1
|
Li H, Huang J, Zhang H, Hang R, Wang Y. Preparation of Al-doped mesoporous silica spheres (Al-MSSs) for the improvement of mechanical properties and aging resistance of dental resin composites. J Mech Behav Biomed Mater 2024; 157:106624. [PMID: 38861785 DOI: 10.1016/j.jmbbm.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE The purpose of this study was to synthesize Al-doped mesoporous silica spheres (Al-MSSs) and evaluate the effect of them as functional fillers on the mechanical properties and aging resistance of dental resin composites. METHODS Al-MSSs were prepared by a two-step method. The effect of Al-MSSs on the performance of the composites was evaluated using neat resin matrix, commercial composites 3M Z350XT and samples containing mesoporous silica spheres (MSSs) and nonporous silica spheres (NSSs) as control. The neat resin matrix consisted of resin monomer (Bisphenol A glycerolate dimethacrylate/triethylene glycol dimethacrylate, 49.5/49.5, wt%) and photoinitiator (camphor quinone/Ethyl-4-dimethylaminobenzoate, 0.2/0.8, wt%). The mechanical properties (flexural strength, flexural modulus, compressive strength and microhardness) of them were evaluated by a universal testing machine and microhardness tester. The mechanical stabilities of the prepared composites in wet environment were evaluated by immersing them in deionized water at 37 °C. In addition, we evaluated the effect of Al-MSSs on other properties of the dental resin composites such as polymerization shrinkage, degree of conversion, curing depth, contact angle, water sorption and solubility according to ISO 4049: 2019. RESULTS The synthesized Al-MSSs possessed good dispersibility with an average particle size of about 505 ± 16 nm. The mechanical properties of resin composites gradually increased with the increase of the loading amounts of inorganic fillers. The reinforcing effect of Al-MSSs was similar to that of MSSs and better than that of the NSSs groups at the same filler loading. After aging in deionized water at 37 °C for 30 days, the mechanical properties of all resin composites decreased. However, the decrease percentage of the composites filled with Al-MSSs was significantly lower than the other groups, indicating that the stability of the dental composites in wet environments was significantly improved by the Al-MSSs fillers. Furthermore, Al-MSSs had no obvious influence on the biocompatibility and other properties of dental resins. SIGNIFICANCE The prepared Al-MSSs could effectively improve the mechanical properties and aging resistance without sacrificing other physic-chemical properties of dental resin composites.
Collapse
Affiliation(s)
- Huaizhu Li
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Jiahui Huang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Hongxia Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Yueyue Wang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China.
| |
Collapse
|
2
|
Wang J, Chen H, Liu H, Wang R, Qin Z, Zhu M. Surface modifications of short quartz fibers and their influence on the physicochemical properties and in vitro cell viability of dental composites. Dent Mater 2024; 40:e1-e10. [PMID: 38821838 DOI: 10.1016/j.dental.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Although glass fibers are more common, quartz fibers (QFs) are also considered as the ideal reinforcing material in dentistry, due to their superior mechanical strength, high purity, and good photoconductive properties. However, the relatively inert surfaces limit their further applications. Therefore, the aim of this study is to modify the fiber surface properties to improve the interfacial interactions with polymeric resins. METHODS In this study, we systematically introduced four different surface modification strategies onto short quartz fibers (SQFs) for the preparation of dental composites. Particularly, the acid etching was a facile way to create mechanical interlocking structures. In addition, the silanization process, the sol-gel treatment, and the polymer grafting were further proposed to increase the surface roughness and the reactive sites. The effect of surface modifications on the fiber surface morphological changes, mechanical properties, water stability, and in vitro cell viability of dental composites were investigated. RESULTS Among all surface-modified SQFs, SQFs-POSS (SQFs modified with methacrylate-POSS) exhibited the roughest surface morphology and highest grafting rates compared with other three materials. Furthermore, all these SQFs were applied as reinforcements to make dimethacrylate-based dental resin composites. Of all fillers, SQFs-POSS demonstrated the best reinforcing effect, providing