1
|
Xiao S, Sun G, Huang S, Lin C, Li Y. Nanoarchitectonics-Based Materials as a Promising Strategy in the Treatment of Endodontic Infections. Pharmaceutics 2024; 16:759. [PMID: 38931881 PMCID: PMC11207628 DOI: 10.3390/pharmaceutics16060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Endodontic infections arise from the interactive activities of microbial communities colonizing in the intricate root canal system. The present study aims to update the latest knowledge of nanomaterials, their antimicrobial mechanisms, and their applications in endodontics. A detailed literature review of the current knowledge of nanomaterials used in endodontic applications was performed using the PubMed database. Antimicrobial nanomaterials with a small size, large specific surface area, and high chemical activity are introduced to act as irrigants, photosensitizer delivery systems, and medicaments, or to modify sealers. The application of nanomaterials in the endodontic field could enhance antimicrobial efficiency, increase dentin tubule penetration, and improve treatment outcomes. This study supports the potential of nanomaterials as a promising strategy in treating endodontic infections.
Collapse
Affiliation(s)
- Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen 361018, China;
| | - Shan Huang
- Department of Stomatology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361005, China;
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| |
Collapse
|
2
|
Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, Daood U. Newly discovered clouting interplay between matrix metalloproteinases structures and novel quaternary Ammonium K21: computational and in-vivo testing. BMC Oral Health 2024; 24:382. [PMID: 38528501 DOI: 10.1186/s12903-024-04069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/27/2024] Open
Abstract
AIMS AND OBJECTIVES To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation. MATERIALS AND METHODS In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)). RESULTS Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test. CONCLUSION K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jia Chern Pang
- School of Postgraduate Studies, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Bapat RA, Libat R, Yuin OS, Parolia A, Ilyas MS, Khan AS, Kay MK, Pichika MR, Saxena K, Seow LL, Sidhu P, Daood U. Antimicrobial FiteBac® K21 promotes antimicrobial Potency and wound healing. Heliyon 2023; 9:e19282. [PMID: 37664740 PMCID: PMC10469996 DOI: 10.1016/j.heliyon.2023.e19282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Successful root canal therapy is dependent on the efficacy of complete instrumentation and adequate use of chemical irrigant to eliminate the biofilm from dentin surface. The aim of the study was to examine antibiofilm and antimicrobial effectiveness of newly formulated Quaternary ammonium silane (QAS/also codenamed K21; against Fusobacterium nucleatum (F. nucleatum) and Enterococcus faecalis (E. faecalis) biofilm on radicular dentin with evaluation of the anti-inflammatory consequence in vivo. Methods Fourier Transform Infrared Spectroscopy (FTIR) was performed after complete hydrolysis of K21 solution. Human teeth were inoculated with biofilms for 7-days followed by treatment with various irrigants. The irrigant groups were Sodium hypochlorite [NaOCl (6%)], Chlorhexidine [CHX (2%)], K21 (0.5%), K21 (1%) and Saline. Scanning electron microscopy (SEM) was performed for biofilm and resin-dentin penetration. Transmission Electron Microscopy (TEM) of biofilms was done to evaluate application of K21. For in vivo evaluation, Albino wistar rats were injected subcutaneously and sections were stained with haematoxylin/eosin. Macrophage, M1/M2 expression were evaluated along with molecular simulation. Raman measurements were done on dried biofilms. Results FTIR K21 specimens demonstrated presence of ethanol/silanol groups. Raman band at 1359 cm-1 resemble to -CH2- wagging displaying 29Si atoms in Nuclear Magnetic Resonance (NMR). 0.5%K21 showed cells exhibiting folded membranes. SEM showed staggering amount of resin tags with 0.5% K21 group. TEM showed membrane disruption in K21-groups. K21 groups were initially irritant, which subsided completely afterwards showing increased CD68. K21 and MMP/collagen complex was thermodynamically favourable. Conclusion K21 root canal irrigant was able to penetrate bacterial wall and can serve as a potential irrigant for therapeutic benefits. Expression of M2 polarized subsets showed K21 can serve in resolving inflammation and potentiate tissue repair.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Rikan Libat
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Ong Shu Yuin
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | | | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University; Dammam, Saudi Arabia
| | - Mak Kit Kay
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kirti Saxena
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Liang Lin Seow
