1
|
Plöger R, Tsikolia N, Viebahn C. A network of transient domains for breaking symmetry during anterior-posterior axis formation in the porcine embryo. Dev Dyn 2024. [PMID: 39377464 DOI: 10.1002/dvdy.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
Breaking radial symmetry for anterior-posterior axis formation is one of the key developmental steps of vertebrate gastrulation and is established through a succession of transient domains defined by morphology or gene expression. Three such domains were interpreted recently in the rabbit to be part of a "three-anchor-point model" for axis formation. To answer the question as to whether the model is generally applicable to mammals, the dynamic expression patterns of four marker genes were analyzed in the pig, where gastrulating epiblast forms from half the inner cell mass: EOMES and PKDCC transcripts display decreasing expression intensities in the anterior hypoblast and-together with WNT3-increasing intensity in the anterior streak domain and the node; TBX6 expression changes from an initial central expression to exclusive expression in the posterior extremity of the primitive streak. The anterior streak domain has thus a molecular footprint similar to the one in the rabbit, the end node shares TBX6 between the species, while the anterior hypoblast-mirroring specific porcine epiblast derivation and fate-is marked by PKDCC instead of WNT3. The molecular similarities in transient domains point to conserved mechanisms for establishing the mammalian anterior-posterior axis and, possibly, breaking radial symmetry.
Collapse
Affiliation(s)
- Ruben Plöger
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikoloz Tsikolia
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Vaishnav J, Sharma S, Balakrishnan S. Embryonic Thyroid Hormone Insufficiency Causes Structural Anomalies in the Embryo of Domestic Chick, Gallus domesticus. Anat Histol Embryol 2024; 53:e13106. [PMID: 39282744 DOI: 10.1111/ahe.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024]
Abstract
Thyroid hormone (TH) is essential for growth and development, yet its specific role during embryogenesis remains incompletely understood. This study investigates the impact of TH deficiency, induced by thiourea, a known inhibitor of thyroid peroxidase (TPO), on the development of domestic chicks. Thiourea was administered before thyroid gland formation, and its presence in treated embryos was confirmed through liquid chromatography-mass spectrometry. In silico docking revealed a strong interaction between thiourea and the CCP-like domain of TPO, which was corroborated by TPO activity assays showing reduced enzyme function. This reduction in enzyme activity led to lower embryonic TH levels and increased thyroid-stimulating hormone (TSH) secretion. Morphological analysis of newly hatched chicks revealed significant structural anomalies, particularly in lateral plate mesoderm-derived structures, including omphalocele, limb deformities, anophthalmia and craniofacial defects. Alcian blue and Alizarin red staining demonstrated reduced ossification in ribs and forelimbs, while histological analysis showed incomplete abdominal wall closure and abnormal vertebral column development. Haematological profiling of TH-deficient newly hatched chicks revealed significantly lower blood cell counts, highlighting TH's critical role in haematopoiesis. These findings emphasise the multifaceted role of TH in embryonic development, with potential implications for understanding congenital hypothyroidism and its developmental impacts, especially in regions with limited healthcare access.
Collapse
Affiliation(s)
- Juhi Vaishnav
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Shashikant Sharma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Suresh Balakrishnan
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Kim M, Hutchins EJ. CRISPR-Cas13d as a molecular tool to achieve targeted gene expression knockdown in chick embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606488. [PMID: 39131308 PMCID: PMC11312552 DOI: 10.1101/2024.08.03.606488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The chick embryo is a classical model system commonly used in developmental biology due to its amenability to gene perturbation experiments. Pairing this powerful model organism with cutting-edge technology can significantly expand the range of experiments that can be performed. Recently, the CRISPR-Cas13d system has been successfully adapted for use in zebrafish, medaka, killifish, and mouse embryos to achieve targeted gene expression knockdown. Despite its success in other animal models, no prior study has explored the potential of CRISPR-Cas13d in the chick. Here, we present an adaptation of the CRISPR-Cas13d system to achieve targeted gene expression knockdown in the chick embryo. As proof-of-principle, we demonstrate the knockdown of PAX7, an early neural crest marker. Application of this adapted CRISPR-Cas13d technique resulted in effective knockdown of PAX7 expression and function, comparable to knockdown achieved by translation-blocking morpholino. CRISPR-Cas13d complements preexisting knockdown tools such as CRISPR-Cas9 and morpholinos, thereby expanding the experimental potential and versatility of the chick model system.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Erica J. Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Yadav KK, Boley PA, Khatiwada S, Lee CM, Bhandari M, Kenney SP. Development of fatty liver disease model using high cholesterol and low choline diet in white leghorn chickens. Vet Res Commun 2024; 48:2489-2497. [PMID: 38861204 PMCID: PMC11315703 DOI: 10.1007/s11259-024-10420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which shows similar symptoms as fatty liver hemorrhage syndrome (FLHS) in chickens, is the most common cause of chronic liver disease and cancer in humans. NAFLD patients and FLHS in chickens have demonstrated severe liver disorders when infected by emerging strains of human hepatitis E virus (HEV) and avian HEV, respectively. We sought to develop a fatty liver disease chicken model by altering the diet of 3-week-old white leghorn chickens. The high cholesterol, and low choline (HCLC) diet included 7.6% fat with additional 2% cholesterol and 800 mg/kg choline in comparison to 5.3% fat, and 1,300 mg/kg choline in the regular diet. Our diet induced fatty liver avian model successfully recapitulates the clinical features seen during NAFLD in humans and FLHS in chickens, including hyperlipidemia and hepatic steatosis, as indicated by significantly higher serum triglycerides, serum cholesterol, liver triglycerides, cholesterol, and fatty acids. By developing this chicken model, we expect to provide a platform to explore the role of lipids in the liver pathology linked with viral infections and contribute to the development of prophylactic interventions.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Patricia A Boley
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Saroj Khatiwada
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Carolyn M Lee
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Menuka Bhandari
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Scott P Kenney
- Center for Food Animal Health (CFAH), Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Mok GF, Turner S, Smith EL, Mincarelli L, Lister A, Lipscombe J, Uzun V, Haerty W, Macaulay IC, Münsterberg AE. Single cell RNA-sequencing and RNA-tomography of the avian embryo extending body axis. Front Cell Dev Biol 2024; 12:1382960. [PMID: 38863942 PMCID: PMC11165230 DOI: 10.3389/fcell.2024.1382960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction: Vertebrate body axis formation initiates during gastrulation and continues within the tail bud at the posterior end of the embryo. Major structures in the trunk are paired somites, which generate the musculoskeletal system, the spinal cord-forming part of the central nervous system, and the notochord, with important patterning functions. The specification of these different cell lineages by key signalling pathways and transcription factors is essential, however, a global map of cell types and expressed genes in the avian trunk is missing. Methods: Here we use high-throughput sequencing approaches to generate a molecular map of the emerging trunk and tailbud in the chick embryo. Results and Discussion: Single cell RNA-sequencing (scRNA-seq) identifies discrete cell lineages including somites, neural tube, neural crest, lateral plate mesoderm, ectoderm, endothelial and blood progenitors. In addition, RNA-seq of sequential tissue sections (RNA-tomography) provides a spatially resolved, genome-wide expression dataset for the avian tailbud and emerging body, comparable to other model systems. Combining the single cell and RNA-tomography datasets, we identify spatially restricted genes, focusing on somites and early myoblasts. Thus, this high-resolution transcriptome map incorporating cell types in the embryonic trunk can expose molecular pathways involved in body axis development.
Collapse
Affiliation(s)
- G. F. Mok
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - S. Turner
- Earlham Institute, Norwich, United Kingdom
| | - E. L. Smith
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | | - A. Lister
- Earlham Institute, Norwich, United Kingdom
| | | | - V. Uzun
- Earlham Institute, Norwich, United Kingdom
| | - W. Haerty
- Earlham Institute, Norwich, United Kingdom
| | | | - A. E. Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Cerio DG, Llera Martín CJ, Hogan AVC, Balanoff AM, Watanabe A, Bever GS. Differential growth of the adductor muscles, eyeball, and brain in the chick Gallus gallus with comments on the fossil record of stem-group birds. J Morphol 2023; 284:e21622. [PMID: 37585232 DOI: 10.1002/jmor.21622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 08/17/2023]
Abstract
The avian head is unique among living reptiles in its combination of relatively large brain and eyes, coupled with relatively small adductor jaw muscles. These derived proportions lend themselves to a trade-off hypothesis, wherein adductor size was reduced over evolutionary time as a means (or as a consequence) of neurosensory expansion. In this study, we examine this evolutionary hypothesis through the lens of development by describing the jaw-adductor anatomy of developing chickens, Gallus gallus, and comparing the volumetric expansion of these developing muscles with growth trajectories of the brain and eye. Under the trade-off hypothesis, we predicted that the jaw muscles would grow with negative allometry relative to brain and eyes, and that osteological signatures of a relatively large adductor system, as found in most nonavian dinosaurs, would be differentially expressed in younger chicks. Results did not meet these expectations, at least not generally, with muscle growth exhibiting positive allometry relative to that of brain and eye. We propose three, nonmutually exclusive explanations: (1) these systems do not compete for space, (2) these systems competed for space in the evolutionary past, and growth of the jaw muscles was truncated early in development (paedomorphosis), and (3) trade-offs in developmental investment in these systems are limited temporally to the perinatal period. These explanations are considered in light of the fossil record, and most notably the skull of the stem bird Ichthyornis, which exhibits an interesting combination of plesiomorphically large adductor chamber and apomorphically large brain.
