1
|
Yang J, Lewis GP, Hsiang CH, Menges S, Luna G, Cho W, Turovets N, Fisher SK, Klassen H. Amelioration of Photoreceptor Degeneration by Intravitreal Transplantation of Retinal Progenitor Cells in Rats. Int J Mol Sci 2024; 25:8060. [PMID: 39125629 PMCID: PMC11312009 DOI: 10.3390/ijms25158060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Photoreceptor degeneration is a major cause of untreatable blindness worldwide and has recently been targeted by emerging technologies, including cell- and gene-based therapies. Cell types of neural lineage have shown promise for replacing either photoreceptors or retinal pigment epithelial cells following delivery to the subretinal space, while cells of bone marrow lineage have been tested for retinal trophic effects following delivery to the vitreous cavity. Here we explore an alternate approach in which cells from the immature neural retinal are delivered to the vitreous cavity with the goal of providing trophic support for degenerating photoreceptors. Rat and human retinal progenitor cells were transplanted to the vitreous of rats with a well-studied photoreceptor dystrophy, resulting in substantial anatomical preservation and functional rescue of vision. This work provides scientific proof-of-principle for a novel therapeutic approach to photoreceptor degeneration that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Jing Yang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Geoffrey P. Lewis
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Chin-Hui Hsiang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven Menges
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - William Cho
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Nikolay Turovets
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Zhang X, Yang L, Lei W, Hou Q, Huang M, Zhou R, Enver T, Wu S. Single-cell sequencing reveals CD133+CD44−-originating evolution and novel stemness related variants in human colorectal cancer. EBioMedicine 2022; 82:104125. [PMID: 35785618 PMCID: PMC9254347 DOI: 10.1016/j.ebiom.2022.104125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Tumor heterogeneity of human colorectal cancer (CRC)-initiating cells (CRCICs) in cancer tissues often represents aggressive features of cancer progression. For high-resolution examination of CRCICs, we performed single-cell whole-exome sequencing (scWES) and bulk cell targeted exome sequencing (TES) of CRCICs to investigate stemness-specific somatic alterations or clonal evolution. Methods Single cells of three subpopulations of CRCICs (CD133+CD44+, CD133−CD44+, and CD133+CD44− cells), CRC cells (CRCCs), and control cells from one CRC tissue were sorted for scWES. Then, we set up a mutation panel from scWES data and TES was used to validate mutation distribution and clonal evolution in additional 96 samples (20 patients) those were also sorted into the same three groups of CRCICs and CRCCs. The knock-down experiments were used to analyze stemness-related mutant genes. Neoantigens of these mutant genes and their MHC binding affinity were also analyzed. Findings Clonal evolution analysis of scWES and TES showed that the CD133+CD44− CRCICs were the likely origin of CRC before evolving into other groups of CRCICs/CRCCs. We revealed that AHNAK2, PLIN4, HLA-B, ALK, CCDC92 and ALMS1 genes were specifically mutated in CRCICs followed by the validation of their functions. Furthermore, four predicted neoantigens of AHNAK2 were identified and validated, which might have applications in immunotherapy for CRC patients. Interpretation All the integrative analyses above revealed clonal evolution of CRC and new markers for CRCICs and demonstrate the important roles of CRCICs in tumorigenesis and progression of CRCs. Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Yang
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wanjun Lei
- Novogene Bioinformatics Institute, Beijing, China
| | - Qiang Hou
- Clinical laboratory, Hangzhou Cancer Hospital, Hangzhou, China
| | - Ming Huang
- Clinical laboratory, Hangzhou Cancer Hospital, Hangzhou, China
| | - Rongjing Zhou
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Tariq Enver
- Cancer Institute, University College London, United Kingdom.
| | - Shixiu Wu
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
4
|
Qin EY, Cooper DD, Abbott KL, Lennon J, Nagaraja S, Mackay A, Jones C, Vogel H, Jackson PK, Monje M. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma. Cell 2017; 170:845-859.e19. [PMID: 28823557 PMCID: PMC5587159 DOI: 10.1016/j.cell.2017.07.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP.
