID: 37201462 DOI: 10.1016/j.jcis.2023.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
We present a simple and eco-friendly method for controlled drug release using a surfactant-assisted method. Oxyresveratrol (ORES) was co-loaded with a non-ionic surfactant onto KCC-1, a dendritic fibrous silica, using an ethanol evaporation technique. The carriers were characterized using FE-SEM, TEM, XRD, N2 adsorption-desorption, FTIR, and Raman spectroscopy, and the loading and encapsulation efficiencies were assessed using TGA and DSC techniques. Contact angle and zeta potential were used to determine the surfactant arrangement and the particle charges. To investigate the effects of different surfactants (Tween 20, Tween 40, Tween 80, Tween 85, and Span 80) on ORES release, we conducted experiments under different pH and temperature conditions. Results showed that the types of surfactants, drug loading content, pH, and temperature significantly affected the drug release profile. The percentage of drug loading efficiency of the carriers was in the range of 80 %-100 %, and the release of ORES was in the order of M/KCC-1 > M/K/S80 > M/K/T40 > M/K/T20 > MK/T80 > M/K/T85 at 24 h. Furthermore, the carriers provided excellent protection for ORES against UVA and maintained its antioxidant activity. KCC-1 and Span 80 enhanced the cytotoxicity to HaCaT cells, while Tween 80 suppressed the cytotoxicity.
Collapse
Affiliation(s)
- Fonkaeo Kerdmuanglek
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - Thitikorn Chomtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Suthida Boonsith
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Threeraphat Chutimasakul
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakhon Nayok 26120, Thailand.
| | - Jayanant Iemsam-Arng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Sukanya Thepwatee
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Research Group of Bioactive Product Design, Cosmetics and Health Care Innovation (BioCos), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| |
Collapse
|
12
|
Wang Y, Bai X, Li H, Kong H, Yao X. Effect of monodisperse mesoporous bioactive glass spheres (MBGs) on the mechanical properties and bioactivity of dental composites. J Mech Behav Biomed Mater 2023; 142:105820. [PMID: 37023595 DOI: 10.1016/j.jmbbm.2023.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Secondary caries is one of the main reasons for the failure of dental resin composites, and adding bioactive fillers such as bioactive glass and amorphous calcium phosphate to the resin composites has been proved to be an effective solution for this problem. In the present study, we investigated the effect of monodisperse mesoporous bioactive glass spheres (MBGs) we prepared on the mechanical properties and bioactivity of dental resins. The results revealed that compared with traditional bioactive glass (BG), MBGs fillers significantly enhanced the mechanical properties of the dental resin composites, whether they were added alone or as functional fillers together with nonporous silica particles. The dental resins filled with bimodal fillers (mass ratio of MBGs: nonporous silica = 10:50, total filler loading 60 wt%) exhibited the best mechanical performance. Their flexural strength was 37.66% higher than the samples with BG at the same filling proportion. Furthermore, the prepared MBGs possessed excellent monodispersity and sufficient apatite formation performance, and the biocompatibility of the composites were also improved by MBGs fillers. These suggest the potential use of the prepared MBGs as multifunctional fillers for the improvement of the performance of dental resins.
Collapse
|
13
|
Yan S, Wang K, Wang Z. A Comparative Study on the Microscale and Macroscale Mechanical Properties of Dental Resin Composites. Polymers (Basel) 2023; 15:polym15051129. [PMID: 36904370 PMCID: PMC10007216 DOI: 10.3390/polym15051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Dental resin composites are universal restorative materials, and various kinds of fillers are used to reinforce their mechanical properties. However, a combined study on the microscale and macroscale mechanical properties of dental resin composites is missing, and the reinforcing mechanism of the composites is still not fully clarified. In this work, the effects of the nano-silica particle on the mechanical properties of dental resin composites were studied by combined dynamic nanoindentation tests and macroscale tensile tests. The reinforcing mechanism of the composites was explored by combining near-infrared spectroscopy, scanning electron microscope, and atomic force microscope characterizations. It was found that the tensile modulus increased from 2.47 GPa to 3.17 GPa, and the ultimate tensile strength increased from 36.22 MPa to 51.75 MPa, with the particle contents increasing from 0% to 10%. From the nanoindentation tests, the storage modulus and hardness of the composites increased by 36.27% and 40.90%, respectively. The storage modulus and hardness were also found to increase by 44.11% and 46.46% when the testing frequency increased from 1 Hz to 210 Hz. Moreover, based on a modulus mapping technique, we found a boundary layer in which the modulus gradually decreased from the edge of the nanoparticle to the resin matrix. Finite element modeling was adopted to illustrate the role of this gradient boundary layer in alleviating the shear stress concentration on the filler-matrix interface. The present study validates mechanical reinforcement and provides a potential new insight for understanding the reinforcing mechanism of dental resin composites.