significantly higher improvements of 55.7 %, 114.3 %, and 164.7 % for flexural strength, flexural modulus, and breaking energy, respectively, over those of SQFs-filled composite. The related reinforcing mechanism was further investigated. The SQFs-POSS-filled composite also exhibited the best water stability performance and in vitro cell viability. SIGNIFICANCE This work provided valuable insights into the optimization of filler-matrix interaction through fiber surface modifications. Specifically, SQFs-POSS markedly outperformed other formulations in terms of the physicochemical performance and in vitro cytotoxicity, which offers possibilities for developing high-performance dental composites for clinical applications in restorative dentistry.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Hongyan Chen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Zongyi Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Kaptan Usul S, Aslan A, Lüleci HB, Ergüden B. Effects of Hexagonal Boron Nitride and Mesoporous Silica Nanoparticles on the Morphology, Mechanical Properties and Antimicrobial Activity of Dental Composites. J CLUST SCI 2024. [DOI: 10.1007/s10876-024-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/21/2024] [Indexed: 07/26/2024]
Abstract
AbstractHexagonal boron nitride (HBN), an artificial material with unique properties, is used in many industries. This article focuses on the extent to which hexagonal boron nitride and silica nanoparticles (MSN) affect the physicochemical and mechanical properties and antimicrobial activity of prepared dental composites. In this study, HBN, and MSN were used as additives in dental composites. 5% and 10% by weight of HBN are added to the structure of the composite materials. FTIR analysis were performed to determine the components of the produced boron nitride powders, hexagonal boron nitride-containing composites, and filling material applications. The structural and microstructural properties of dental composites have been extensively characterized using X-ray diffractometry (XRD). Surface morphology and distributions of nano boron nitride were determined by scanning electron microscopy (SEM)-EDS. In addition, the solubility of dental composites in water and their stability in water and chemical solution (Fenton) were determined by three repetitive experiments. Finally, the antimicrobial activity of dental composites was detected by using Minimum Inhibitory Concentration (MIC) measurement, as well as Minimum Fungicidal Concentration (MFC) method against yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration (MBC) method against bacteria strains, Staphylococcus aureus and Escherichia coli. Since the HMP series have better antimicrobial activity than the HP series, they are more suitable for preventing dental caries and for long-term use of dental composites. In addition, when HMP and HP series added to the composite are compared, HMP-containing dental composites have better physicochemical and mechanical properties and therefore have a high potential for commercialization.
Collapse
|
4
|
Chen H, Luo J, Yang J, Zeng C, Jiang X. Synthesis of Pore-Size-Tunable Porous Silica Particles and Their Effects on Dental Resin Composites. Biomolecules 2023; 13:1290. [PMID: 37759690 PMCID: PMC10526776 DOI: 10.3390/biom13091290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The filler/resin matrix interface interaction plays a vital role in the properties of dental resin composites (DRCs). Porous particles are promising fillers due to their potential in constructing micromechanical interlocking at filler/resin matrix interfaces, therefore improving the properties of the resulting DRCs, where the pore size is significantly important. However, how to control the pore size of porous particles via a simple synthesis method is still a challenge, and how their pore sizes affect the properties of resulting DRCs has not been studied. In this study, porous silica (DPS) with a dendritic structure and an adjustable pore size was synthesized by changing the amounts of catalyst in the initial microemulsion. These synthesized DPS particles were directly used as unimodal fillers and mixed with a resin matrix to formulate DRCs. The results showed that the DPS pore size affects the properties of DRCs, especially the mechanical property. Among various DPS particles with different pore sizes, DPS6 resulted in 19.5% and 31.4% improvement in flexural strength, and 24.4% and 30.7% enhancement in compression strength, respectively, compared to DPS1 and DPS9. These DPS particles could help to design novel dental restorative materials and have promising applications in biomedicine, catalysis, and adsorption.