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Preena Sidhu
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Yu J, Bian H, Zhao Y, Guo J, Yao C, Liu H, Shen Y, Yang H, Huang C. Epigallocatechin-3-gallate/mineralization precursors co-delivery hollow mesoporous nanosystem for synergistic manipulation of dentin exposure. Bioact Mater 2023; 23:394-408. [PMID: 36474660 PMCID: PMC9712830 DOI: 10.1016/j.bioactmat.2022.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
As a global public health focus, oral health plays a vital role in facilitating overall health. Defected teeth characterized by exposure of dentin generally increase the risk of aggravating oral diseases. The exposed dentinal tubules provide channels for irritants and bacterial invasion, leading to dentin hypersensitivity and even pulp inflammation. Cariogenic bacterial adhesion and biofilm formation on dentin are responsible for tooth demineralization and caries. It remains a clinical challenge to achieve the integration of tubule occlusion, collagen mineralization, and antibiofilm functions for managing exposed dentin. To address this issue, an epigallocatechin-3-gallate (EGCG) and poly(allylamine)-stabilized amorphous calcium phosphate (PAH-ACP) co-delivery hollow mesoporous silica (HMS) nanosystem (E/PA@HMS) was herein developed. The application of E/PA@HMS effectively occluded the dentinal tubules with acid- and abrasion-resistant stability and inhibited the biofilm formation of Streptococcus mutans. Intrafibrillar mineralization of collagen fibrils and remineralization of demineralized dentin were induced by E/PA@HMS. The odontogenic differentiation and mineralization of dental pulp cells with high biocompatibility were also promoted. Animal experiments showed that E/PA@HMS durably sealed the tubules and inhibited biofilm growth up to 14 days. Thus, the development of the E/PA@HMS nanosystem provides promising benefits for protecting exposed dentin through the coordinated manipulation of dentin caries and hypersensitivity.
Collapse
Affiliation(s)
- Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Haolin Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Corresponding author.
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Corresponding author.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Corresponding author.
| |
Collapse
|
5
|
In-vitro evaluation of the effectiveness of polyphenols based strawberry extracts for dental bleaching. Sci Rep 2023; 13:4181. [PMID: 36914760 PMCID: PMC10011378 DOI: 10.1038/s41598-023-31125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
To formulate a dental bleaching agent with strawberry extract that has potent bleaching properties and antimicrobial efficacy. Enamel specimens (3 × 3 × 2 mm3) were prepared. Quaternary Ammonium Silane (CaC2 enriched) was homogenized with fresh strawberries: Group 1: supernatant strawberry (10 g) extract < Group 2: supernatant strawberry (10 g) extract + 15%HA (Hydroxyapatite) < Group 3: supernatant strawberry (10 g) extract + 15% (HA-2%k21) < Group 4: supernatant strawberry (20 g) extract only (20 g strawberries) < Group 5: supernatant strawberry (20 g) extract + 15% HA < Group 6: supernatant strawberry (20 g) extract + 15% (HA-2%K21) < Group 7: In-office Opalescence Boost 35%. Single-colony lactobacillus was examined using confocal microscopy identifying bacterial growth and inhibition in presence of bleaching agents using 300 µL aliquot of each bacterial culture. Images were analysed by illuminating with a 488 nm argon/helium laser beam. Colour difference (∆E00) was calculated using an Excel spreadsheet implementation of the CIEDE2000 colour difference formula and colour change measured between after staining and after bleaching. Scanning electron microscope was used to image specimens. Raman spectra were collected, and enamel slices were used for STEM/TEM analysis. HPLC was used for strawberry extract analysis. Nano-indentation was performed and X-ray photoelectron spectroscopy. Antioxidant activity was determined along with molecular simulation. hDPSCs were expanded for Alamar Blue Analysis and SEM. Mean colour change was significantly reduced in group 1 compared to other groups (p < 0.05). CLSM showed detrimental effects of different strawberry extracts on bioflms, especially with antimicrobial (p < 0.05). Groups 1, 2 and 3 showed flatter/irregular surfaces with condensation of anti-microbial in group 3. In strawberry specimens, bands predominate at 960 cm-1. HPLC determined the strawberry extracts content. Molecular simulation verified interaction between calcium and polyphenol components. XPS peak-fitted high-resolution corresponding results of Ca2p3/2 and Ca2p1/2 for all k21 groups. Combination of 10 g strawberry extract supernatant and 15% (hydroxyapatite 2%k21) improved the whiteness and provided additional antimicrobial potential. The novel strawberry extract and antimicrobial based dental formulation had immediate bleaching effect without promoting significant changes in enamel morphology.