Collapse
Affiliation(s)
- Shuogeng Yan
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhengzhi Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518108, China
- Correspondence:
| |
Collapse
|
14
|
Cheng J, Deng Y, Tan Y, Li J, Fei Y, Wang C, Zhang J, Niu C, Fu Q, Lu L. Preparation of Silica Aerogel/Resin Composites and Their Application in Dental Restorative Materials. Molecules 2022; 27:molecules27144414. [PMID: 35889287 PMCID: PMC9323775 DOI: 10.3390/molecules27144414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
As the most advanced aerogel material, silica aerogel has had transformative industrial impacts. However, the use of silica aerogel is currently limited to the field of thermal insulation materials, so it is urgent to expand its application into other fields. In this work, silica aerogel/resin composites were successfully prepared by combining silica aerogel with a resin matrix for dental restoration. The applications of this material in the field of dental restoration, as well as its performance, are discussed in depth. It was demonstrated that, when the ratio of the resin matrix Bis-GMA to TEGDMA was 1:1, and the content of silica aerogel with 50 μm particle size was 12.5%, the composite achieved excellent mechanical properties. The flexural strength of the silica aerogel/resin composite reached 62.9546 MPa, which was more than five times that of the pure resin. Due to the presence of the silica aerogel, the composite also demonstrated outstanding antibacterial capabilities, meeting the demand for antimicrobial properties in dental materials. This work successfully investigated the prospect of using commercially available silica aerogels in dental restorative materials; we provide an easy method for using silica aerogels as dental restorative materials, as well as a reference for their application in the field of biomedical materials.
Collapse
|
15
|
Li J, Cui Y, Wu K, Sun C. Lowering the curing shrinkage of epoxy acrylate‐based photosensitive resins through
nano‐TiO
2
particle with surface grafted by thiol‐terminated hyperbranched polymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingjing Li
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Yihua Cui
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Kangle Wu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
| | - Chuangchuang Sun
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China
| |
Collapse
|
16
|
Cao J, Yang DL, Wang D, Wang JX. Spray-drying-assisted fabrication of CaF2/SiO2 nanoclusters for dental restorative composites. Dent Mater 2022; 38:835-847. [DOI: 10.1016/j.dental.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
|
17
|
Dental Poly(methyl methacrylate)-Based Resin Containing a Nanoporous Silica Filler. J Funct Biomater 2022; 13:jfb13010032. [PMID: 35323232 PMCID: PMC8948615 DOI: 10.3390/jfb13010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based resins have been conventionally used in dental prostheses owing to their good biocompatibility. However, PMMA-based resins have relatively poor mechanical properties. In the present study, a novel nanoporous silica filler was developed and introduced into PMMA-based resins to improve their mechanical properties. The filler was prepared by sintering a green body composed of silica and an organic binder, followed by grinding to a fine powder and subsequent silanization. The filler was added to photocurable PMMA-based resin, which was prepared from MMA, PMMA, ethylene glycol dimethacrylate, and a photo-initiator. The filler was characterized by scanning electron microscopy (SEM), X-ray diffraction analysis, nitrogen sorption porosimetry, and Fourier transform infrared (FT-IR) spectroscopy. The PMMA-based resins were characterized by SEM and FT-IR, and the mechanical properties (Vickers hardness, flexural modulus, and flexural strength) and physicochemical properties (water sorption and solubility) were evaluated. The results suggested that the filler consisted of microparticles with nanopores. The filler at 23 wt % was well dispersed in the PMMA-based resin matrix. The mechanical and physicochemical properties of the PMMA-based resin improved significantly with the addition of the developed filler. Therefore, such filler-loaded PMMA-based resins are potential candidates for improving the strength and durability of polymer-based crown and denture base.
Collapse
|
18
|
Kong H, Bai X, Li H, Lin C, Yao X, Wang Y. Preparation of Ca doped wrinkled porous silica (Ca-WPS) for the improvement of apatite formation and mechanical properties of dental resins. J Mech Behav Biomed Mater 2022; 129:105159. [PMID: 35247860 DOI: 10.1016/j.jmbbm.2022.105159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
The purpose of this work was to fabricate and characterize Ca doped wrinkled porous silica (Ca-WPS), and evaluate their effect on the mineralization and mechanical properties of resin composites as functional fillers. Ca-WPS were prepared by sol-gel method and characterized by scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurements. The mineralization properties of the prepared Ca-WPS particles and the resin composites with different amount of Ca-WPS were evaluated by simulated body fluid (SBF) immersion method. The mechanical properties (flexural strength, flexural modulus, compressive strength and microhardness) of the dental resins containing unimodal Ca-WPS fillers and bimodal Ca-WPS fillers with nonporous silica were evaluated by a universal testing machine. Results showed that after immersing in SBF for 5 d, apatite formed on the surface of Ca-WPS and composites containing Ca-WPS fillers, indicating the excellent mineralization property of the prepared Ca-WPS. The mechanical properties of the dental resins increase with the increase of the proportion of unimodal Ca-WPS fillers. The dental resins with bimodal Ca-WPS fillers showed better mechanical properties than the group with only nonporous fillers at the same filler loading (60 wt%). Among all the samples, the dental composites filled with bimodal fillers (mass ratio of Ca-WPS: nonporous silica = 10:50, total filler loading 60 wt%) exhibited the best mechanical performance. The flexural strength, flexural modulus, compressive strength and microhardness of these samples were 26.96%, 42.75%, 16.04% and 54.1% higher than the composites with solid silica particles alone, respectively. Thus, the prepared Ca-WPS could effectively improve the apatite formation and mechanical properties of resin composites.