Collapse
Affiliation(s)
- Hongyan Chen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiaxin Luo
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jiawei Yang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chen Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinquan Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200011, China; (H.C.)
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Shanghai Research Institute of Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
5
|
Zhang S, Wang X, Yang J, Chen H, Jiang X. Micromechanical interlocking structure at the filler/resin interface for dental composites: a review. Int J Oral Sci 2023; 15:21. [PMID: 37258568 DOI: 10.1038/s41368-023-00226-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Dental resin composites (DRCs) are popular materials for repairing caries or dental defect, requiring excellent properties to cope with the complex oral environment. Filler/resin interface interaction has a significant impact on the physicochemical/biological properties and service life of DRCs. Various chemical and physical modification methods on filler/resin interface have been introduced and studied, and the physical micromechanical interlocking caused by the modification of fillers morphology and structure is a promising method. This paper firstly introduces the composition and development of DRCs, then reviews the chemical and physical modification methods of the filler/resin interface, mainly discusses the interface micromechanical interlocking structures and their enhancement mechanism for DRCs, finally give a summary on the existing problems and development potential.
Collapse
Affiliation(s)
- Shuning Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiawei Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyan Chen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
6
|
Zhang G, Ma L, Dong Y, Dou S, Kong X. In situ construction of 3D NiMo bimetallic catalysts anchored on dendritic mesoporous silica for the upgrading of biomass derivatives. J Colloid Interface Sci 2023; 647:188-200. [PMID: 37247482 DOI: 10.1016/j.jcis.2023.05.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Reasonable construction of bi-function catalysts with well dispersed hydrogenation active sites and acidic sites are crucial for the hydrodeoxygenation (HDO) of biomass-derived compounds but still a huge challenge. Herein, a 3D Mo functionalized Ni-based bimetallic embedded catalyst with fine metal nanoparticles size (<6 nm) was prepared for the first time using dendritic mesoporous silica as a sacrificial template by one-pot hydrothermal synthesis and adopted in the HDO process of vanillin (VAN) upgrade to 2-methoxy-4-methylphenol (MMP). The characterization results illustrated that Mo species regulated the acidity of the catalyst and promoted the formation of Ni-Mo alloy sites. Density functional theory (DFT) calculations further unveiled that Ni-Mo alloy sites promoted the activation and dissociation of CO bond in VAN, enhanced the ability of protonation hydrogenolysis. Benefitting from the synergistic effect of the highly uniformly dispersed hydrogenation metal sites and acidic sites, nearly 100% yield of MMP could obtained over the designed catalyst under mild conditions (130 °C, 1.5 MPa H2, 3 h, 10 wt% catalyst dosage). Additionally, the NiMo0.1@MSN catalyst displayed robust activity for no less than 8 recycles and excellent universality for the HDO of a variety of lignin derivatives and biomass platform molecules, which provide a feasible strategy for the construction of 3D confined catalysts for the high-efficiency HDO of biomass derivatives.
Collapse
Affiliation(s)
- Guanyi Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Liguo Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Yingying Dong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Shuangxin Dou
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China
| | - Xiangjin Kong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory /Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
7
|
Dental Poly(methyl methacrylate)-Based Resin Containing a Nanoporous Silica Filler. J Funct Biomater 2022; 13:jfb13010032. [PMID: 35323232 PMCID: PMC8948615 DOI: 10.3390/jfb13010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based resins have been conventionally used in dental prostheses owing to their good biocompatibility. However, PMMA-based resins have relatively poor mechanical properties. In the present study, a novel nanoporous silica filler was developed and introduced into PMMA-based resins to improve their mechanical properties. The filler was prepared by sintering a green body composed of silica and an organic binder, followed by grinding to a fine powder and subsequent silanization. The filler was added to photocurable PMMA-based resin, which was prepared from MMA, PMMA, ethylene glycol dimethacrylate, and a photo-initiator. The filler was characterized by scanning electron microscopy (SEM), X-ray diffraction analysis, nitrogen sorption porosimetry, and Fourier transform infrared (FT-IR) spectroscopy. The PMMA-based resins were characterized by SEM and FT-IR, and the mechanical properties (Vickers hardness, flexural modulus, and flexural strength) and physicochemical properties (water sorption and solubility) were evaluated. The results suggested that the filler consisted of microparticles with nanopores. The filler at 23 wt % was well dispersed in the PMMA-based resin matrix. The mechanical and physicochemical properties of the PMMA-based resin improved significantly with the addition of the developed filler. Therefore, such filler-loaded PMMA-based resins are potential candidates for improving the strength and durability of polymer-based crown and denture base.