Collapse
Affiliation(s)
- Donald G Cerio
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine J Llera Martín
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aneila V C Hogan
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy M Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
- Division of Paleontology, American Museum of Natural History, New York City, New York, USA
- Life Sciences Department, Natural History Museum, London, UK
| | - Gabriel S Bever
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Zare M, Mirhoseini SZ, Ghovvati S, Yakhkeshi S, Hesaraki M, Barati M, Sayyahpour FA, Baharvand H, Hassani SN. The constitutively active pSMAD2/3 relatively improves the proliferation of chicken primordial germ cells. Mol Reprod Dev 2023. [PMID: 37379342 DOI: 10.1002/mrd.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-β signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-β signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-β, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.
Collapse
Affiliation(s)
- Masumeh Zare
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojgan Barati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayyahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Yahya I, Omer EAM, Gellisch M, Brand-Saberi B, Morosan-Puopolo G. Implementing a multi-colour genetic marker analysis technique for embryology education. Anat Histol Embryol 2023; 52:85-92. [PMID: 36177714 DOI: 10.1111/ahe.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/03/2022] [Accepted: 09/18/2022] [Indexed: 01/19/2023]
Abstract
Embryology belongs to the basic sciences and is usually an integral part of the anatomy. The subject is traditionally taught by visual inspection of embryonic tissue slides stained with Haematoxylin and Eosin (H&E) to expose the dynamics of tissue histology as development proceeds. While combining in situ hybridization for gene expression analysis and immunostaining for protein expression analysis is an established technique for embryology research, the implementation of this tool in embryology teaching has not been described. The present study was conducted to assess the use of an online multi-colour gene expression analysis technique, alongside histological sections and diagrams, to improve students' understanding of embryology. The participants of this study were bachelor's students of Veterinary Medicine at the University of Khartoum. The method was also evaluated by distributing questionnaire items to Veterinary students via Google forms; subsequently, their responses were analysed qualitatively. The majority of students stated that the new technique was beneficial for their learning of embryology. The multi-colour images proved a more effective means for learning embryology than the traditional H&E image. Results from the students strengthen the belief in applying the multi-colour technique for better embryology course learning.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan.,Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Elhady A M Omer
- Department of Animal Breeding and Genetics, University of Khartoum, Khartoum, Sudan.,Department of Animal Breeding, Faculty of Organic Agricultural Sciences, University of Kassel, Witzenhausen, Germany
| | - Morris Gellisch
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
9
|
Goes CP, Kanno TY, Yan CYI. In Embryo Gene Reporter Assays for Evaluation of Cis-Regulatory Regions. Methods Mol Biol 2023; 2599:227-239. [PMID: 36427153 DOI: 10.1007/978-1-0716-2847-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gene expression reporter assays measure the relevance of cis-regulatory elements and DNA-binding proteins in modulating transcriptional activity. Commonly, they are performed in cell lines. However, regulation of transcriptional activity during development is complex and dynamic, and not many cell lines reproduce the embryonic conditions. Thus, conclusions derived from cell line data provide limited information about embryonic development. On the other hand, one of the major hurdles for embryonic assays is delivering reporter plasmids in a tissue-specific manner. In this sense, the chick embryo is a good model system to perform these assays. Electroporation of chick embryos provides temporal and spatially controlled plasmid delivery. Further, it is a well-established, easy, and an economical procedure. Here, we describe in detail how to measure in the chick neural tube (1) enhancer activity with GFP, (2) enhancer activity with luciferase, and (3) 3'UTR activity with luciferase.
Collapse
Affiliation(s)
- Carolina Purcell Goes
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiane Y Kanno
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - C Y Irene Yan
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Cordero GA, Werneburg I. Domestication and the comparative embryology of birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:447-459. [PMID: 35604321 DOI: 10.1002/jez.b.23144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Studies of domesticated animals have greatly contributed to our understanding of avian embryology. Foundational questions in developmental biology were motivated by Aristotle's observations of chicken embryos. By the 19th century, the chicken embryo was at the center stage of developmental biology, but how closely does this model species mirror the ample taxonomic diversity that characterizes the avian tree of life? Here, we provide a brief overview of the taxonomic breadth of comparative embryological studies in birds. We particularly focused on staging tables and papers that attempted to document the timing of developmental transformations. We show that most of the current knowledge of avian embryology is based on Galliformes (chicken and quail) and Anseriformes (duck and goose). Nonetheless, data are available for some ecologically diverse avian subclades, including Struthioniformes (e.g., ostrich, emu) and Sphenisciformes (penguins). Thus far, there has only been a handful of descriptive embryological studies in the most speciose subclade of Aves, that is, the songbirds (Passeriniformes). Furthermore, we found that temporal variances for developmental events are generally uniform across a consensus chronological sequence for birds. Based on the available data, developmental trajectories for chicken and other model species appear to be highly similar. We discuss future avenues of research in comparative avian embryology in light of the currently available wealth of data on domesticated species and beyond.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), Eberhard Karls Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Liu J, Wang J, Zhou Y, Han H, Liu W, Li D, Li F, Cao D, Lei Q. Integrated omics analysis reveals differences in gut microbiota and gut-host metabolite profiles between obese and lean chickens. Poult Sci 2022; 101:102165. [PMID: 36179649 PMCID: PMC9523386 DOI: 10.1016/j.psj.2022.102165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
Abdominal fat is the major adipose tissue in chickens. In chicken, the deposition of abdominal fat affects meat yield and quality. Previous reports suggest that gut microbiota composition and function are associated with lipid metabolism. In this study, we used comparative metagenomics and metabolomics analysis to determine the gut microbiota and gut-host metabolite profiles in Shouguang (SG; a Chinese chicken breed with low-fat deposition) and Luqin (LQ; a fatty-type chicken breed with a fast growth rate) chickens. The results showed that LQ chickens had higher body weight, eviscerated yield, abdominal fat yield, abdominal fat ratio, and triglyceride (TG) content in the breast muscle than SG chickens. Untargeted metabolomics analyses showed a total of 11 liver metabolites, 19 plasma metabolites, and 30 cecal metabolites differentially enriched in LQ and SG chickens based on variable importance in the projection (VIP) ≥ 1 and P ≤ 0.05. These metabolites are involved in lipid and amino acid metabolism. The relative abundance of bacteria in the microbiota differed significantly between the 2 chicken breeds. The functional prediction of microbiota abundant in LQ chickens was starch and lactose degradation. Erysipelatoclostridium was abundant in LQ chickens and significantly positively correlated to palmitoyl ethanolamide (PEA), a key regulator of lipid metabolism. Our findings revealed differences in liver and plasma metabolites between chicken breeds with different adipose deposition capacities. Long-chain acylcarnitines might be important markers of adipose deposition differences in chickens. The cecum's microbial communities and metabolome profiles significantly differed between LQ and SG chickens. However, the relationship between cecal microbiota and their metabolites and liver and plasma metabolites is not thoroughly understood. Future research will focus on relating tissue metabolite changes to intestinal microbiota and their effects on body fat deposition.
Collapse
Affiliation(s)
- Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, 250100, Ji'nan, China; Poultry Breeding Engineering Technology Center of Shandong Province, 250100, Ji'nan, China.
| |
Collapse
|
12
|
Bertzbach LD, Tregaskes CA, Martin RJ, Deumer US, Huynh L, Kheimar AM, Conradie AM, Trimpert J, Kaufman J, Kaufer BB. The Diverse Major Histocompatibility Complex Haplotypes of a Common Commercial Chicken Line and Their Effect on Marek's Disease Virus Pathogenesis and Tumorigenesis. Front Immunol 2022; 13:908305. [PMID: 35693787 PMCID: PMC9186122 DOI: 10.3389/fimmu.2022.908305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
The major histocompatibility complex (MHC) is crucial for appropriate immune responses against invading pathogens. Chickens possess a single predominantly-expressed class I molecule with strong associations between disease resistance and MHC haplotype. For Marek's disease virus (MDV) infections of chickens, the MHC haplotype is one of the major determinants of genetic resistance and susceptibility. VALO specific pathogen free (SPF) chickens are widely used in biomedical research and vaccine production. While valuable findings originate from MDV infections of VALO SPF chickens, their MHC haplotypes and associated disease resistance remained elusive. In this study, we used several typing systems to show that VALO SPF chickens possess MHC haplotypes that include B9, B9:02, B15, B19 and B21 at various frequencies. Moreover, we associate the MHC haplotypes to MDV-induced disease and lymphoma formation and found that B15 homozygotes had the lowest tumor incidence while B21 homozygotes had the lowest number of organs with tumors. Finally, we found transmission at variable levels to all contact birds except B15/B21 heterozygotes. These data have immediate implications for the use of VALO SPF chickens and eggs in the life sciences and add another piece to the puzzle of the chicken MHC complex and its role in infections with this oncogenic herpesvirus.