Collapse
Affiliation(s)
- Hongxing Kong
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Xingxing Bai
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Huaizhu Li
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Chucheng Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Yueyue Wang
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China.
| |
Collapse
|
19
|
Aminoroaya A, Bagheri R, Nouri Khorasani S, Talebi Z, Derakhshanfar P, Esmaeely Neisiany R. Mesoporous silica aerogel reinforced dental composite: Effects of microstructure and surface modification. J Mech Behav Biomed Mater 2021; 125:104947. [PMID: 34736020 DOI: 10.1016/j.jmbbm.2021.104947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
A mesoporous silica aerogel (SiA) with a high specific surface area was synthesized through the sol-gel process and subsequently modified with two different silane-based modifiers to reveals the effect of microstructure and surface modification on the fracture mechanics of a dental composite. The synthesized and modified aerogel were characterized using field-emission scanning electron microscopy (FESEM), nitrogen adsorption-desorption, and Fourier-transform infrared spectroscopy (FTIR). The prepared aerogels were then incorporated within methacrylate-based dental composites with the filler content of 0-35 wt%. Flexural modulus (FM) and Flexural strength (FS) were evaluated by the three-point bending test. The fracture toughness (FT) of the composites was evaluated by single edge V-notched beam (SEVNB) flexure test, while FESEM was employed to investigate the fracture surface morphology of the composites. Furthermore, the wettability of the composites was assessed according to the sessile drop method. The characterization of synthesized aerogels revealed the formation of SiA with a surface area of 550-560 m2/g and porosity of 77%, while FTIR results confirmed the successful modification. Statistical analysis (ANOVA, p≤0.05, and n = 5) revealed that FM significantly enhanced (from 1.43 GPa to 2.66 GPa) as filler content increased over 0-30 wt%, and FS improved (from 80 to 95 MPa) as filler content increased over 0-15 wt%. Furthermore, the modification of aerogels improved both fracture characteristics and the wettability of the composites. The FT evaluations and fractography analysis revealed that the mesoporous structure of the fillers mainly dominated the filler-matrix adhesion strength at the same filler content.
Collapse
Affiliation(s)
- Alireza Aminoroaya
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rouhollah Bagheri
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Zahra Talebi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parham Derakhshanfar
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
| |
Collapse
|
20
|
Liu J, Zhang H, Sun H, Liu Y, Liu W, Su B, Li S. The Development of Filler Morphology in Dental Resin Composites: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5612. [PMID: 34640020 PMCID: PMC8509641 DOI: 10.3390/ma14195612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Dental resin composites (DRCs) with diverse fillers added are widely-used restorative materials to repair tooth defects. The addition of fillers brings an improvement in the mechanical properties of DRCs. In the past decade, diverse fillers have emerged. However, the change of emerging fillers mainly focuses on the chemical composition, while the morphologic characteristics changes are often ignored. The fillers with new morphologies not only have the advantages of traditional fillers (particles, fibrous filler, etc.), but also endow some additional functional characteristics (stronger bonding ability to resin matrix, polymerization resistance, and wear resistance, drug release control ability, etc.). Moreover, some new morphologies are closely related to the improvement of traditional fillers, porous filler vs. glass particles, core-sheath fibrous vs. fibrous, etc. Some other new morphology fillers are combinations of traditional fillers, UHA vs. HA particles and fibrous, tetrapod-like whisker vs. whisker and fibrous filler, mesoporous silica vs. porous and silica particles. In this review, we give an overall description and a preliminary summary of the fillers, as well as our perspectives on the future direction of the development of novel fillers for next-generation DRCs.