Collapse
|
6
|
Garcia-Contreras R, Chavez-Granados PA, Jurado CA, Aranda-Herrera B, Afrashtehfar KI, Nurrohman H. Natural Bioactive Epigallocatechin-Gallate Promote Bond Strength and Differentiation of Odontoblast-like Cells. Biomimetics (Basel) 2023; 8:biomimetics8010075. [PMID: 36810406 PMCID: PMC9944806 DOI: 10.3390/biomimetics8010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The (-)-Epigallocatechin-gallate (EGCG) metabolite is a natural polyphenol derived from green tea and is associated with antioxidant, biocompatible, and anti-inflammatory effects. OBJECTIVE To evaluate the effects of EGCG to promote the odontoblast-like cells differentiated from human dental pulp stem cells (hDPSCs); the antimicrobial effects on Escherichia coli, Streptococcus mutans, and Staphylococcus aureus; and improve the adhesion on enamel and dentin by shear bond strength (SBS) and the adhesive remnant index (ARI). MATERIAL AND METHODS hDSPCs were isolated from pulp tissue and immunologically characterized. EEGC dose-response viability was calculated by MTT assay. Odontoblast-like cells were differentiated from hDPSCs and tested for mineral deposition activity by alizarin red, Von Kossa, and collagen/vimentin staining. Antimicrobial assays were performed in the microdilution test. Demineralization of enamel and dentin in teeth was performed, and the adhesion was conducted by incorporating EGCG in an adhesive system and testing with SBS-ARI. The data were analyzed with normalized Shapiro-Wilks test and ANOVA post hoc Tukey test. RESULTS The hDPSCs were positive to CD105, CD90, and vimentin and negative to CD34. EGCG (3.12 µg/mL) accelerated the differentiation of odontoblast-like cells. Streptococcus mutans exhibited the highest susceptibility < Staphylococcus aureus < Escherichia coli. EGCG increased (p < 0.05) the dentin adhesion, and cohesive failure was the most frequent. CONCLUSION (-)-Epigallocatechin-gallate is nontoxic, promotes differentiation into odontoblast-like cells, possesses an antibacterial effect, and increases dentin adhesion.
Collapse
Affiliation(s)
- Rene Garcia-Contreras
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Carlos Alberto Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA
- Correspondence: (C.A.J.); (H.N.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Kelvin I. Afrashtehfar
- Clinical Sciences Department, College of Dentistry, Ajman University, Ajman City P.O. Box 346, United Arab Emirates
- Department of Reconstructive Dentistry & Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Hamid Nurrohman
- Missouri School of Dentistry & Oral Health, A. T. Still University, Kirksville, MO 63501, USA
- Correspondence: (C.A.J.); (H.N.)