Collapse
Affiliation(s)
| | - Clive A. Tregaskes
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca J. Martin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahmed M. Kheimar
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Niknafs S, Fortes MRS, Cho S, Black JL, Roura E. Alanine-specific appetite in slow growing chickens is associated with impaired glucose transport and TCA cycle. BMC Genomics 2022; 23:393. [PMID: 35606689 PMCID: PMC9128104 DOI: 10.1186/s12864-022-08625-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background The rate of protein accretion and growth affect amino acid requirements in young animals. Differences in amino acid metabolism contribute to individual variations in growth rate. This study aimed at determining how amino acid needs may change with growth rates in broiler chickens. Experiment 1 consisted of testing amino acid choices in two chicken groups with extreme growth rates (the slowest –SG- or fastest –FG- growing birds in a flock). Essential (EAA) (methionine, lysine and threonine) or non-essential (NEAA) (alanine, aspartic acid and asparagine) amino acids were added to a standard control feed (13.2 MJ/kg; 21.6% crude protein). The chickens were offered simultaneous access to the control feed and a feed supplemented with one of the two amino acid mixes added at 73% above standard dietary levels. Experiment 2 consisted of the selection of the bottom 5 SG and top 5 FG chickens from a flock of 580 to study differences in amino acid metabolism using the proventriculus representing gut sensing mechanism. In this experiment, transcriptomic, proteomic, and genomic analyses were used to compare the two groups of chickens. Results SG preferred NEAA, while they rejected EAA supplemented feeds (P < 0.05). However, FG rejected NEAA (P < 0.05), and they were indifferent to EAA supplemented feed (P > 0.05). Transcriptomic and proteomic analyses identified 909 differentially expressed genes and 146 differentially abundant proteins associated with differences in growth rate (P < 0.05). The integration of gene expression and protein abundance patterns showed the downregulation of sensing and transport of alanine and glucose associated with increased alanine catabolism to pyruvate in SG chickens. Conclusion Dietary preferences for NEAA in the SG group are associated with a potential cytosolic depletion of alanine following an upregulation of the catabolism into TCA cycle intermediates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08625-2.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sungbo Cho
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John L Black
- John L Black Consulting, Warrimoo, NSW, 2774, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
14
|
Li J, Zhang X, Wang X, Sun C, Zheng J, Li J, Yi G, Yang N. The m6A methylation regulates gonadal sex differentiation in chicken embryo. J Anim Sci Biotechnol 2022; 13:52. [PMID: 35581635 PMCID: PMC9115958 DOI: 10.1186/s40104-022-00710-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Background As a ubiquitous reversible epigenetic RNA modification, N6-methyladenosine (m6A) plays crucial regulatory roles in multiple biological pathways. However, its functional mechanisms in sex determination and differentiation during gonadal development of chicken embryos are not clear. Therefore, we established a transcriptome-wide m6A map in the female and male chicken left gonads of embryonic day 7 (E7) by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to offer insight into the landscape of m6A methylation and investigate the post-transcriptional modification underlying gonadal differentiation. Results The chicken embryonic gonadal transcriptome was extensively methylated. We found 15,191 and 16,111 m6A peaks in the female and male left gonads, respectively, which were mainly enriched in the coding sequence (CDS) and stop codon. Among these m6A peaks, we identified that 1013 and 751 were hypermethylated in females and males, respectively. These differential peaks covered 281 and 327 genes, such as BMP2, SMAD2, SOX9 and CYP19A1, which were primarily associated with development, morphogenesis and sex differentiation by functional enrichment. Further analysis revealed that the m6A methylation level was positively correlated with gene expression abundance. Furthermore, we found that YTHDC2 could regulate the expression of sex-related genes, especially HEMGN and SOX9, in male mesonephros/gonad mingle cells, which was verified by in vitro experiments, suggesting a regulatory role of m6A methylation in chicken gonad differentiation. Conclusions This work provided a comprehensive m6A methylation profile of chicken embryonic gonads and revealed YTHDC2 as a key regulator responsible for sex differentiation. Our results contribute to a better understanding of epigenetic factors involved in chicken sex determination and differentiation and to promoting the future development of sex manipulation in poultry industry. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00710-6.
Collapse
Affiliation(s)
- Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
15
|
Sukparangsi W, Thongphakdee A, Intarapat S. Avian Embryonic Culture: A Perspective of In Ovo to Ex Ovo and In Vitro Studies. Front Physiol 2022; 13:903491. [PMID: 35651873 PMCID: PMC9150135 DOI: 10.3389/fphys.2022.903491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The avian embryos growing outside the natural eggshell (ex ovo) were observed since the early 19th century, and since then chick embryonic structures have revealed reaching an in-depth view of external and internal anatomy, enabling us to understand conserved vertebrate development. However, the internal environment within an eggshell (in ovo) would still be the ideal place to perform various experiments to understand the nature of avian development and to apply other biotechnology techniques. With the advent of genetic manipulation and cell culture techniques, avian embryonic parts were dissected for explant culture to eventually generate expandable cell lines (in vitro cell culture). The expansion of embryonic cells allowed us to unravel the transcriptional network for understanding pluripotency and differentiation mechanism in the embryos and in combination with stem cell technology facilitated the applications of avian culture to the next levels in transgenesis and wildlife conservation. In this review, we provide a panoramic view of the relationship among different cultivation platforms from in ovo studies to ex ovo as well as in vitro culture of cell lines with recent advances in the stem cell fields.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Research Department, Bureau of Conservation and Research, Zoological Park Organization of Thailand Under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Sittipon Intarapat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Sittipon Intarapat,
| |
Collapse
|
16
|
Rocchi A, Ruff J, Maynard CJ, Forga AJ, Señas-Cuesta R, Greene ES, Latorre JD, Vuong CN, Graham BD, Hernandez-Velasco X, Tellez G, Petrone-Garcia VM, Laverty L, Hargis BM, Erf GF, Owens CM, Tellez-Isaias G. Experimental Cyclic Heat Stress on Intestinal Permeability, Bone Mineralization, Leukocyte Proportions and Meat Quality in Broiler Chickens. Animals (Basel) 2022; 12:ani12101273. [PMID: 35625119 PMCID: PMC9138156 DOI: 10.3390/ani12101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (n = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7−42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (p < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.
Collapse
Affiliation(s)
- Alessandro Rocchi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Jared Ruff
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Clay J. Maynard
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Aaron J. Forga
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Roberto Señas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Elizabeth S. Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Christine N. Vuong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico;
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli 54121, Mexico;
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Gisela F. Erf
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Casey M. Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (J.R.); (C.J.M.); (A.J.F.); (R.S.-C.); (E.S.G.); (J.D.L.); (C.N.V.); (B.D.G.); (G.T.J.); (L.L.); (B.M.H.); (G.F.E.); (C.M.O.)
- Correspondence:
| |
Collapse
|
17
|
Duarte I, Carraco G, de Azevedo NTD, Benes V, Andrade RP. gga-miRNOME, a microRNA-sequencing dataset from chick embryonic tissues. Sci Data 2022; 9:29. [PMID: 35102184 PMCID: PMC8803849 DOI: 10.1038/s41597-022-01126-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules, with sizes ranging from 18 to 25 nucleotides, which are key players in gene expression regulation. These molecules play an important role in fine-tuning early vertebrate embryo development. However, there are scarce publicly available miRNA datasets from non-mammal embryos, such as the chicken (Gallus gallus), which is a classical model system to study vertebrate embryogenesis. Here, we performed microRNA-sequencing to characterize the early stages of trunk and limb development in the chick embryo. For this, we profiled three chick embryonic tissues, namely, Undetermined Presomitic Mesoderm (PSM_U), Determined Presomitic Mesoderm (PSM_D) and Forelimb Distal Cyclic Domain (DCD). We identified 926 known miRNAs, and 1,141 novel candidate miRNAs, which nearly duplicates the number of Gallus gallus entries in the miRBase database. These data will greatly benefit the avian research community, particularly by highlighting new miRNAs potentially involved in the regulation of early vertebrate embryo development, that can be prioritized for further experimental testing.
Collapse
Affiliation(s)
- Isabel Duarte
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Center for Health Technology and Services Research (CINTESIS), Polo da Universidade do Algarve, 8005-139, Faro, Portugal
| | - Gil Carraco
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Faro, Portugal
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
| | | | | | - Raquel P Andrade
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
18
|
Abstract
The Tabula Gallus is a proposed project that aims to create a map of every cell type in the chicken body and chick embryos. Chickens (Gallus gallus) are one of the most recognized model animals that recapitulate the development and physiology of mammals. The Tabula Gallus will generate a compendium of single-cell transcriptome data from Gallus gallus, characterize each cell type, and provide tools for the study of the biology of this species, similar to other ongoing cell atlas projects (Tabula Muris and Tabula Sapiens/Human Cell Atlas for mice and humans, respectively). The Tabula Gallus will potentially become an international collaboration between many researchers. This project will be useful for the basic scientific study of Gallus gallus and other birds (e.g., cell biology, molecular biology, developmental biology, neuroscience, physiology, oncology, virology, behavior, ecology, and evolution). It will eventually be beneficial for a better understanding of human health and diseases.