Collapse
Affiliation(s)
- Elizabeth Y Qin
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | | | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA
| | - James Lennon
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Surya Nagaraja
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Alan Mackay
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hannes Vogel
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
5
|
Dubreuil V, Sap J, Harroch S. Protein tyrosine phosphatase regulation of stem and progenitor cell biology. Semin Cell Dev Biol 2015; 37:82-9. [DOI: 10.1016/j.semcdb.2014.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 12/18/2022]
|
6
|
Purushothaman A, Sugahara K, Faissner A. Chondroitin sulfate "wobble motifs" modulate maintenance and differentiation of neural stem cells and their progeny. J Biol Chem 2012; 287:2935-42. [PMID: 22094467 PMCID: PMC3270950 DOI: 10.1074/jbc.r111.298430] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, major components of the central nervous system, have the potential to interact with a wide range of growth factors and neurotrophic factors that influence neuronal migration, axon guidance pathways, and neurite outgrowth. Recent studies have also revealed the role of CS/DS chains in the orchestration of the neural stem/progenitor cell micromilieu. Individual functional proteins recognize a set of multiple overlapping oligosaccharide sequences decorated to give different sulfation patterns, which are termed here "wobble CS/DS oligosaccharide motifs," and induce signaling pathways essential for the proliferation, self-renewal, and cell lineage commitment of neural stem/progenitor cells.
Collapse
Affiliation(s)
- Anurag Purushothaman
- From the Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama 35294
| | - Kazuyuki Sugahara
- the Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-genomic Science and Technology, Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido 001-0021, Japan, and
| | - Andreas Faissner
- the Department of Cell Morphology and Molecular Neurobiology, Ruhr University , 44801 Bochum, Germany
| |
Collapse
|
7
|
Alborghetti MR, Furlan AS, Kobarg J. FEZ2 has acquired additional protein interaction partners relative to FEZ1: functional and evolutionary implications. PLoS One 2011; 6:e17426. [PMID: 21408165 PMCID: PMC3050892 DOI: 10.1371/journal.pone.0017426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/04/2011] [Indexed: 12/16/2022] Open
Abstract
Background The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function. Methodology/Principal Findings Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom. Conclusions/Significance We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins.
Collapse
Affiliation(s)
- Marcos R. Alborghetti
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Ariane S. Furlan
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brasil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
8
|
Webb TR, Slavish J, George RE, Look AT, Xue L, Jiang Q, Cui X, Rentrop WB, Morris SW. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther 2009; 9:331-56. [PMID: 19275511 DOI: 10.1586/14737140.9.3.331] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase in the insulin receptor superfamily, was initially identified in constitutively activated oncogenic fusion forms - the most common being nucleophosmin-ALK - in anaplastic large-cell lymphomas, and subsequent studies have identified ALK fusions in diffuse large B-cell lymphomas, systemic histiocytosis, inflammatory myofibroblastic tumors, esophageal squamous cell carcinomas and non-small-cell lung carcinomas. More recently, genomic DNA amplification and protein overexpression, as well as activating point mutations, of ALK have been described in neuroblastomas. In addition to those cancers for which a causative role for aberrant ALK activity is well validated, more circumstantial links implicate the full-length, normal ALK receptor in the genesis of other malignancies - including glioblastoma and breast cancer - via a mechanism of receptor activation involving autocrine and/or paracrine growth loops with the reported ALK ligands, pleiotrophin and midkine. This review summarizes normal ALK biology, the confirmed and putative roles of ALK in the development of human cancers and efforts to target ALK using small-molecule kinase inhibitors.