Collapse
|
8
|
Kong H, Bai X, Li H, Lin C, Yao X, Wang Y. Preparation of Ca doped wrinkled porous silica (Ca-WPS) for the improvement of apatite formation and mechanical properties of dental resins. J Mech Behav Biomed Mater 2022; 129:105159. [PMID: 35247860 DOI: 10.1016/j.jmbbm.2022.105159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
Abstract
The purpose of this work was to fabricate and characterize Ca doped wrinkled porous silica (Ca-WPS), and evaluate their effect on the mineralization and mechanical properties of resin composites as functional fillers. Ca-WPS were prepared by sol-gel method and characterized by scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurements. The mineralization properties of the prepared Ca-WPS particles and the resin composites with different amount of Ca-WPS were evaluated by simulated body fluid (SBF) immersion method. The mechanical properties (flexural strength, flexural modulus, compressive strength and microhardness) of the dental resins containing unimodal Ca-WPS fillers and bimodal Ca-WPS fillers with nonporous silica were evaluated by a universal testing machine. Results showed that after immersing in SBF for 5 d, apatite formed on the surface of Ca-WPS and composites containing Ca-WPS fillers, indicating the excellent mineralization property of the prepared Ca-WPS. The mechanical properties of the dental resins increase with the increase of the proportion of unimodal Ca-WPS fillers. The dental resins with bimodal Ca-WPS fillers showed better mechanical properties than the group with only nonporous fillers at the same filler loading (60 wt%). Among all the samples, the dental composites filled with bimodal fillers (mass ratio of Ca-WPS: nonporous silica = 10:50, total filler loading 60 wt%) exhibited the best mechanical performance. The flexural strength, flexural modulus, compressive strength and microhardness of these samples were 26.96%, 42.75%, 16.04% and 54.1% higher than the composites with solid silica particles alone, respectively. Thus, the prepared Ca-WPS could effectively improve the apatite formation and mechanical properties of resin composites.
Collapse
Affiliation(s)
- Hongxing Kong
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Xingxing Bai
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Huaizhu Li
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Chucheng Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China
| | - Yueyue Wang
- Laboratory of Biomaterial Surfaces &; Interfaces, College of Material Science and Engineering, Taiyuan University of Technology, 79 West Yingze Road, Taiyuan, 030024, China.
| |
Collapse
|
9
|
Zhao M, Yang D, Fan S, Yao X, Wang J, Zhu M, Zhang Y. 3D-Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104001. [PMID: 34936228 PMCID: PMC8844577 DOI: 10.1002/advs.202104001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Indexed: 05/02/2023]
Abstract
Mimicking the multi-scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom-up step-by-step strategy is developed using extrusion-based 3D printing technology to achieve a high-precision dental crown with multi-scale highly ordered HAp structure. In this study, hybrid resin-based composites (RBCs) with "supergravity +" HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom-built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss-crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp-monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.
Collapse
Affiliation(s)
- Menglu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Danlei Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jiexin Wang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
10
|
Synthesis of Fluorinated Urchin-like Serried Hydroxyapatite with Improved Water Sorption-Solubility and Bioactivity for Dental Composites. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|