Collapse
|
19
|
Das R, Mishra P, Jha R. In ovo Feeding as a Tool for Improving Performance and Gut Health of Poultry: A Review. Front Vet Sci 2021; 8:754246. [PMID: 34859087 PMCID: PMC8632539 DOI: 10.3389/fvets.2021.754246] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Early growth and development of the gastrointestinal tract are of critical importance to enhance nutrients' utilization and optimize the growth of poultry. In the current production system, chicks do not have access to feed for about 48-72 h during transportation between hatchery and production farms. This lag time affects early nutrient intake, natural exposure to the microbiome, and the initiation of beneficial stimulation of the immune system of chicks. In ovo feeding can provide early nutrients and additives to embryos, stimulate gut microflora, and mitigate the adverse effects of starvation during pre-and post-hatch periods. Depending on the interests, the compounds are delivered to the embryo either around day 12 or 17 to 18 of incubation and via air sac or amnion. In ovo applications of bioactive compounds like vaccines, nutrients, antibiotics, prebiotics, probiotics, synbiotics, creatine, follistatin, L-carnitine, CpG oligodeoxynucleotide, growth hormone, polyclonal antimyostatin antibody, peptide YY, and insulin-like growth factor-1 have been studied. These compounds affect hatchability, body weight at hatch, physiological functions, immune responses, gut morphology, gut microbiome, production performance, and overall health of birds. However, the route, dose, method, and time of in ovo injection and host factors can cause variation, and thereby inconsistencies in results. Studies using this method have manifested the benefits of injection of different single bioactive compounds. But for excelling in poultry production, researchers should precisely know the proper route and time of injection, optimum dose, and effective combination of different compounds. This review paper will provide an insight into current practices and available findings related to in ovo feeding on performance and health parameters of poultry, along with challenges and future perspectives of this technique.
Collapse
Affiliation(s)
- Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
20
|
de Melo AA, Nunes R, Telles MPDC. Same information, new applications: revisiting primers for the avian COI gene and improving DNA barcoding identification. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00507-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Palmquist-Gomes P, Pérez-Pomares JM, Guadix JA. Training biochemistry students in experimental developmental biology: Induction of cardia bifida formation in the chick embryo. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:782-788. [PMID: 34156745 DOI: 10.1002/bmb.21549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
A high variety of experimental model organisms have been used in developmental biology practical lectures. The work with developing embryos is crucial to make students aware of the multiple biological phenomena underlying normal animal embryogenesis and morphogenesis and represent a unique experimental platform to analyze the impact of molecular signaling in the regulation of all these processes. In particular, Biochemistry undergraduate students enjoy both practical and theoretical lectures on the molecular mechanisms of embryonic development, as that allows them for the integration of crucial molecular concepts (e.g. signaling and signal transduction mechanisms; molecular patterning of development) into the dynamic and progressive context of animal embryonic ontogenesis. Accordingly, it is important to carefully design practical laboratory lectures in developmental biology, as these are a unique pedagogical tools fostering the interests of the students in this subject. This study describes the design, implementation, and evaluation of a two-session laboratory practical activity performed by Biochemistry undergraduate students at University of Málaga (Spain). In this practical activity, which takes advantage of the unique characteristics of the chick embryo, students learn how the vertebrate heart forms from the fusion of two bilateral-symmetric cardiac progenitor pools under the guidance of the underlying endoderm. This cheap and easy practical laboratory activity provides relevant visual information on how experimental manipulations can severely influence anatomical form during organ development, as well as an excellent experimental setting to test molecular regulation of morphogenesis in an ex vivo (ex ovo) context.
Collapse
Affiliation(s)
- Paul Palmquist-Gomes
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain
- Area of Biotechnology, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - José María Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain
- Area of Biotechnology, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Juan Antonio Guadix
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain
- Area of Biotechnology, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| |
Collapse
|
22
|
Yamagata M, Sanes JR. CRISPR-mediated Labeling of Cells in Chick Embryos Based on Selectively Expressed Genes. Bio Protoc 2021; 11:e4105. [PMID: 34458399 PMCID: PMC8376491 DOI: 10.21769/bioprotoc.4105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
The abilities to mark and manipulate specific cell types are essential for an increasing number of functional, structural, molecular, and developmental analyses in model organisms. In a few species, this can be accomplished by germline transgenesis; in other species, other methods are needed to selectively label somatic cells based on the genes that they express. Here, we describe a method for CRISPR-based somatic integration of reporters or Cre recombinase into specific genes in the chick genome, followed by visualization of cells in the retina and midbrain. Loci are chosen based on an RNA-seq-based cell atlas. Reporters can be soluble to visualize the morphology of individual cells or appended to the encoded protein to assess subcellular localization. We call the method eCHIKIN for electroporation- and CRISPR-mediated Homology-instructed Knock-IN.
Collapse
Affiliation(s)
- Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, 02138, USA
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, 02138, USA
| |
Collapse
|
23
|
Dakhel S, Davies WIL, Joseph JV, Tomar T, Remeseiro S, Gunhaga L. Chick fetal organ spheroids as a model to study development and disease. BMC Mol Cell Biol 2021; 22:37. [PMID: 34225662 PMCID: PMC8256237 DOI: 10.1186/s12860-021-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms. RESULTS Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer. CONCLUSION The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.
Collapse
Affiliation(s)
- Soran Dakhel
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Wayne I L Davies
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Justin V Joseph
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Tushar Tomar
- PamGene International B.V, Wolvenhoek 10, 5211 HH, 's-Hertogenbosch, The Netherlands
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
24
|
piggyBac Transposition and the Expression of Human Cystatin C in Transgenic Chickens. Animals (Basel) 2021; 11:ani11061554. [PMID: 34073441 PMCID: PMC8226945 DOI: 10.3390/ani11061554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The genetic modification of livestock genomes showed the great potential for production of industrial biomaterials as well as improving animal production. Particularly, the transgenic hen’s eggs have been considered for a massive production system of the genetically engineered biomaterials as a bioreactor animal. Virus-mediated transgene transduction is the most powerful strategy to generate the transgenic animals. However, industrial applications were hampered by many obstacles such as relatively low germline transmission and transgene silencing effects, as well as viral safety issues. In this study, a piggyBac transposon which is a non-viral integration technical platform was introduced into chicken primordial germ cells. Finally, we developed transgenic chickens and assayed the bioactivity of human cystatin C in the transgenic chicken’s tissues. Abstract A bioreactor can be used for mass production of therapeutic proteins and other bioactive substances. Although various methods have been developed using microorganisms and animal cells, advanced strategies are needed for the efficient production of biofunctional proteins. In microorganisms, post-translational glycosylation and modification are not performed properly, while animal cell systems require more time and expense. To overcome these problems, new methods using products from transgenic animals have been considered, such as genetically modified cow’s milk and hen’s eggs. In this study, based on a non-viral piggyBac transposition system, we generated transgenic bioreactor chickens that produced human cystatin C (hCST3). There were no differences in the phenotype or histochemical structure of the wild-type and hCST3-expressing transgenic chickens. Subsequently, we analyzed the hCST3 expression in transgenic chickens, mainly in muscle and egg white, which could be major deposition warehouses for hCST3 protein. In both muscle and egg white, we detected high hCST3 expression by ELISA and Western blotting. hCST3 proteins were efficiently purified from muscle and egg white of transgenic chickens using a His-tag purification system. These data show that transgenic chickens can be efficiently used as a bioreactor for the mass production of bioactive materials.
Collapse
|
25
|
Parmar B, Verma U, Khaire K, Danes D, Balakrishnan S. Inhibition of Cyclooxygenase-2 Alters Craniofacial Patterning during Early Embryonic Development of Chick. J Dev Biol 2021; 9:16. [PMID: 33922791 PMCID: PMC8167724 DOI: 10.3390/jdb9020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
A recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE2 (Prostaglandin E2) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCCs. The histological features and levels of FoxD3 (Forkhead box D3), as well as PCNA (Proliferating cell nuclear antigen), further consolidate the role of COX-2 in the migration and survival of CNCCs in developing embryos. The results of the current study indicate that COX-2 plays a pivotal role in orchestrating craniofacial structures perhaps by modulating CNCC proliferation and migration during the embryonic development of chicks.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390002, India; (B.P.); (U.V.); (K.K.); (D.D.)
| |
Collapse
|
26
|
Yahya I, Böing M, Brand-Saberi B, Morosan-Puopolo G. How to distinguish between different cell lineages sharing common markers using combinations of double in-situ-hybridization and immunostaining in avian embryos: CXCR4-positive mesodermal and neural crest-derived cells. Histochem Cell Biol 2020; 155:145-155. [PMID: 33037504 PMCID: PMC7847855 DOI: 10.1007/s00418-020-01920-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
Cell migration plays a crucial role in early embryonic development. The chemokine receptor CXCR4 has been reported to guide migration of neural crest cells (NCCs) to form the dorsal root ganglia (DRG) and sympathetic ganglia (SG). CXCR4 also plays an important part during the formation of limb and cloacal muscles. NCCs migration and muscle formation during embryonic development are usually considered separately, although both cell lineages migrate in close neighbourhood and have markers in common. In this study, we present a new method for the simultaneous detection of CXCR4, mesodermal markers and NCCs markers during chicken embryo developmental stages HH18–HH25 by combining double whole-mount in situ hybridization (ISH) and immunostaining on floating vibratome sections. The simultaneous detection of CXCR4 and markers for the mesodermal and neural crest cells in multiple labelling allowed us to compare complex gene expression patterns and it could be easily used for a wide range of gene expression pattern analyses of other chicken embryonic tissues. All steps of the procedure, including the preparation of probes and embryos, prehybridization, hybridization, visualization of the double labelled transcripts and immunostaining, are described in detail.