Collapse
Affiliation(s)
- Thomas R Webb
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, 332 North Lauderdale Street, Mail Stop 1000, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mitsiadis TA, Caton J, De Bari C, Bluteau G. The large functional spectrum of the heparin-binding cytokines MK and HB-GAM in continuously growing organs: the rodent incisor as a model. Dev Biol 2008; 320:256-66. [PMID: 18582856 DOI: 10.1016/j.ydbio.2008.05.530] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/10/2008] [Accepted: 05/08/2008] [Indexed: 11/30/2022]
Abstract
The heparin binding molecules MK and HB-GAM are involved in the regulation of growth and differentiation of many tissues and organs. Here we analyzed the expression of MK and HB-GAM in the developing mouse incisors, which are continuously growing organs with a stem cell compartment. Overlapping but distinct expression patterns for MK and HB-GAM were observed during all stages of incisor development (initiation, morphogenesis, cytodifferentiation). Both proteins were detected in the enamel knot, a transient epithelial signaling structure that is important for tooth morphogenesis, and the cervical loop where the stem cell niche is located. The functions of MK and HB-GAM were studied in dental explants and organotypic cultures in vitro. In mesenchymal explants, MK stimulated HB-GAM expression and, vice-versa, HB-GAM upregulated MK expression, thus indicating a regulatory loop between these proteins. BMP and FGF molecules also activated expression of both cytokines in mesenchyme. The proliferative effects of MK and HB-GAM varied according to the mesenchymal or epithelial origin of the tissue. Growth, cytodifferentiation and mineralization were inhibited in incisor germs cultured in the presence of MK neutralizing antibodies. These results demonstrate that MK and HB-GAM are involved in stem cells maintenance, cytodifferentiation and mineralization processes during mouse incisor development.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Orofacial Development and Structure, Institute of Oral Biology, ZZMK, Faculty of Medicine, University of Zurich, Plattenstrasse 11, CH 8032 Zurich, Switzerland.
| | | | | | | |
Collapse
|
10
|
Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA, Thakur M, Beaumont V, Bonnert TP, Heavens R, Whiting P, McAllister G, Munoz-Sanjuan I. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 2008; 33:685-700. [PMID: 17487225 DOI: 10.1038/sj.npp.1301446] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptor tyrosine kinase product of the anaplastic lymphoma kinase (ALK) gene has been implicated in oncogenesis as a product of several chromosomal translocations, although its endogeneous role in the hematopoietic and neural systems has remained poorly understood. We describe that the generation of animals homozygous for a deletion of the ALK tyrosine kinase domain leads to alterations in adult brain function. Evaluation of adult ALK homozygotes (HOs) revealed an age-dependent increase in basal hippocampal progenitor proliferation and alterations in behavioral tests consistent with a role for this receptor in the adult brain. ALK HO animals displayed an increased struggle time in the tail suspension test and the Porsolt swim test and enhanced performance in a novel object-recognition test. Neurochemical analysis demonstrates an increase in basal dopaminergic signalling selectively within the frontal cortex. Altogether, these results suggest that ALK functions in the adult brain to regulate the function of the frontal cortex and hippocampus and identifies ALK as a new target for psychiatric indications, such as schizophrenia and depression, with an underlying deregulated monoaminergic signalling.
Collapse
Affiliation(s)
- James G Bilsland
- Department of Molecular and Cellular Neuroscience, Merck Sharp and Dohme, The Neuroscience Research Centre, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sirko S, von Holst A, Wizenmann A, Götz M, Faissner A. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 2007; 134:2727-38. [PMID: 17596283 DOI: 10.1242/dev.02871] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although the local environment is known to regulate neural stem cell (NSC) maintenance in the central nervous system, little is known about the molecular identity of the signals involved. Chondroitin sulfate proteoglycans (CSPGs) are enriched in the growth environment of NSCs both during development and in the adult NSC niche. In order to gather insight into potential biological roles of CSPGs for NSCs, the enzyme chondroitinase ABC (ChABC) was used to selectively degrade the CSPG glycosaminoglycans. When NSCs from mouse E13 telencephalon were cultivated as neurospheres, treatment with ChABC resulted in diminished cell proliferation and impaired neuronal differentiation, with a converse increase in astrocytes. The intrauterine injection of ChABC into the telencephalic ventricle at midneurogenesis caused a reduction in cell proliferation in the ventricular zone and a diminution of self-renewing radial glia, as revealed by the neurosphere-formation assay, and a reduction in neurogenesis. These observations suggest that CSPGs regulate neural stem/progenitor cell proliferation and intervene in fate decisions between the neuronal and glial lineage.