Collapse
Affiliation(s)
- Jiani Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| | - Huijun Sun
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; (H.S.); (B.S.)
| | - Yanru Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| | - Wenlin Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; (H.S.); (B.S.)
| | - Shibao Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Dental Materials, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.L.); (H.Z.); (Y.L.); (W.L.)
| |
Collapse
|
21
|
Chen H, Liu H, Wang R, Jiang X, Zhu M. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dent Mater 2021; 37:961-971. [PMID: 33714621 DOI: 10.1016/j.dental.2021.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Porous materials, especially porous silica particles are of great interest in different areas, and have applied in dental composites as inorganic fillers, due to their potential in constructing micromechanical interlocking at the filler-resin matrix interfaces. However, the facile and precise synthesis of hierarchical porous silica with graded sizes is still a great challenge. METHODS Here, we synthesized dendritic porous silica (DPS) with center-radial hierarchical pores and controllable size ranging from 75 to 1000nm by varying simultaneously the amounts of silica precursor and template in the microemulsion. A plausible nucleation-growth mechanism for the structural formation and the size tunability of the DPS particles was further put forward. These DPS particles were then formulated with Bis-GMA/TEGDMA resin. RESULTS The particle size and morphology influenced the mechanical properties of dental composites. Particularly, DPS-500 particles (average size: 500nm) exhibited the superior reinforcing effect, giving large improvements of 32.0, 96.7, 51.9, and 225.6% for flexural strength (SF), flexural modulus (EY), compressive strength (SC), and work of fracture (WOF), respectively, over the DPS-75 filled composite. All DPS filler sized exhibited similar degree of conversions and curing depths. Furthermore, the DPS-500 filled composite presented better cytocompatibility than commercial Z250 XT. SIGNIFICANCE The facile synthesis of DPS particles developed here and the understanding of the influence of the filler size and morphology on the composite properties provide a shortcut to design porous silica with precise size control and dental composites with superior performance. These DPS particles could also have promising applications in biomedicine, catalysis, adsorption, and cancer therapy.
Collapse
Affiliation(s)
- Hongyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Xiaoze Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
22
|
Wang Y, Zhu M, Zhu XX. Functional fillers for dental resin composites. Acta Biomater 2021; 122:50-65. [PMID: 33290913 DOI: 10.1016/j.actbio.2020.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Dental resin composites (DRCs) are popular materials to repair caries. Although various types of DRCs with different characteristics have been developed, restoration failures still exist. Bulk fracture and secondary caries have been considered as main causes for the failure of composites restoration. To address these problems, various fillers with specific functions have been introduced and studied. Some fillers with specific morphologies such as whisker, fiber, and nanotube, have been used to increase the mechanical properties of DRCs, and other fillers releasing ions such as Ag+, Ca2+, and F-, have been used to inhibit the secondary caries. These functional fillers are helpful to improve the performances and lifespan of DRCs. In this article, we firstly introduce the composition and development of DRCs, then review and discuss the functional fillers classified according to their roles in the DRCs, finally give a summary on the current research and predict the trend of future development.
Collapse
Affiliation(s)
- Yazi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
23
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
24
|
Szewczyk A, Skwira A, Ginter M, Tajer D, Prokopowicz M. Microwave-Assisted Fabrication of Mesoporous Silica-Calcium Phosphate Composites for Dental Application. Polymers (Basel) 2020; 13:E53. [PMID: 33375650 PMCID: PMC7796352 DOI: 10.3390/polym13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Marta Ginter
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Donata Tajer
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| |
Collapse
|
25
|
Hong G, Yang J, Jin X, Wu T, Dai S, Xie H, Chen C. Mechanical Properties of Nanohybrid Resin Composites Containing Various Mass Fractions of Modified Zirconia Particles. Int J Nanomedicine 2020; 15:9891-9907. [PMID: 33328732 PMCID: PMC7733898 DOI: 10.2147/ijn.s283742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of various mass fractions of 10-methacry-loyloxydecyl dihydrogen phosphate (MDP)-conditioned or unconditioned zirconia nano- or micro-particles with different initiator systems on the mechanical properties of nanohybrid resin composites. METHODS Both light-cured (L) and dual-cured (D) resin composites were prepared. When the mass fraction of the nano- or micro-zirconia fillers reached 55 wt%, resin composites were equipped with dual-cured initiator systems. We measured the three-point bending-strength, elastic modulus, Weibull modulus and translucency parameter of the nanohybrid resin composites containing various mass fractions of MDP-conditioned or unconditioned zirconia nano- or micro-particles (0%, 5 wt%, 10 wt%, 20 wt%, 30 wt% and 55 wt%). A Cell Counting Kit (CCK)-8 was used to test the cell cytotoxicity of the experimental resin composites. The zirconia nano- or micro-particles with MDP-conditioning or not were characterized by transmission electron microscopy (TEM), Fourier infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). RESULTS Resin composites containing 5-20 wt% MDP-conditioned or unconditioned nano-zirconia fillers exhibited better three-point bending-strength than the control group without zirconia fillers. Nano- or micro-zirconia fillers decreased the translucence of the nanohybrid resin composites. According to the cytotoxicity classification, all of the nano- or micro-zirconia fillers containing experimental resin composites were considered to have no significant cell cytotoxicity. The FTIR spectra of the conditioned nano- or micro-fillers showed new absorption bands at 1719 cm-1 and 1637 cm-1, indicating the successful combination of MDP and zirconia particles. The XPS analysis measured Zr-O-P peak area on MDP-conditioned nano- and micro-zirconia fillers at 39.91% and 34.89%, respectively. CONCLUSION Nano-zirconia filler improved the mechanical properties of nanohybrid resin composites, but cannot be the main filler to replace silica filler. The experimental dual-cured composites can be resin cements with better opacity effects and a low viscosity.
