1
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B. Effects of Hexagonal Boron Nitride and Mesoporous Silica Nanoparticles on the Morphology, Mechanical Properties and Antimicrobial Activity of Dental Composites. J CLUST SCI 2024. [DOI: 10.1007/s10876-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 07/26/2024]
Abstract
AbstractHexagonal boron nitride (HBN), an artificial material with unique properties, is used in many industries. This article focuses on the extent to which hexagonal boron nitride and silica nanoparticles (MSN) affect the physicochemical and mechanical properties and antimicrobial activity of prepared dental composites. In this study, HBN, and MSN were used as additives in dental composites. 5% and 10% by weight of HBN are added to the structure of the composite materials. FTIR analysis were performed to determine the components of the produced boron nitride powders, hexagonal boron nitride-containing composites, and filling material applications. The structural and microstructural properties of dental composites have been extensively characterized using X-ray diffractometry (XRD). Surface morphology and distributions of nano boron nitride were determined by scanning electron microscopy (SEM)-EDS. In addition, the solubility of dental composites in water and their stability in water and chemical solution (Fenton) were determined by three repetitive experiments. Finally, the antimicrobial activity of dental composites was detected by using Minimum Inhibitory Concentration (MIC) measurement, as well as Minimum Fungicidal Concentration (MFC) method against yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration (MBC) method against bacteria strains, Staphylococcus aureus and Escherichia coli. Since the HMP series have better antimicrobial activity than the HP series, they are more suitable for preventing dental caries and for long-term use of dental composites. In addition, when HMP and HP series added to the composite are compared, HMP-containing dental composites have better physicochemical and mechanical properties and therefore have a high potential for commercialization.
Collapse
|
3
|
Bin-Jardan LI, Almadani DI, Almutairi LS, Almoabid HA, Alessa MA, Almulhim KS, AlSheikh RN, Al-Dulaijan YA, Ibrahim MS, Al-Zain AO, Balhaddad AA. Inorganic Compounds as Remineralizing Fillers in Dental Restorative Materials: Narrative Review. Int J Mol Sci 2023; 24:ijms24098295. [PMID: 37176004 PMCID: PMC10179470 DOI: 10.3390/ijms24098295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary caries is one of the leading causes of resin-based dental restoration failure. It is initiated at the interface of an existing restoration and the restored tooth surface. It is mainly caused by an imbalance between two processes of mineral loss (demineralization) and mineral gain (remineralization). A plethora of evidence has explored incorporating several bioactive compounds into resin-based materials to prevent bacterial biofilm attachment and the onset of the disease. In this review, the most recent advances in the design of remineralizing compounds and their functionalization to different resin-based materials' formulations were overviewed. Inorganic compounds, such as nano-sized amorphous calcium phosphate (NACP), calcium fluoride (CaF2), bioactive glass (BAG), hydroxyapatite (HA), fluorapatite (FA), and boron nitride (BN), displayed promising results concerning remineralization, and direct and indirect impact on biofilm growth. The effects of these compounds varied based on these compounds' structure, the incorporated amount or percentage, and the intended clinical application. The remineralizing effects were presented as direct effects, such as an increase in the mineral content of the dental tissue, or indirect effects, such as an increase in the pH around the material. In some of the reported investigations, inorganic remineralizing compounds were combined with other bioactive agents, such as quaternary ammonium compounds (QACs), to maximize the remineralization outcomes and the antibacterial action against the cariogenic biofilms. The reviewed literature was mainly based on laboratory studies, highlighting the need to shift more toward testing the performance of these remineralizing compounds in clinical settings.