Collapse
Affiliation(s)
- Imadeldin Yahya
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Chu D, Nguyen A, Smith SS, Vavrušová Z, Schneider RA. Stable integration of an optimized inducible promoter system enables spatiotemporal control of gene expression throughout avian development. Biol Open 2020; 9:bio055343. [PMID: 32917762 PMCID: PMC7561481 DOI: 10.1242/bio.055343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Precisely altering gene expression is critical for understanding molecular processes of embryogenesis. Although some tools exist for transgene misexpression in developing chick embryos, we have refined and advanced them by simplifying and optimizing constructs for spatiotemporal control. To maintain expression over the entire course of embryonic development we use an enhanced piggyBac transposon system that efficiently integrates sequences into the host genome. We also incorporate a DNA targeting sequence to direct plasmid translocation into the nucleus and a D4Z4 insulator sequence to prevent epigenetic silencing. We designed these constructs to minimize their size and maximize cellular uptake, and to simplify usage by placing all of the integrating sequences on a single plasmid. Following electroporation of stage HH8.5 embryos, our tetracycline-inducible promoter construct produces robust transgene expression in the presence of doxycycline at any point during embryonic development in ovo or in culture. Moreover, expression levels can be modulated by titrating doxycycline concentrations and spatial control can be achieved using beads or gels. Thus, we have generated a novel, sensitive, tunable, and stable inducible-promoter system for high-resolution gene manipulation in vivo.
Collapse
Affiliation(s)
- Daniel Chu
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - An Nguyen
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Spenser S Smith
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Zuzana Vavrušová
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1164, San Francisco, CA 94143-0514, USA
| |
Collapse
|
28
|
Kumar P, Ghosh A, Sundaresan L, Kathirvel P, Sankaranarayanan K, Chatterjee S. Ectopic release of nitric oxide modulates the onset of cardiac development in avian model. In Vitro Cell Dev Biol Anim 2020; 56:593-603. [PMID: 32959218 DOI: 10.1007/s11626-020-00495-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Heart development is one of the earliest developmental events, and its pumping action is directly linked to the intensity of development of other organs. Heart contractions mediate the circulation of the nutrients and signalling molecules to the focal points of developing embryos. In the present study, we used in vivo, ex vivo, in vitro, and in silico methods for chick embryo model to characterize and identify molecular targets under the influence of ectopic nitric oxide in reference to cardiogenesis. Spermine NONOate (SpNO) treatment of 10 μM increased the percentage of chick embryos having beating heart at 40th h of incubation by 2.2-fold (p < 0.001). In an ex vivo chick embryo culture, SpNO increased the percentage of embryos having beats by 1.56-fold (p < 0.05) compared with control after 2 h of treatment. Total body weight of SpNO-treated chick embryos at the Hamburger and Hamilton (HH) stage 29 was increased by 1.22-fold (p < 0.005). Cardiac field potential (FP) recordings of chick embryo at HH29 showed 2.5-fold (p < 0.001) increased in the amplitude, 3.2-fold (p < 0.001) increased in frequency of SpNO-treated embryos over that of the control group, whereas FP duration was unaffected. In cultured cardiac progenitors cells (CPCs), SpNO treatment decreased apoptosis and cell death by twofold (p < 0.001) and 1.7-fold (p < 0.001), respectively. Transcriptome analysis of chick embryonic heart isolated from HH15 stage pre-treated with SpNO at HH8 stage showed upregulation of genes involved in heart morphogenesis, heart contraction, cardiac cell development, calcium signalling, structure, and development whereas downregulated genes were enriched under the terms extracellular matrix, wnt pathway, and BMP pathway. The key upstream molecules predicted to be activated were p38 MAPK, MEF2C, TBX5, and GATA4 while KDM5α, DNMT3A, and HNF1α were predicted to be inhibited. This study suggests that the ectopic nitric oxide modulates the onset of cardiac development.
Collapse
Affiliation(s)
- Pavitra Kumar
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India
| | - Anuran Ghosh
- Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Lakshmikirupa Sundaresan
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India.,Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | | | | | - Suvro Chatterjee
- Vascular Biology Laboratory, AU-KBC Research Centre, M.I.T Campus of Anna University, Chromepet, Chennai, Tamil Nadu, 600044, India. .,Department of Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
29
|
4D Live Imaging and Analysis of Chick Embryo Somites. Methods Mol Biol 2020. [PMID: 32939721 DOI: 10.1007/978-1-0716-0779-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Avian (chick) embryos are an established and accessible model organism making them ideal for studying developmental processes. Chick embryos can be harvested from the egg and cultured allowing real-time observations and imaging. Here, we describe ex vivo culture and preparation of somite tissue followed by time-lapse multi-photon microscopy, image capture and processing. We applied this approach to perform live imaging of somites, the paired segments in vertebrate embryos that form in a regular sequence on either side of the neural tube, posteriorly from presomitic mesoderm (psm). Somites give rise to cell lineages of the musculoskeletal system in the trunk such as skeletal muscle, cartilage and tendon, as well as endothelial cells. Until recently it was not possible to observe the cellular dynamics underlying morphological transitions in live tissue, including in somites which undergo epithelial-to-mesenchymal transitions (EMT) during their differentiation. In addition to the experimental setup, we describe the analytical tools used for image processing.
Collapse
|
30
|
Tombarkiewicz B, Trzeciak K, Bojarski B, Lis MW. The effect of methionine and folic acid administered in ovo on the hematological parameters of chickens (Gallus gallus domesticus). Poult Sci 2020; 99:4578-4585. [PMID: 32868002 PMCID: PMC7598025 DOI: 10.1016/j.psj.2020.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022] Open
Abstract
Methionine (Met), an essential amino acid in poultry diets, when overdosed may cause hyperhomocysteinemia, which is mainly a trigger for cardiovascular diseases in humans. Homocysteine is neutralized (remethylated) in the presence of folic acid (FA), which also plays an important role in hematopoiesis and participates in the synthesis of DNA, and its deficiencies may result in the development of neural tube defects. One of the basic tools in studying the impact of both xenobiotics and nutrients on the animal organism is hematological analysis. Thus, the aim of this study was to determine the effect of in ovo supplementation with Met and FA on the hematological parameters of broiler chickens. On the 17th day of incubation, embryonated eggs (Ross 308) were injected with 5 or 25 mg of Met per egg (M5 and M25), 3 and 15 mg of FA per egg (F3 and F15), or a mixture of these 2 compounds (M5/F3 and M25/F15). The broilers were reared in accordance with welfare regulations and fed with commercial diets ad libitum. Blood samples were collected on the first, seventh, and 35th day of rearing (D1, D7, and D35), and complete hematological analysis was performed. The observed changes in red blood cell parameters probably result from physiological changes occurring during bird growth. Mean erythrocyte volume decreased with the age of chickens in the control, M5, and M25 groups, but not in those supplied with FA. Among supplemented groups, the number of white blood cells on D1 was lower only in group M5 than in the sham (C) group. The analysis of leukograms showed no significant differences between the groups. Comparing D1 with D7 in the group injected with a higher dose of Met and FA (MF25/15), a statistically significant increase in the percentage of lymphocytes and a significant decrease in the percentage of heterophils were observed. In addition, in the group injected with a higher FA dose (F15), there was statistically significant reduction in the percentage of eosinophils and a significant increase in the percentage of monocytes at day 7 compared with day 1. It seems that Met supplementation led to temporary immunosuppression in the animals.
Collapse
Affiliation(s)
- Barbara Tombarkiewicz
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Karolina Trzeciak
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Bartosz Bojarski
- Department of Clinical Biochemistry and Laboratory Diagnostics, Faculty of Medicine, University of Opole, 45-052 Opole, Poland
| | - Marcin W Lis
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, 30-059 Krakow, Poland.
| |
Collapse
|
31
|
Ning C, Ma T, Hu S, Xu Z, Zhang P, Zhao X, Wang Y, Yin H, Hu Y, Fan X, Zeng B, Yang M, Yang D, Ni Q, Li Y, Zhang M, Xu H, Yao Y, Zhu Q, Li D. Long Non-coding RNA and mRNA Profile of Liver Tissue During Four Developmental Stages in the Chicken. Front Genet 2020; 11:574. [PMID: 32612636 PMCID: PMC7309962 DOI: 10.3389/fgene.2020.00574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
The liver is the major organ of lipid biosynthesis in the chicken. In laying hens, the liver synthesizes most of the yolk precursors and transports them to developing follicles to produce eggs. However, a systematic investigation of the long non-coding RNA (lncRNA) and mRNA transcriptome in liver across developmental stages is needed. Here, we constructed 12 RNA libraries from liver tissue during four developmental stages: juvenile (day 60), sexual maturity (day 133), peak laying (day 220), and broodiness (day 400). A total of 16,930 putative lncRNAs and 18,260 mRNAs were identified. More than half (53.70%) of the lncRNAs were intergenic lncRNAs. The temporal expression pattern showed that lncRNAs were more restricted than mRNAs. We identified numerous differentially expressed lncRNAs and mRNAs by pairwise comparison between the four developmental stages and found that VTG2, RBP, and a novel protein-coding gene were differentially expressed in all stages. Time-series analysis showed that the modules with upregulated genes were involved in lipid metabolism processes. Co-expression networks suggested functional relatedness between mRNAs and lncRNAs; the DE-lncRNAs were mainly involved in lipid biosynthesis and metabolism processes. We showed that the liver transcriptome varies across different developmental stages. Our results improve our understanding of the molecular mechanisms underlying liver development in chickens.