Collapse
Affiliation(s)
- Swetlana Sirko
- Chair of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Building NDEF 05/339, Universitaetsstrasse 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
12
|
Maltman DJ, Przyborski SA. Application of proteomic technology to neural stem cell science and neurology. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is widespread recognition of the potential that stem cells hold for the treatment and repair of a large number of disorders affecting the human CNS. Therefore, stem cell research will go hand in hand with progress in specific areas of neuroscience. Proteomics has great potential to make important contributions to the basic understanding of neurological processes, and to deliver much needed cellular biomarkers in both of these fields. This review focuses on the importance of proteomic research in neuroscience, in particular the application of biomarker discovery in stem cells and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Daniel J Maltman
- University of Durham, School of Biological & Biomedical Science, South Road, Durham DH1 3LE, UK and, ReInnervate Limited, Old Shire Hall, Old Elvet, Durham DH1 3HP, UK
| | - Stefan A Przyborski
- University of Durham, School of Biological & Biomedical Science, South Road, Durham DH1 3LE, UK and, ReInnervate Limited, Old Shire Hall, Old Elvet, Durham DH1 3HP, UK
| |
Collapse
|
13
|
Peria FM, Neder L, Marie SKN, Rosemberg S, Oba-Shinjo SM, Colli BO, Gabbai AA, Malheiros SMF, Zago MA, Panepucci RA, Moreira-Filho CA, Okamoto OK, Carlotti CG. Pleiotrophin expression in astrocytic and oligodendroglial tumors and it’s correlation with histological diagnosis, microvascular density, cellular proliferation and overall survival. J Neurooncol 2007; 84:255-61. [PMID: 17443289 DOI: 10.1007/s11060-007-9379-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Pleiotrophin (PTN) is a secreted cytokine with several properties related with tumor development, including differentiation, angiogenesis, invasion, apoptosis and metastasis. There is evidence that PTN has also a relevant role in primary brain neoplasms and its inactivation could be important to treatment response. Astrocytic and oligodendroglial tumors are the most frequent primary brain neoplasms. Astrocytic tumors are classified as pilocytic astrocytoma (PA), diffuse astrocytoma (DA), anaplastic astrocytoma (AA) and glioblastoma (GBM). Oligodendroglial tumors are classified as oligodendroglioma (O) and anaplastic oligodendroglioma (AO). The aim of the present study was to compare PTN expression, in astrocytomas and oligodendrogliomas and its association with the histological diagnosis, microvascular density, proliferate potential and clinical outcome. METHODS Seventy-eight central nervous system tumors were analyzed. The histological diagnosis in accordance with WHO classification was: 13PA, 18DA, 8AA, 15GBM, 16O and 8AO. Immunohistochemistry was realized with these specific antibodies: pleiotrophin, CD31 to microvascular density and Ki-67 to cell proliferation. RESULTS PTN expression was significantly higher in GBM and AA when compared to PA and higher in GBM compared to DA. PTN expression did not differ between O and AO. Proliferate index and microvascular density were evaluated only in high grade tumors (AA, GBM and AO) divided in three groups according to PTN expression (low, intermediate and high). These results showed no statistical difference between PTN expression and index of cellular proliferation and neither to PTN expression and microvascular density. Overall survival (OS) analysis (months) showed similar results in high grade gliomas with different levels of PTN expression. CONCLUSIONS Our results suggest that PTN expression is associated with histopathological grade of astrocytomas. Proliferation rate, microvascular density and overall survival do not seem to be associated with PTN expression.
Collapse
Affiliation(s)
- Fernanda M Peria
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto of University of São Paulo (USP), Hospital das Clínicas da FMRP-USP, Campus Universitário da USP, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hayman MW, Christie VB, Keating TS, Przyborski SA. Following the Differentiation of Human Pluripotent Stem Cells by Proteomic Identification of Biomarkers. Stem Cells Dev 2006; 15:221-31. [PMID: 16646668 DOI: 10.1089/scd.2006.15.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following the differentiation of cultured stem cells is often reliant on the expression of genes and proteins that provide information on the developmental status of the cell or culture system. There are few molecules, however, that show definitive expression exclusively in a specific cell type. Moreover, the reliance on a small number of molecules that are not entirely accurate biomarkers of particular tissues can lead to misinterpretation in the characterization of the direction of cell differentiation. Here we describe the use of technology that examines the mass spectrum of proteins expressed in cultured cells as a means to identify the developmental status of stem cells and their derivatives in vitro. This approach is rapid and reproducible and it examines the expression of several different biomarkers simultaneously, providing a profile of protein expression that more accurately corresponds to a particular type of cell differentiation.