Collapse
Affiliation(s)
- Gaoying Hong
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiaxue Yang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xin Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tong Wu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shiqi Dai
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haifeng Xie
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Wang Y, Hua H, Liu H, Zhu M, Zhu XX. Surface Modification of ZrO2 Nanoparticles and Its Effects on the Properties of Dental Resin Composites. ACS APPLIED BIO MATERIALS 2020; 3:5300-5309. [DOI: 10.1021/acsabm.0c00648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yazi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal Québec H3C 3J7, Canada
| | - Hongfei Hua
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - X. X. Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal Québec H3C 3J7, Canada
| |
Collapse
|
27
|
Liao W, Zheng S, Chen S, Zhao L, Huang X, Huang L, Kang S. Surface silanization and grafting reaction of nano-silver loaded zirconium phosphate and properties strengthen in 3D-printable dental base composites. J Mech Behav Biomed Mater 2020; 110:103864. [PMID: 32957182 DOI: 10.1016/j.jmbbm.2020.103864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
In this work, surface modification of nano silver-loaded zirconium phosphate (6S-NP3) were obtained from simultaneous silanization of γ-methacryloxypropyltrimethoxysilane (MPS) and grafting reaction of methyl methacrylate (MMA), and then mixed with denture base resin (E-Denture) to prepare denture base composites using 3D printer printing. FT-IR spectra confirmed that surface silanization and grafting reaction had occurred and MPS and MMA were successfully anchored on the surface of 6S-NP3. XRD results demonstrated that surface modification had occurred on the surface of hexagonal lattice. The average diameter data indicated that the surface modification decreased the average diameter of nanoparticles. The water contact angle (WCA) was found increasing as the surface modification. SEM images illustrated that the dispersion and compatibility of nanoparticles in denture base composite materials had improved. The results of mechanical properties presented that composites with the addition of P-6S-NP3 nanoparticles achieved higher flexural strength, flexural modulus and impact strength. The data of antibacterial activities revealed that composites had exhibited good antibacterial activities against either S. aureus or E. coli and the latter showed better antibacterial efficacy than the former.
Collapse
Affiliation(s)
- Wenbo Liao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China; Engineering Research Center of None-food Biomass Efficient Pyrolysis, Utilization Technology of Guangdong Higher Education Institutes, Dongguan University of Technology, Dongguan, 523808, China
| | - Shaona Zheng
- Basic Chemistry Experimental Teaching Center, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Shenggui Chen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Lili Zhao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiangxuan Huang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Lele Huang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Shimin Kang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China; Engineering Research Center of None-food Biomass Efficient Pyrolysis, Utilization Technology of Guangdong Higher Education Institutes, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
28
|
Aminoroaya A, Esmaeely Neisiany R, Nouri Khorasani S, Panahi P, Das O, Ramakrishna S. A Review of Dental Composites: Methods of Characterizations. ACS Biomater Sci Eng 2020; 6:3713-3744. [DOI: 10.1021/acsbiomaterials.0c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alireza Aminoroaya
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parisa Panahi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Oisik Das
- Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå 97187, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
29
|
Bai X, Lin C, Wang Y, Ma J, Wang X, Yao X, Tang B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent Mater 2020; 36:794-807. [PMID: 32349876 DOI: 10.1016/j.dental.2020.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The purpose of this work was to explore the enhancement effect of zinc doped mesoporous silica nanoparticles (Zn-MSNs), which could form micromechanical interlocking with resin matrix and sustainably release Zn2+, on the mechanical and antibacterial properties of the dental resin composites. METHODS Zn-MSNs were prepared by a sol-gel method, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption/desorption. The mechanical properties of the dental composites reinforced by Zn-MSNs were measured by a universal mechanical testing machine. Antibacterial activities of dental composites were evaluated by both qualitative and quantitative analysis using Streptococcus mutans (S. mutans). The cytotoxicity of the Zn-MSNs filled dental composites was investigated by osteoblasts (OBs). RESULTS The synthesized Zn-MSNs possessed good monodispersity with an average particle size of about 138nm. The mechanical properties of the composites gradually increased with the increase of the content of Zn-MSNs. The flexural strength, flexural modulus, compressive strength and micro-hardness of the composites containing 15wt% Zn-MSNs were 31.21%, 50.47%, 53.83% and 26.79% higher than the samples with no Zn-MSNs, respectively. The antibacterial performance was significantly improved by the addition of Zn-MSNs and the antibacterial rate of the composite with 15wt% of Zn-MSNs reached 100%. Cytotoxicity tests revealed that all the composites were biocompatible during OBs incubation. SIGNIFICANCE The prepared Zn-MSNs can effectively improve the mechanical and antibacterial properties of the dental resin composites.