| |
Collapse
|
7
|
Jiang J, Sun J, Huang Z, Bi Z, Yu G, Yang J, Wang Y. The state of the art and future trends of root canal files from the perspective of patent analysis: a study design. Biomed Eng Online 2022; 21:90. [PMID: 36566212 PMCID: PMC9789667 DOI: 10.1186/s12938-022-01060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
The goal of this review is to present a detailed and comprehensive description of the published work from the past decade regarding methods of improved material, geometric design, and additional functions in root canal files. The main improved methods of files and the most common technologies were further addressed, underlining their advantages and main limitations. Online databases (the Derwent Innovations Index) were consulted on this topic. Published work from 2010 to 2022 was collected and analyzed the relevant papers were chosen for inclusion in this review. The patent map classified the latest phase of the root canal files based on the analysis of the number of patents. The performance of the root canal files, such as materials. Directly affects the quality of the root canal therapy. We provided a thorough review of advances in the field of root canal files. In particular, three categories of improved methods were examined and compared, including material-based methods, geometry-based methods, and those based on additional functions. To understand this state of the art of different improved methods of root canal files, we conducted a literature analysis and a series of comparisons between different methods. The features and limitations of each method of root canal files were further discussed. Finally, we identified promising research directions in advancing the methods for the improved performance of root canal files. There is no perfect technology for all material/geometric design/additional functions, capable alone of fulfilling all the specificity and necessities of every patient. Although it is very promising, the material of the files remains understudied, and further work is required to make material science a pervasive technology in root canal therapy, and contribute to endodontic and periapical diseases by assisting in the subsequent development of root canal files.
Collapse
Affiliation(s)
- Jingang Jiang
- grid.411994.00000 0000 8621 1394Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang People’s Republic of China ,grid.19373.3f0000 0001 0193 3564State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Jianpeng Sun
- grid.411994.00000 0000 8621 1394Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080 Heilongjiang People’s Republic of China
| | - Zhiyuan Huang
- grid.19373.3f0000 0001 0193 3564State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Zhuming Bi
- grid.503846.c0000 0000 8951 1659Department of Civil and Mechanical Engineering, Purdue University Fort Wayne, West Lafayette, 46805 USA
| | - Guang Yu
- grid.12527.330000 0001 0662 3178Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Jingwen Yang
- grid.11135.370000 0001 2256 9319National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School of Stomatology, Beijing, 100081 People’s Republic of China ,grid.11135.370000 0001 2256 9319Peking University School of Stomatology, Beijing, 100081 People’s Republic of China
| | - Yong Wang
- grid.11135.370000 0001 2256 9319National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School of Stomatology, Beijing, 100081 People’s Republic of China ,grid.11135.370000 0001 2256 9319Peking University School of Stomatology, Beijing, 100081 People’s Republic of China
| |
Collapse
|
8
|
Bapat RA, Parolia A, Chaubal T, Yang HJ, Kesharwani P, Phaik KS, Lin SL, Daood U. Recent Update on Applications of Quaternary Ammonium Silane as an Antibacterial Biomaterial: A Novel Drug Delivery Approach in Dentistry. Front Microbiol 2022; 13:927282. [PMID: 36212832 PMCID: PMC9539660 DOI: 10.3389/fmicb.2022.927282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Quaternary ammonium silane [(QAS), codename – k21] is a novel biomaterial developed by sol-gel process having broad spectrum antimicrobial activities with low cytotoxicity. It has been used in various concentrations with maximum antimicrobial efficacy and biocompatibility. The antimicrobial mechanism is displayed via contact killing, causing conformational changes within the bacterial cell membrane, inhibiting Sortase-A enzyme, and causing cell disturbances due to osmotic changes. The compound can attach to S1' pockets on matrix metalloproteinases (MMPs), leading to massive MMP enzyme inhibition, making it one of the most potent protease inhibitors. Quaternary ammonium silane has been synthesized and used in dentistry to eliminate the biofilm from dental tissues. QAS has been tested for its antibacterial activity as a cavity disinfectant, endodontic irrigant, restorative and root canal medication, and a nanocarrier for drug delivery approaches. The review is first of its kind that aims to discuss applications of QAS as a novel antibacterial biomaterial for dental applications along with discussions on its cytotoxic effects and future prospects in dentistry.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Tanay Chaubal