Collapse
Affiliation(s)
- Chunyou Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianyuan Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Silu Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongxian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Pu Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaodong Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Deying Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Ahmadzadeh E, Bayin NS, Qu X, Singh A, Madisen L, Stephen D, Zeng H, Joyner AL, Rosello-Diez A. A collection of genetic mouse lines and related tools for inducible and reversible intersectional mis-expression. Development 2020; 147:dev.186650. [PMID: 32366677 DOI: 10.1242/dev.186650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Thanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches using two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach uses available lines expressing tTA/rTA to control the timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf), and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| | - N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Xinli Qu
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| | - Aditi Singh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daniel Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| |
Collapse
|
33
|
Serralbo O, Salgado D, Véron N, Cooper C, Dejardin MJ, Doran T, Gros J, Marcelle C. Transgenesis and web resources in quail. eLife 2020; 9:56312. [PMID: 32459172 PMCID: PMC7286689 DOI: 10.7554/elife.56312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.
Collapse
Affiliation(s)
- Olivier Serralbo
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - David Salgado
- Marseille Medical Genetics (GMGF), Aix Marseille University, Marseille, France
| | - Nadège Véron
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia
| | - Caitlin Cooper
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | | | - Timothy Doran
- CSIRO Health & Biosecurity, Australian Animal Health Laboratory, Geelong, Australia
| | - Jérome Gros
- Department of Developmental and Stem Cell Biology, Pasteur Institute, Paris, France
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
34
|
Li Q, Wang F, Wang Q, Zhang N, Zheng J, Zheng M, Liu R, Cui H, Wen J, Zhao G. SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response. PLoS Pathog 2020; 16:e1008188. [PMID: 32365080 PMCID: PMC7224567 DOI: 10.1371/journal.ppat.1008188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/14/2020] [Accepted: 04/15/2020] [Indexed: 02/03/2023] Open
Abstract
As a canonical adaptor for the Toll-like receptor (TLR) family, myeloid differentiation primary response protein 88 (MyD88) has crucial roles in host defense against infection by microbial pathogens, and its dysregulation might induce autoimmune diseases. Here, we demonstrate that the chicken Cullin 3-based ubiquitin ligase adaptor Speckle-type BTB-POZ protein (chSPOP) recognizes the intermediate domain of chicken MyD88 (chMyD88) and degrades it through the proteasome pathway. Knockdown or genetic ablation of chSPOP leads to aberrant elevation of chMyD88 protein. Through this interaction, chSPOP negatively regulates NF-κB pathway activity and thus the production of IL-1β upon LPS challenge in chicken macrophages. Furthermore, Spop-deficient mice are more susceptible to infection with Salmonella typhimurium. Collectively, these findings demonstrate MyD88 as a bona fide substrate of SPOP and uncover a mechanism by which SPOP regulates MyD88 abundance and disease susceptibility.
Collapse
Affiliation(s)
- Qinghe Li
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Wang
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiao Wang
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Zhang
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jumei Zheng
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ranran Liu
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanxian Cui
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JW); (GZ)
| | - Guiping Zhao
- Institute of Animal Sciences; State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JW); (GZ)
| |
Collapse
|
35
|
Sharma A, Ishak N, Swee-Hin T, Pramanik M. High resolution, label-free photoacoustic imaging of live chicken embryo developing in bioengineered eggshell. JOURNAL OF BIOPHOTONICS 2020; 13:e201960108. [PMID: 31908159 DOI: 10.1002/jbio.201960108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 05/09/2023]
Abstract
Chicken embryos have been proven to be an attractive vertebrate model for biomedical research. They have helped in making significant contributions for advancements in various fields like developmental biology, cancer research and cardiovascular studies. However, a non-invasive, label-free method of imaging live chicken embryo at high resolution still needs to be developed and optimized. In this work, we have shown the potential of photoacoustic tomography (PAT) for imaging live chicken embryos cultured in bioengineered eggshells. Laser pulses at wavelengths of 532 and 740 nm were used for attaining cross-sectional images of chicken embryos at different developmental stages. Cross-sections along different depths were imaged to gain knowledge of the relative depth of different vessels and organs. Due to high optical absorption of vasculature and embryonic eye, images with good optical contrast could be acquired using this method. We have thus reported a label-free method of performing cross-sectional imaging of chicken embryos at high resolution demonstrating the capacity of PAT as a promising tool for avian embryo imaging.
Collapse
Affiliation(s)
- Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Noreen Ishak
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Teoh Swee-Hin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
36
|
Dai D, Wu SG, Zhang HJ, Qi GH, Wang J. Dynamic alterations in early intestinal development, microbiota and metabolome induced by in ovo feeding of L-arginine in a layer chick model. J Anim Sci Biotechnol 2020; 11:19. [PMID: 32175081 PMCID: PMC7063725 DOI: 10.1186/s40104-020-0427-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Prenatal nutrition is crucial for embryonic development and neonatal growth, and has the potential to be a main determinant of life-long health. In the present study, we used a layer chick model to investigate the effects of in ovo feeding (IOF) of L-arginine (Arg) on growth, intestinal development, intestinal microbiota and metabolism. The treatments included the non-injected control, saline-injected control, and saline containing 2, 6, or 10 mg Arg groups. Results IOF Arg increased early intestinal index and villus height, and enhanced uptake of residual yolk lipid, contributing to subsequent improvement in the early growth performance of chicks. Prenatal Arg supplementation also increased the early microbial α-diversity, the relative abundance of Lactobacillales and Clostridiales, and decreased the relative abundance of Proteobacteria of cecum in chicks. Furthermore, the shift of cecal microbiota composition and the colonization of potential probiotics were accelerated by IOF of Arg. Simultaneously, metabolomics showed that metabolisms of galactose, taurine-conjugated bile acids and lipids were modulated to direct more energy and nutrients towards rapid growth of intestine at the beginning of post-hatch when embryos received IOF of Arg. Conclusions Prenatal Arg supplementation showed beneficial effects on the early intestinal development, cecal microbiota and host metabolism of layer chicks, contributing to subsequent improvement in the early growth performance. These findings provide new insight into the role of IOF of Arg in the establishment of the gut microbiota of newly-hatched layer chicks, and can expand our fundamental knowledge about prenatal nutrition, early bacterial colonization and intestinal development in neonate.
Collapse
Affiliation(s)
- Dong Dai
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, and National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing, 100081 China
| |
Collapse
|
37
|
Kim GD, Lee JH, Song S, Kim SW, Han JS, Shin SP, Park BC, Park TS. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J 2020; 34:5688-5696. [PMID: 32100378 DOI: 10.1096/fj.201903035r] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 12/20/2022]
Abstract
Many studies have been conducted to improve economically important livestock traits such as feed efficiency and muscle growth. Genome editing technologies represent a major advancement for both basic research and agronomic biotechnology development. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technical platform is a powerful tool used to engineer specific targeted loci. However, the potential occurrence of off-target effects, including the cleavage of unintended targets, limits the practical applications of Cas9-mediated genome editing. In this study, to minimize the off-target effects of this technology, we utilized D10A-Cas9 nickase to generate myostatin-knockout (MSTN KO) chickens via primordial germ cells. D10A-Cas9 nickase (Cas9n)-mediated MSTN KO chickens exhibited significantly larger skeletal muscles in the breast and leg. Degrees of skeletal muscle hypertrophy and hyperplasia induced by myostatin deletion differed by sex and muscle type. The abdominal fat deposition was dramatically lower in MSTN KO chickens than in wild-type chickens. Our results demonstrate that the D10A-Cas9 technical platform can facilitate precise and efficient targeted genome engineering and may broaden the range of applications for genome-edited chickens in practical industrialization and as animal models of human diseases.