Collapse
Affiliation(s)
- Xingxing Bai
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan 030024, China
| | - Chucheng Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Yueyue Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan 030024, China.
| | - Jing Ma
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan 030024, China
| | - Xin Wang
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan 030024, China
| | - Xiaohong Yao
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan 030024, China
| | - Bin Tang
- Institute of New Carbon Materials, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan 030024, China
| |
Collapse
|
30
|
Foong LK, Foroughi MM, Mirhosseini AF, Safaei M, Jahani S, Mostafavi M, Ebrahimpoor N, Sharifi M, Varma RS, Khatami M. Applications of nano-materials in diverse dentistry regimes. RSC Adv 2020; 10:15430-15460. [PMID: 35495474 PMCID: PMC9052824 DOI: 10.1039/d0ra00762e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Research and development in the applied sciences at the atomic or molecular level is the order of the day under the domain of nanotechnology or nano-science with enormous influence on nearly all areas of human health and activities comprising diverse medical fields such as pharmacological studies, clinical diagnoses, and supplementary immune system. The field of nano-dentistry has emerged due to the assorted dental applications of nano-technology. This review provides a brief introduction to the general nanotechnology field and a comprehensive overview of the synthesis features and dental uses of nano-materials including current innovations and future expectations with general comments on the latest advancements in the mechanisms and the most significant toxicological dimensions.
Collapse
Affiliation(s)
- Loke Kok Foong
- Institute of Research and Development, Duy Tan University Da Nang 550000 Viet Nam
| | | | - Armita Forutan Mirhosseini
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
| | - Mohadeseh Safaei
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Student Research Committee, School of Public Health, Bam University of Medical Sciences Bam Iran
| | - Maryam Mostafavi
- Tehran Dental Branch, Islamic Azad University Tehran Iran
- Craniomaxilofacial Resarch Center, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Nasser Ebrahimpoor
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences Kerman Iran
| | - Maryam Sharifi
- Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences Kerman Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 3433210051 +98 34331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
31
|
Li L, Li D, Zhao W, Cai Q, Li G, Yu Y, Yang X. Composite resin reinforced with fluorescent europium-doped hydroxyapatite nanowires for in-situ characterization. Dent Mater 2019; 36:e15-e26. [PMID: 31791735 DOI: 10.1016/j.dental.2019.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/16/2019] [Accepted: 11/15/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The object is to find an easy but efficient way to illustrate the in-situ dispersion of nano-scaled one-dimensional fillers in composite resins, and to correlate their dispersion status with the properties of composite resins. METHODS Fluorescent europium-doped hydroxyapatite nanowires (HANW:Eu) were synthesized via the hydrothermal method. The HANW:Eu was mixed into Bis-GMA/TEGDMA (60/40, w/w) at different contents (1-5wt.%), and different processing methods (kneading, grinding, stirring) were tested to achieve good dispersion of HANW:Eu with the aid of fluorescent imaging system. Then, the mixtures of HANW:Eu and barium glass powder (BaGP) were kneaded into resin at a fixed content (70wt.%) while at different mixing ratios. In addition to the 3D fluorescent imaging, characterizations were carried out on mechanical properties, fractured surface, wear resistance and polymerization shrinkage, to correlate the composite properties of with the dispersion status of the incorporated HANW:Eu. RESULTS By doping calcium with 5mol.% of europium, the obtained HANW:Eu displayed strong fluorescence, which made the illustration of its in-situ dispersion status within composites being possible. And this helped to judge that kneading was more efficient to homogeneously disperse HANW:Eu than grinding and stirring. However, it was illustrated vividly that HANW:Eu aggregated severely when it was co-incorporated with BaGP into composites at the total content of 70wt.%, which had not been previously revealed by other microscope observations. In comparison with composites containing 70wt.% of BaGP, improvements in the mechanical properties of resulting composites were identified for the cases containing 3wt.% of HANW and 67wt.% of BaGP, however, their wear volume loss and the polymerization shrinkage did not decrease as expected due to the HANW aggregations. SIGNIFICANCE The fluorescent filler prepared in this study provides a feasible strategy to illustrate the in-situ dispersion status of inorganic fillers, which provides guidance for the processing of composite resins.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Dan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenwen Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Gang Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunhua Yu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
32
|