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ho Jan Yang
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Khoo Suan Phaik
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Umer Daood
| |
Collapse
|
9
|
Daood U, Ilyas MS, Ashraf M, Akbar M, Bapat RA, Khan AS, Pichika MR, Parolia A, Seow LL, Khoo SP, Yiu C. Biochemical changes and macrophage polarization of a silane-based endodontic irrigant in an animal model. Sci Rep 2022; 12:6354. [PMID: 35428859 PMCID: PMC9012771 DOI: 10.1038/s41598-022-10290-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Silane-based/fully hydrolyzed, endodontic irrigant exhibiting antimicrobial properties, is prepared, and is hypothesized to control macrophage polarization for tissue repair. Albino wistar rats were injected with 0.1 ml root canal irrigant, and bone marrow cells procured. Cellular mitochondria were stained with MitoTracker green along with Transmission Electron Microscopy (TEM) performed for macrophage extracellular vesicle. Bone marrow stromal cells (BMSCs) were induced for M1 and M2 polarization and Raman spectroscopy with scratch assay performed. Cell counting was used to measure cytotoxicity, and fluorescence microscopy performed for CD163. Scanning Electron Microscopy (SEM) was used to investigate interaction of irrigants with Enterococcus faecalis. K21 specimens exhibited reduction in epithelium thickness and more mitochondrial mass. EVs showed differences between all groups with decrease and increase in IL-6 and IL-10 respectively. 0.5%k21 enhanced wound healing with more fibroblastic growth inside scratch analysis along with increased inflammation-related genes (ICAM-1, CXCL10, CXCL11, VCAM-1, CCL2, and CXCL8; tissue remodelling-related genes, collagen 1, EGFR and TIMP-2 in q-PCR analysis. Sharp bands at 1643 cm-1 existed in all with variable intensities. 0.5%k21 had a survival rate of BMSCs comparable to control group. Bacteria treated with 0.5%k21/1%k21, displayed damage. Antimicrobial and reparative efficacy of k21 disinfectant is a proof of concept for enhanced killing of bacteria across root dentin acquiring functional type M2 polarization for ethnopharmacological effects.
Collapse
Affiliation(s)
- Umer Daood
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Muhammad Sharjeel Ilyas
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Mariam Ashraf
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Munazza Akbar
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Ranjeet Ajit Bapat
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mallikarjuna Rao Pichika
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Liang Lin Seow
- Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Division of Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Cynthia Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Bapat RA, Muthusamy SK, Sidhu P, Mak KK, Parolia A, Pichika MR, Seow LL, Tong C, Daood U. Synthesis and Incorporation of Quaternary Ammonium Silane Antimicrobial into Self-Crosslinked Type I Collagen Scaffold: A Hybrid Formulation for 3D Printing. Macromol Biosci 2021; 22:e2100326. [PMID: 34870895 DOI: 10.1002/mabi.202100326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Novel 3D-biomaterial scaffold is constructed having a combination of a new quaternary ammonium silane (k21) antimicrobial impregnated in 3D collagen printed scaffolds cross linked with Riboflavin in presence of d-alpha-tocopheryl poly(ethyleneglycol)-1000-succinate. Groups of "0.1% and 0.2% k21", and "0.1% and 0.2% Chlorhexidine (CHX)" are prepared. k21/CHX with neutralized collagen is printed with BioX. Riboflavin is photo-activated and examined using epifluorescence for Aggregatibacter actinomycetemcomitans (7-days). Collagen is examined using TEM and measured for porosity, and shape-fitting. Raman and tandem mass/solid-state are performed with molecular-docking and circular-dichroism. X-ray diffractions, rheological tests, contact angle, and ninhydrin assay are conducted. k21 samples demonstrated collagen aggregates while 0.1% CHX and 0.2% CHX showed irregularities. Porosity of control and "0.1% and 0.2% k21" scaffolds show no differences. Low contact angle, improved elastic-modulus, rigidity, and smaller strain in k21 groups are seen. Bacteria are reduced and strong organic intensities are seen in k21 scaffolds. Simulation shows hydrophobicity/electrostatic interaction. Crosslinking is observed in 0.2% CHX/79% and 0.2% k21/80%. Circular dichroism for k21 are suggestive of triple helix. XRD patterns appear at d = 5.97, 3.03, 2.78, 2.1, and 2.90 A°. 3D-printing of collagen impregnated with quaternary ammonium silane produces a promising scaffold with antimicrobial potency and structural stability.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Division of Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Senthil Kumar Muthusamy