Collapse
Affiliation(s)
- Gap-Don Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, South Korea.,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Jeong Hyo Lee
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Sumin Song
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Seo Woo Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Ji Seon Han
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Seung Pyo Shin
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, South Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, South Korea.,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, South Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, South Korea.,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, South Korea
| |
Collapse
|
38
|
Chen Y, Zhao Y, Jin W, Li Y, Zhang Y, Ma X, Sun G, Han R, Tian Y, Li H, Kang X, Li G. MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development. BMC Genomics 2019; 20:778. [PMID: 31653195 PMCID: PMC6815035 DOI: 10.1186/s12864-019-6094-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Abdominal fat is the major adipose tissue in chickens. The growth status of abdominal fat during postnatal late development ultimately affects meat yield and quality in chickens. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that regulate gene expression at the post-transcriptional level. Studies have shown that miRNAs play an important role in the biological processes involved in adipose tissue development. However, few studies have investigated miRNA expression profiles and their interaction networks associated with the postnatal late development of abdominal adipose tissue in chickens. Results We constructed four small RNA libraries from abdominal adipose tissue obtained from Chinese domestic Gushi chickens at 6, 14, 22, and 30 weeks. A total of 507 known miRNAs and 53 novel miRNAs were identified based on the four small RNA libraries. Fifty-one significant differentially expressed (SDE) miRNAs were identified from six combinations by comparative analysis, and the expression patterns of these SDE miRNAs were divided into six subclusters by cluster analysis. Gene ontology enrichment analysis showed that the SDE miRNAs were primarily involved in the regulation of fat cell differentiation, regulation of lipid metabolism, regulation of fatty acid metabolism, and unsaturated fatty acid metabolism in the lipid metabolism- or deposition-related biological process categories. In addition, we constructed differentially expressed miRNA–mRNA interaction networks related to abdominal adipose development. The results showed that miRNA families, such as mir-30, mir-34, mir-199, mir-8, and mir-146, may have key roles in lipid metabolism, adipocyte proliferation and differentiation, and cell junctions during abdominal adipose tissue development in chickens. Conclusions This study determined the dynamic miRNA transcriptome and characterized the miRNA–mRNA interaction networks in Gushi chicken abdominal adipose tissue for the first time. The results expanded the number of known miRNAs in abdominal adipose tissue and provide novel insights and a valuable resource to elucidate post-transcriptional regulation mechanisms during postnatal late development of abdominal adipose tissue in chicken.
Collapse
Affiliation(s)
- Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng zhou, Henan Province, 450001, People's Republic of China
| | - Wenjiao Jin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Xuejie Ma
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng zhou, Henan Province, 450002, People's Republic of China.
| |
Collapse
|
39
|
Beyrent E, Gomez G. Oxidative stress differentially induces tau dissociation from neuronal microtubules in neurites of neurons cultured from different regions of the embryonic Gallus domesticus brain. J Neurosci Res 2019; 98:734-747. [PMID: 31621106 DOI: 10.1002/jnr.24541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Abnormal phosphorylation of microtubule-associated proteins such as tau has been shown to play a role in neurodegenerative disorders. It is hypothesized that oxidative stress-induced aggregates of hyperphosphorylated tau could lead to the microtubule network degradation commonly associated with neurodegeneration. We investigated whether oxidative stress induced tau hyperphosphorylation and focused on neurite degradation using cultured neurons isolated from the embryonic chick brain as a model system. Cells were isolated from the cerebrum, cerebellum, and tectum of 14-day-old chicks, grown separately in culture, and treated with tert-Butyl hydroperoxide (to simulate oxidative stress) for 48 hr. Relative expression and localization of tau or phospho-tau and β-tubulin III in neurites were determined using quantitative immunocytochemistry and confocal microscopy. In untreated cells, tau was tightly colocalized with β-tubulin III. Increasing levels of oxidative stress induced an increase in overall tau expression in neurites of cerebral and tectal but not the cerebellar neurons, coupled with a decrease in phospho-tau expression in tectal but not the cerebral or cerebellar neurons. In addition, oxidative stress induced the degeneration of the distal ends of the neurites and redistribution of phospho-tau toward the neuronal soma in the cerebral but not the tectal and cerebellar neurons. These results suggest that oxidative stress induces changes in tau protein that precede cytoskeletal degradation and neurite retraction. Additionally, there is a differential susceptibility of neuronal subpopulations to oxidative stress, which may offer potential avenues for investigation of the cellular mechanisms underlying the differential manifestations of neurodegenerative disorders in different regions of the brain.
Collapse
Affiliation(s)
- Erika Beyrent
- Biology Department, University of Scranton, Scranton, PA, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, USA
| |
Collapse
|
40
|
Kim KH, Kim J, Han JY, Moon Y. In vitro estimation of metal-induced disturbance in chicken gut-oviduct chemokine circuit. Mol Cell Toxicol 2019; 15:443-452. [PMID: 32226460 PMCID: PMC7097086 DOI: 10.1007/s13273-019-0048-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/03/2019] [Indexed: 12/04/2022]
Abstract
Backgrounds Heavy metals affect various processes in the embryonic development. Embryonic fibroblasts (EFs) play key roles in the innate recognition and wound healing in reproductive tissues. Methods Based on the relative toxicities of different inorganic metals and inorganic nonmetallic compounds against murine and chicken EF cells, mechanistic estimations were performed based on transcriptomic analyses. Results Lead (II) acetate induced preferential injuries in the chicken EF and mechanistic analyses using transcriptome revealed that chemokine receptor-associated events are potently involved in metal-induced adverse actions. As an early sentinel of metal exposure, the precision-cut intestine slices (PCIS) induced the expression of chemokines including CXCLi1 or CXCLi2, which were potent gut-derived factors that activate chemokine receptors in reproductive organs after circulation. Conclusion EF-selective metals can be estimated to trigger the chemokine circuit in the gut-reproductive axis of chickens. This in vitro methodology using PCIS-EF culture could be used as a promising alternate platform for the reproductive immunotoxicological assessment.
Collapse
Affiliation(s)
- Ki Hyung Kim
- 1Department of Biomedical Sciences, Biomedical Research Institute, Pusan National University, Yangsan, 50612 Republic of Korea.,2Biomedical Research Institute and Pusan Cancer Center, Busan National University Hospital, Busan, Republic of Korea.,3Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Juil Kim
- 1Department of Biomedical Sciences, Biomedical Research Institute, Pusan National University, Yangsan, 50612 Republic of Korea
| | - Jae Yong Han
- 4Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yuseok Moon
- 1Department of Biomedical Sciences, Biomedical Research Institute, Pusan National University, Yangsan, 50612 Republic of Korea.,2Biomedical Research Institute and Pusan Cancer Center, Busan National University Hospital, Busan, Republic of Korea.,College of Information and Biomedical Engineering, Yangsan, 50612 Republic of Korea
| |
Collapse
|
41
|
Ren J, Sun C, Clinton M, Yang N. Dynamic Transcriptional Landscape of the Early Chick Embryo. Front Cell Dev Biol 2019; 7:196. [PMID: 31572727 PMCID: PMC6751280 DOI: 10.3389/fcell.2019.00196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023] Open
Abstract
Defining the dynamic transcriptome of the early embryo at high resolution would assist greatly in understanding vertebrate development. Here, we describe the dynamic transcription landscape of early chick embryo development using advanced single-molecule long-read isoform sequencing (Iso-Seq) and RNA-Seq technology. Our transcriptomic profiling reflected the time course of chicken embryonic development from day 1 to day 8 of incubation, a period encompassing gastrulation, somitogenesis, and organogenesis. This analysis identified transcriptional isoforms, alternative splicing (AS) events, fusion transcripts, alternative polyadenylation (APA) sites, and novel genes. Our results showed that intron retention (IR) represented the most abundant AS type and displayed distinct features and dynamic modulation during development. Moreover, we constructed a high-resolution expression profile across embryonic development. Our combined expression dataset correlates distinct gene clusters with specific morphological changes, and provides the first framework for the molecular basis of early chicken embryogenesis. Analysis of gene expression in the developing chicken embryo highlighted the dynamic nature and complexity of the chicken transcriptome and demonstrated that dramatically increased IR events are associated with distinct gene sets.
Collapse
Affiliation(s)
- Junxiao Ren
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Goudy J, Henley T, Méndez HG, Bressan M. Simplified platform for mosaic in vivo analysis of cellular maturation in the developing heart. Sci Rep 2019; 9:10716. [PMID: 31341189 PMCID: PMC6656758 DOI: 10.1038/s41598-019-47009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardiac cells develop within an elaborate electro-mechanical syncytium that continuously generates and reacts to biophysical force. The complexity of the cellular interactions, hemodynamic stresses, and electrical circuitry within the forming heart present significant challenges for mechanistic research into the cellular dynamics of cardiomyocyte maturation. Simply stated, it is prohibitively difficult to replicate the native electro-mechanical cardiac microenvironment in tissue culture systems favorable to high-resolution cellular/subcellular analysis, and current transgenic models of higher vertebrate heart development are limited in their ability to manipulate and assay the behavior of individual cells. As such, cardiac research currently lacks a simple experimental platform for real-time evaluation of cellular function under conditions that replicate native development. Here we report the design and validation of a rapid, low-cost system for stable in vivo somatic transgenesis that allows for individual cells to be genetically manipulated, tracked, and examined at subcellular resolution within the forming four-chambered heart. This experimental platform has several advantages over current technologies, chief among these being that mosaic cellular perturbations can be conducted without globally altering cardiac function. Consequently, direct analysis of cellular behavior can be interrogated in the absence of the organ level adaptions that often confound data interpretation in germline transgenic model organisms.
Collapse
Affiliation(s)
- Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Hernán G Méndez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, USA. .,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
43
|
Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Sci Rep 2019; 9:9358. [PMID: 31249345 PMCID: PMC6597718 DOI: 10.1038/s41598-019-45750-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023] Open
Abstract
During vertebrate retinal development, transient populations of retinal progenitor cells with restricted cell fate choices are formed. One of these progenitor populations expresses the Thrb gene and can be identified by activity of the ThrbCRM1 cis-regulatory element. Short-term assays have concluded that these cells preferentially generate cone photoreceptors and horizontal cells, however developmental timing has precluded an extensive cell type characterization of their progeny. Here we describe the development and validation of a recombinase-based lineage tracing system for the chicken embryo to further characterize the lineage of these cells. The ThrbCRM1 element was found to preferentially form photoreceptors and horizontal cells, as well as a small number of retinal ganglion cells. The photoreceptor cell progeny are exclusively cone photoreceptors and not rod photoreceptors, confirming that ThrbCRM1 progenitor cells are restricted from the rod fate. In addition, specific subtypes of horizontal cells and retinal ganglion cells were overrepresented, suggesting that ThrbCRM1 progenitor cells are not only restricted for cell type, but for cell subtype as well.