Collapse
Affiliation(s)
- Leena Ibraheem Bin-Jardan
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Dalal Ibrahim Almadani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Leen Saleh Almutairi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hadi A Almoabid
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed A Alessa
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid S Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rasha N AlSheikh
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yousif A Al-Dulaijan
- Department of Substitute Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Maria S Ibrahim
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Afnan O Al-Zain
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University Jeddah, P.O. Box 80209, Jeddah 21589, Saudi Arabia
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
4
|
Raval A, S. Yadav N, Narwani S, Somkuwar K, Verma V, Almubarak H, Alqahtani SM, Tasleem R, Luke AM, Kuriadom ST, Karobari MI. Antibacterial Efficacy and Surface Characteristics of Boron Nitride Coated Dental Implant: An In-Vitro Study. J Funct Biomater 2023; 14:jfb14040201. [PMID: 37103292 PMCID: PMC10145549 DOI: 10.3390/jfb14040201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
This in vitro study evaluated bacterial cell proliferation and biofilm adhesion on titanium discs with and without antibacterial surface treatment to reduce the chances of peri-implant infections. Hexagonal boron nitride with 99.5% purity was converted to hexagonal boron nitride nanosheets via the liquid phase exfoliation process. The spin coating method was used for uniform coating of h-BNNSs over titanium alloy (Ti6Al4V) discs. Two groups of titanium discs were formed: Group I (n = 10) BN-coated titanium discs and Group II (n = 10) uncoated titanium discs. Two bacterial strains, Streptococcus mutans (initial colonizers) and Fusobacterium nucleatum (secondary colonizers), were used. A zone of inhibition test, microbial colony forming units assay, and crystal violet staining assay were used to evaluate bacterial cell viability. Surface characteristics and antimicrobial efficacy were examined by scanning electron microscopy with energy dispersion X-ray spectroscopy. SPSS (Statistical Package for Social Sciences) version 21.0 was used to analyze the results. The data were analyzed for probability distribution using the Kolmogorov-Smirnov test, and a non-parametric test of significance was applied. An inter-group comparison was done using the Mann-Whitney U test. A statistically significant increase was observed in the bactericidal action of BN-coated discs compared to uncoated discs against S. mutans, but no statistically significant difference was found against F. nucleatum.
Collapse
Affiliation(s)
- Anjali Raval
- Department of Prosthodontics Crown Bridge and Implantology, Peoples Dental Academy, Peoples University, Bhopal 462037, Madhya Pradesh, India
| | - Naveen S. Yadav
- Department of Prosthodontics Crown Bridge and Implantology, Peoples Dental Academy, Peoples University, Bhopal 462037, Madhya Pradesh, India
| | - Shweta Narwani
- Department of Prosthodontics Crown Bridge and Implantology, Peoples Dental Academy, Peoples University, Bhopal 462037, Madhya Pradesh, India
| | - Kirti Somkuwar
- Department of Prosthodontics Crown Bridge and Implantology, Peoples Dental Academy, Peoples University, Bhopal 462037, Madhya Pradesh, India
| | - Varsha Verma
- Department of Prosthodontics Crown Bridge and Implantology, Peoples Dental Academy, Peoples University, Bhopal 462037, Madhya Pradesh, India
| | - Hussain Almubarak
- Department of Diagnostic Sciences & Oral Biology, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Saeed M. Alqahtani
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Robina Tasleem
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Alexander Maniangat Luke
- College of Dentistry, Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
| | - Sam Thomas Kuriadom
- College of Dentistry, Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jruf, Ajman P.O. Box 346, United Arab Emirates
| | - Mohmed Isaqali Karobari
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
5
|
The Mechanical and Antibacterial Properties of Boron Nitride/Silver Nanocomposite Enhanced Polymethyl Methacrylate Resin for Application in Oral Denture Bases. Biomimetics (Basel) 2022; 7:biomimetics7030138. [PMID: 36134942 PMCID: PMC9496534 DOI: 10.3390/biomimetics7030138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
The introduction of nanomaterials into polymethyl methacrylate (PMMA) resin has been effective for mechanically reinforcing PMMA for application in oral denture bases. However, these methods cannot simultaneously improve the mechanical and antibacterial properties, which limits widespread clinical application. Here, we self-assembled binary nanocomposites of boron nitride nanosheets (h-BNNs) and silver nanoparticles (AgNPs) as nanofillers and incorporated the nanofillers into PMMA. The aim of this study was to achieve antibacterial effects while significantly improving the mechanical properties of PMMA and provide a theoretical basis for further clinical application. We employed scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), Ultraviolet visible spectrum (UV) and atomic force microscopy (AFM) to investigate the microscopic morphology and composition of PMMA containing nanocomposites with different mass fraction. In addition, the content of the h-BNNs/AgNPs was 1 wt%, and the compressive strength and flexural strength of pure PMMA were improved by 53.5% and 56.7%, respectively. When the concentration of the nanocomposite in the PMMA resin was 1.4 wt%, the antibacterial rate was 92.1%. Overall, synergistically reinforcing PMMA composite resin with a multi-dimensional nanocomposite structure provided a new perspective for expanding not only the application of resins in clinical settings but also the research and development of new composite resins.
Collapse
|
6
|
Rastegar S, Montazeri A. Atomistic insights into the toughening role of surface-treated boron nitride nanosheets in PLA-based nanocomposites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|