Wang Y, Hua H, Yu Y, Chen G, Zhu M, Zhu XX. Dental Resin Composites Reinforced by Rough Core–Shell SiO2 Nanoparticles with a Controllable Mesoporous Structure. ACS APPLIED BIO MATERIALS 2019; 2:4233-4241. [DOI: 10.1021/acsabm.9b00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yazi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Hongfei Hua
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yejia Yu
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - X. X. Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
33
|
Chen SG, Yang J, Jia YG, Lu B, Ren L. TiO 2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications. NANOMATERIALS 2019; 9:nano9071049. [PMID: 31336607 PMCID: PMC6669468 DOI: 10.3390/nano9071049] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
The future of manufacturing applications in three-dimensional (3D) printing depends on the improvement and the development of materials suitable for 3D printing technology. This study aims to develop an applicable and convenient protocol for light-curing resin used in 3D industry, which could enhance antibacterial and mechanical properties of polymethyl methacrylate (PMMA) resin through the combination of nano-fillers of surface modified titanium dioxide (TiO2) and micro-fillers of polyetheretherketone (PEEK). PMMA-based composite resins with various additions of TiO2 and PEEK were prepared and submitted to characterizations including mechanical properties, distribution of the fillers (TiO2 or/and PEEK) on the fractured surface, cytotoxicity, antibacterial activity, and blood compatibility assessment. These results indicated that the reinforced composite resins of PMMA (TiO2-1%-PEEK-1%) possessed the most optimized properties compared to the other groups. In addition, we found the addition of 1% of TiO2 would be an effective amount to enhance both mechanical and antibacterial properties for PMMA composite resin. Furthermore, the model printed by PMMA (TiO2-1%-PEEK-1%) composite resin showed a smooth surface and a precise resolution, indicating this functional dental restoration material would be a suitable light-curing resin in 3D industry.
Collapse
Affiliation(s)
- Sheng-Gui Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junzhong Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Bingheng Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
34
|
Rodríguez HA, Kriven WM, Casanova H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:274-282. [PMID: 31029321 DOI: 10.1016/j.msec.2019.03.090] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 01/09/2023]
Abstract
The aim of this work was to study the effect of filler size and filler aggregation state on the mechanical properties of dental resin composites evaluated at filler loadings between 20 wt% and up to 76.5 wt%. Non-aggregated silica nanoparticles (SiNPMPS) (80 nm), doughnut-shaped silica nanoclusters obtained by spray drying (SDSiNPMPS) (3.5 μm) and amorphous barium-alumina borosilicate microparticles (BaAlBoSiMPS) (1.0 μm), functionalized by 3-methacryloxypropyl trimethoxysilane (MPS), were the fillers incorporated into resin matrix dental composites composed of triethylene glycoldimethacrylate (TEGDMA), urethane dimethylacrylate (UDMA), bisphenol A polyethylene glycol diether dimethacrylate (Bis EMA), and bisphenol A glycidyl methacrylate (BisGMA) (0.3:0.7:1:1 weight ratio, respectively). The mechanical properties developed in the resin composites were correlated with the formation of percolated-like particle networks, as observed by scanning electron microscopy (SEM), and volume fraction percolation thresholds (ϕc) calculated from a percolation model. Resin composites with non-aggregated SiNPMPS showed an apparent percolation threshold ϕc = 0.15 (i.e. 27 wt%); above this filler concentration and up to a volume fraction of particles (ϕP) of 0.24 (i.e. 40 wt%) there was an increase in the flexural modulus and the compressive strength of the resin composite. However, a further increase in filler concentration diminished all its mechanical properties due to a decrease in the particle-matrix adhesion strength, demonstrated by the increase in surface roughness and fracture steps as observed by SEM images. On the other hand, a resin composite filled with doughnut-shaped silica nanoclusters (SDSiNPMPS) showed an apparent percolation threshold ϕc = 0.41 (i.e. 60 wt%); increasing filler loading over this concentration generated an improvement in its mechanical properties, except the flexural strength also due to a decrease in the particle-matrix adhesion strength. The resin composites obtained with amorphous individual BaAlBoSiMPS microparticles (1.0 μm) and BaAlBoSiMPS microparticle aggregates (ca. 40.0 μm) showed an apparent percolation threshold ϕc = 0.41 (i.e. 64 wt%) that promoted an improvement in all their mechanical properties. SEM image of BaAlBoSiMPS resin composite at high filler loading (≥ 60 wt%) showed a decrease in fracture steps and no presence of voids, indicating a better adhesion between amorphous BaAlBoSiMPS particles and the polymeric matrix, which explains the improvement of mechanical properties. Resin composites filled exclusively with silica doughnut-shape nanoclusters or amorphous BaAlBoSiMPS microparticles could develop mechanical properties similar to or even better than those obtained by mixing nanofillers with spherical nanoclusters, which are commonly used in commercial resin composites.