Collapse
Affiliation(s)
- M W Hayman
- School of Biological and Biomedical Science, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|
15
|
Greene LA, Angelastro JM. You can't go home again: transcriptionally driven alteration of cell signaling by NGF. Neurochem Res 2006; 30:1347-52. [PMID: 16341597 DOI: 10.1007/s11064-005-8807-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
Here we review findings indicating that neurotrophins such as NGF promote changes in gene transcription that in turn influence the ways that cells subsequently respond to trophic factors. As a result, initial responses of "naïve" cells to NGF and other trophic agents differ from those of cells with prior NGF exposure. We discuss specific examples based on reports in the literature as well as on data derived from a serial analysis of gene expression (SAGE) study of NGF-promoted transcriptional changes in PC12 pheochromocytoma cells.
Collapse
Affiliation(s)
- Lloyd A Greene
- Department of Pathology, Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
16
|
Hong H, Dragan Y, Epstein J, Teitel C, Chen B, Xie Q, Fang H, Shi L, Perkins R, Tong W. Quality control and quality assessment of data from surface-enhanced laser desorption/ionization (SELDI) time-of flight (TOF) mass spectrometry (MS). BMC Bioinformatics 2005; 6 Suppl 2:S5. [PMID: 16026602 PMCID: PMC1637033 DOI: 10.1186/1471-2105-6-s2-s5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Proteomic profiling of complex biological mixtures by the ProteinChip technology of surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS) is one of the most promising approaches in toxicological, biological, and clinic research. The reliable identification of protein expression patterns and associated protein biomarkers that differentiate disease from health or that distinguish different stages of a disease depends on developing methods for assessing the quality of SELDI-TOF mass spectra. The use of SELDI data for biomarker identification requires application of rigorous procedures to detect and discard low quality spectra prior to data analysis. Results The systematic variability from plates, chips, and spot positions in SELDI experiments was evaluated using biological and technical replicates. Systematic biases on plates, chips, and spots were not found. The reproducibility of SELDI experiments was demonstrated by examining the resulting low coefficient of variances of five peaks presented in all 144 spectra from quality control samples that were loaded randomly on different spots in the chips of six bioprocessor plates. We developed a method to detect and discard low quality spectra prior to proteomic profiling data analysis, which uses a correlation matrix to measure the similarities among SELDI mass spectra obtained from similar biological samples. Application of the correlation matrix to our SELDI data for liver cancer and liver toxicity study and myeloma-associated lytic bone disease study confirmed this approach as an efficient and reliable method for detecting low quality spectra. Conclusion This report provides evidence that systematic variability between plates, chips, and spots on which the samples were assayed using SELDI based proteomic procedures did not exist. The reproducibility of experiments in our studies was demonstrated to be acceptable and the profiling data for subsequent data analysis are reliable. Correlation matrix was developed as a quality control tool to detect and discard low quality spectra prior to data analysis. It proved to be a reliable method to measure the similarities among SELDI mass spectra and can be used for quality control to decrease noise in proteomic profiling data prior to data analysis.
Collapse
Affiliation(s)
- Huixiao Hong
- Division of Bioinformatics, Z-Tech at FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Yvonne Dragan
- Division of Systems Toxicology, FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Joshua Epstein
- Myleoma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Arkansas Cancer Research Center, Little Rock, Arkansas 72205, USA
| | - Candee Teitel
- Division of Molecular Epidemiology, FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Bangzheng Chen
- Myleoma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Arkansas Cancer Research Center, Little Rock, Arkansas 72205, USA
| | - Qian Xie
- Division of Bioinformatics, Z-Tech at FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Hong Fang
- Division of Bioinformatics, Z-Tech at FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Leming Shi
- Division of Systems Toxicology, FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Roger Perkins
- Division of Bioinformatics, Z-Tech at FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Weida Tong
- Division of Systems Toxicology, FDA's National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| |
Collapse
|