- Oral Sciences, Faculty of Dentistry, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Preena Sidhu
- Division of Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Division of Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Liang Lin Seow
- Division of Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Cao Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Umer Daood
- Division of Restorative Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Daood U, Bapat RA, Sidhu P, Ilyas MS, Khan AS, Mak KK, Pichika MR, Nagendrababu V, Peters OA. Antibacterial and antibiofilm efficacy of k21-E in root canal disinfection. Dent Mater 2021; 37:1511-1528. [PMID: 34420798 DOI: 10.1016/j.dental.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of the current project was to study the antimicrobial efficacy of a newly developed irrigant, k21/E against E. faecalis biofilm. METHODS Root canals were instrumented and randomly divided into the following groups: irrigation with saline, 6% NaOCl (sodium hypochlorite), 6% NaOCl+2% CHX (Chlorhexidine), 2% CHX, 0.5% k21/E (k21 - quaternary ammonium silane) and 1% k21/E. E. faecalis were grown (3-days) (1×107CFU mL-1), treated, and further cultured for 11-days. Specimens were subjected to SEM, confocal and Raman analysis and macrophage vesicles characterized along with effect of lipopolysaccharide treatment. 3T3 mouse-fibroblasts were cultured for alizarin-red with Sortase-A active sites and Schrödinger docking was performed. TEM analysis of root dentin substrate with matrix metalloproteinases profilometry was also included. A cytotoxic test analysis for cell viability was measured by absorbance of human dental pulp cells after exposure to different irrigant solutions for 24h. The test percentages have been highlighted in Table 1. RESULTS Among experimental groups, irrigation with 0.5% k21/E showed phase separation revealing significant bacterial reduction and lower phenylalanine 1003cm-1 and Amide III 1245cm-1 intensities. Damage was observed on bacterial cell membrane after use of k21/E. No difference in exosomes distribution between control and 0.5%k21/E was observed with less TNFα (*p<0.05) and preferential binding of SrtA. TEM images demonstrated integrated collagen fibers in control and 0.5%k21/E specimens and inner bacterial membrane damage after k21/E treatment. The k21 groups appeared to be biocompatible to the dental pulpal cells grown for 24h. SIGNIFICANCE Current investigations highlight potential advantages of 0.5% k21/E as irrigation solution for root canal disinfection.
Collapse
Affiliation(s)
- Umer Daood
- Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Ranjeet Ajit Bapat
- Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Preena Sidhu
- Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Muhammad Sharjeel Ilyas
- Department of Oral Biology, Post Graduate Medical Institute, 6 Birdwood Road, Lahore, Pakistan
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- School of Pharmacy, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | | | - Ove A Peters
- School of Dentistry, University of Queensland, Herston, Qld 4006, Australia; Department of Endodontics, Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| |
Collapse
|
12
|
Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, Wong LA, Davamani F, Nagendrababu V, Fawzy A, Daood U. Quaternary ammonium silane (k21) based intracanal medicament triggers biofilm destruction. BMC Oral Health 2021; 21:116. [PMID: 33711992 PMCID: PMC7953794 DOI: 10.1186/s12903-021-01470-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin. METHODOLOGY Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21. RESULTS There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention. CONCLUSION 2%k21 can be considered as alternative intracanal medicament.
Collapse
Affiliation(s)
- Esther Sook Kuan Kok
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Xian Jin Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Soo Xiong Chew
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shu Fen Ong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Lok Yin See
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siao Hua Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ling Ang Wong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Faculty of Biomedical Science, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, Nedlands, Australia
| | - Umer Daood
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Effect of Propolis Nanoparticles against Enterococcus faecalis Biofilm in the Root Canal. Molecules 2021; 26:molecules26030715. [PMID: 33573147 PMCID: PMC7866495 DOI: 10.3390/molecules26030715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
Collapse
|