Collapse
Affiliation(s)
- Henry A Rodríguez
- Colloids Group, Institute of Chemistry, University of Antioquia, Medellin, Colombia; New Stetic S.A., Guarne, Colombia
| | - Waltraud M Kriven
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Herley Casanova
- Colloids Group, Institute of Chemistry, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
35
|
Wu X, Dai S, Chen Y, He F, Xie H, Chen C. Reinforcement of dental resin composite via zirconium hydroxide coating and phosphate ester monomer conditioning of nano-zirconia fillers. J Mech Behav Biomed Mater 2019; 94:32-41. [PMID: 30856477 DOI: 10.1016/j.jmbbm.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The present study aimed to evaluate effects of conditioning with the phosphate ester monomer 10-methacryloyloxydecyl dihydrogen phosphate (MDP), with and without precoating with zirconium hydroxide for nano-size zirconia fillers, on mechanical properties of dental resin composites. MATERIALS AND METHODS Nano-zirconia fillers coated with or without zirconium hydroxide [Zr(OH)4] were prepared. Transmission electron microscopy (TEM), Fourier infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to observe the coating and to characterize Zr(OH)4 coating on the zirconia filler surface. Zirconia fillers with or without Zr(OH)4 coating were conditioned with MDP and were subsequently used to prepare experimental resin composites. XPS was used to analyze the Zr-O-P bonds on the filler surface after MDP conditioning. Moreover, three-point bending strength and elastic modulus of prepared resin composites were measured, and Weibull analysis was performed. Resin composites without addition of zirconia fillers and the ones with addition of untreated or silane conditioned-zirconia fillers were set as controls. Cell counting kit (CCK)-8 was used to test cell cytotoxicity of these zirconia fillers-containing experimental resin composites. RESULTS Nano-zirconia fillers were coated with Zr(OH)4 through chemical deposition. FTIR and XPS analysis confirmed the increase of hydroxyl groups after Zr(OH)4 coating. XPS detected the highest contents of Zr-O-P bonds on MDP-conditioned zirconia fillers with pre-Zr(OH)4 coating, followed by MDP-conditioned zirconia fillers. Resin composite with added MDP-conditioned zirconia fillers with and without Zr(OH)4 coating exhibited greater three-point bending strength, elastic modulus values, and Weibull moduli. According to the cytotoxicity classification, resin composites containing experimental zirconia fillers were considered to have no significant cell cytotoxicity. CONCLUSION Nano-zirconia fillers conditioned with MDP, with or without precoating with Zr(OH)4, improve the mechanical properties of resin composites, and are potentially safe for clinical use.
Collapse
Affiliation(s)
- Xinyi Wu
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shiqi Dai
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Feng He
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haifeng Xie
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Chen S, Yang J, Jia YG, Lu B, Ren L. A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2444. [PMID: 30513868 PMCID: PMC6317163 DOI: 10.3390/ma11122444] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022]
Abstract
With the rapid application of light-curing 3D printing technology, the demand for high-performance polymer resins is increasing. Existing light-curable resins often have drawbacks limiting their clinical applications. This study aims to develop a new type of polymethyl methacrylate (PMMA) composite resins with enhanced mechanical properties, high antibacterial activities and excellent biocompatibilities. A series of reinforced composite resins were prepared by mechanically mixing PMMA with modified cellulose nanocrystals (CNCs), which were coated with polydopamine and decorated by silver nanoparticles (AgNPs) via Tollen reaction. The morphology of CNCs-Ag was observed by transmission electron microscopy and the formation of AgNPs on CNCs was confirmed by X-Ray photoelectron spectroscopy analyses. Functional groups in PMMA-CNCs-Ag composites were verified by Fourier Transform infrared spectroscopy (FTIR) spectroscopy. The mechanical assessment and scanning electron microscopy analysis suggested that the evenly distributed CNCs-AgNPs composite effectively improve mechanical properties of PMMA resin. Cytotoxicity assay and antibacterial activity tests indicated excellent biocompatibility and high antibacterial activities. Furthermore, PMMA with CNCs-AgNPs of 0.1 wt.% (PMMA-CNCs-AgNPs-0.1) possessed the most desirable mechanical properties owing to the homogeneous distribution of AgNPs throughout the resin matrix. This specific composite resin can be used as a functional dental restoration material with potential of other medical applications.
Collapse
Affiliation(s)
- Shenggui Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Junzhong Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Bingheng Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
37
|
Chen H, Wang R, Zhang J, Hua H, Zhu M. Synthesis of core-shell structured ZnO@m-SiO2 with excellent reinforcing effect and antimicrobial activity for dental resin composites. Dent Mater 2018; 34:1846-1855. [DOI: 10.1016/j.dental.2018.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 01/15/2023]
|
38
|
Habib E, Wang R, Zhu X. Correlation of resin viscosity and monomer conversion to filler particle size in dental composites. Dent Mater 2018; 34:1501-1508. [DOI: 10.1016/j.dental.2018.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 01/15/2023]
|
39
|
Evaluation of the filler packing structures in dental resin composites: From theory to practice. Dent Mater 2018; 34:1014-1023. [DOI: 10.1016/j.dental.2018.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/24/2018] [Indexed: 01/24/2023]
|