Collapse
|
44
|
de Almeida Mallmann B, Martin EM, Soo Kim K, Calderon-Apodaca NL, Baxter MFA, Latorre JD, Hernandez-Velasco X, Paasch-Martinez L, Owens CM, Dridi S, Bottje WG, Greene ES, Tellez-Isaias G. Evaluation of Bone Marrow Adipose Tissue and Bone Mineralization on Broiler Chickens Affected by Wooden Breast Myopathy. Front Physiol 2019; 10:674. [PMID: 31191361 PMCID: PMC6549442 DOI: 10.3389/fphys.2019.00674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
In humans, alterations in bone metabolism have been associated with myopathies. We postulate the hypothesis that perhaps similar pathologies can also be associated in modern chickens. Hence, this study aimed to assess the fat infiltration in bone marrow and its repercussion on broiler chicken affected by Wooden Breast (WB) myopathy. Ten Cobb 500 live birds with extreme rigidity of the Pectoralis major (PM) muscle were selected as WB affected chickens by physical examination of the muscle at 49 days of age, whereas ten chickens healthy with no physical signs of hardness in the breast muscle were considered to be unaffected. Macroscopic lesions in affected chickens included areas of firm and inflamed muscle with pale appearance, hemorrhaging, and viscous exudate on the surface. Bone marrow and sections of the PM muscle were collected and analyzed for light microscopy. Additionally, transmission electron microscopy was conducted in affected or unaffected muscle. Chickens affected with WB showed significant reductions (P < 0.05) in femur diameter, calcium, and phosphorous percentage but increased breast weight, compression force and filet thickness when compared with non-affected chickens. Interestingly, bone marrow from WB chicken had subjectively, more abundant infiltration of adipose tissue, when compared with non-affected chickens. Histology of the Pectoralis major of birds with WB showed abundant infiltration of adipose tissue, muscle fibers degeneration with necrosis and infiltration of heterophils and mononuclear cells, connective tissue proliferation, and vasculitis. Ultrastructural changes of WB muscle revealed lack definition of bands in muscle tissue, or any normal ultrastructural anatomy such as myofibrils. The endomysium components were necrotic, and in some areas, the endomysium was notable only as a string of necrotic tissue between degraded myofibrils. The fascia appeared hypertrophied, with large areas of necrosis and myofiber without structural identity with degraded mitochondria adjacent to the disrupted muscle tissue. As far as we know, this is the first study that describes a subjective increase in adipose tissue in the bone marrow of chickens affected with WB when compared with non-affected chickens, and reduced bone mineralization.
Collapse
Affiliation(s)
| | - Elizabeth M Martin
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kyung Soo Kim
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Norma L Calderon-Apodaca
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mikayla F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leopoldo Paasch-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Casey M Owens
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
45
|
O’Hare EA, Antin PB, Delany ME. Two Proximally Close Priority Candidate Genes for diplopodia-1, an Autosomal Inherited Craniofacial-Limb Syndrome in the Chicken: MRE11 and GPR83. J Hered 2019; 110:194-210. [PMID: 30597046 PMCID: PMC6399517 DOI: 10.1093/jhered/esy071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/29/2018] [Indexed: 11/12/2022] Open
Abstract
Next-generation sequencing (NGS) and expression technologies were utilized to investigate the genes and sequence elements in a 586 kb region of chicken chromosome 1 associated with the autosomal recessive diplopodia-1 (dp-1) mutation. This mutation shows a syndromic phenotype similar to known human developmental abnormalities (e.g., cleft palate, polydactyly, omphalocele [exposed viscera]). Toward our goal to ascertain the variant responsible, the entire 586 kb region was sequenced following utilization of a specifically designed capture array and to confirm/validate fine-mapping results. Bioinformatic analyses identified a total of 6142 sequence variants, which included SNPs, indels, and gaps. Of these, 778 SNPs, 146 micro-indels, and 581 gaps were unique to the UCD-Dp-1.003 inbred congenic line; those found within exons and splice sites were studied for contribution to the mutant phenotype. Upon further validation with additional mutant samples, a smaller subset (of variants [51]) remains linked to the mutation. Additionally, utilization of specific samples in the NGS technology was advantageous in that fine-mapping methodologies eliminated an additional 326 kb of sequence information on chromosome 1. Predicted and confirmed protein-coding genes within the smaller 260 kb region were assessed for their developmental expression patterns over several stages of early embryogenesis in regions/tissues of interest (e.g., digits, craniofacial region). Based on these results and known function in other vertebrates, 2 genes within 5 kb of each other, MRE11 and GPR83, are proposed as high-priority candidates for the dp-1 mutation.
Collapse
Affiliation(s)
- Elizabeth A O’Hare
- Department of Animal Science, University of California, Davis, CA
- Elizabeth A. O’Hare is now at the Department of Biological Sciences, Towson University, Towson, MD
| | - Parker B Antin
- Department of Molecular and Cellular Medicine, University of Arizona, Tucson, AZ
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, CA
| |
Collapse
|
46
|
Park YH, Kim YM, Han JY. Germ Cell Transplantation in Avian Species. Methods Mol Biol 2019; 1920:317-326. [PMID: 30737700 DOI: 10.1007/978-1-4939-9009-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Germ cell transplantation technology has played a critical role in germline modification and preservation of genetic resources. Several germ cell transplantation systems have been developed, including sperm, oocyte, or germline stem cell transplantation systems in mammals. Meanwhile, in avian species, this has mostly relied on primordial germ cell (PGC) transplantation for efficient germline transmission. In this chapter, we describe how to isolate PGCs from avian embryos and produce germline chimeras through transplantation of donor PGCs to recipient embryos.
Collapse
Affiliation(s)
- Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea (Republic of)
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea (Republic of)
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea (Republic of).
| |
Collapse
|
47
|
Xu Z, Che T, Li F, Tian K, Zhu Q, Mishra SK, Dai Y, Li M, Li D. The temporal expression patterns of brain transcriptome during chicken development and ageing. BMC Genomics 2018; 19:917. [PMID: 30545297 PMCID: PMC6293534 DOI: 10.1186/s12864-018-5301-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background The transcriptional profiles of mammals during brain development and ageing have been characterized. However the global expression patterns of transcriptome in the chicken brain have not been explored. Here, we systematically investigated the temporal expression profiles of lncRNAs and mRNAs across 8 stages (including 3 embryonic stages, 2 growth stages and 3 adult stages) in the female chicken cerebrum. Results We identified 39,907 putative lncRNAs and 14,558 mRNAs, investigated the temporal expression patterns by tracking a set of age-dependent genes and predicted potential biological functions of lncRNAs based on co-expression network. The results showed that genes with functions in development, synapses and axons exhibited a progressive decay; genes related to immune response were up-regulated with age. Conclusions These results may reflect changes in the regulation of transcriptional networks and provide non-coding RNA gene candidates for further studies and would contribute to a comprehensive understanding of the molecular mechanisms of chicken development and may provide insights or deeper understanding regarding the regulatory mechanisms of age-dependent protein coding and non-protein coding genes in chicken. In addition, as the chicken is an important model organism bridging the evolutionary gap between mammals and other vertebrates, these high resolution data may provide a novel evidence to improve our comprehensive understanding of the brain transcriptome during vertebrate evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-5301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongxian Xu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
| | - Kai Tian
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shailendra Kumar Mishra
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yifei Dai
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
48
|
Sid H, Schusser B. Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Front Genet 2018; 9:456. [PMID: 30356667 PMCID: PMC6189320 DOI: 10.3389/fgene.2018.00456] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
49
|
Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics 2018; 19:594. [PMID: 30086717 PMCID: PMC6081845 DOI: 10.1186/s12864-018-4972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4972-7) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Comparison of the MicroRNA Expression Profiles of Male and Female Avian Primordial Germ Cell Lines. Stem Cells Int 2018; 2018:1780679. [PMID: 30123283 PMCID: PMC6079386 DOI: 10.1155/2018/1780679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/08/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022] Open
Abstract
Primordial germ cells (PGCs) are the precursors of adult germ cells, and among the embryonic stem-like cells in the bird embryo, only they can transmit the genetic information to the next generation. Despite the wide range of applications, very little is known about the mechanism that governs primordial germ cell self-renewal and differentiation. As a first step, we compared 12 newly established chicken PGC lines derived from two different chicken breeds, performing CCK-8 proliferation assay. All of the lines were derived from individual embryos. A significant difference was found among the lines. As microRNAs have been proved to play a key role in the maintenance of pluripotency and the cell cycle regulation of stem cells, we continued with a complex miRNA analysis. We could discover miRNAs expressing differently in PGC lines with high proliferation rate, compared to PGC lines with low proliferation rate. We found that gga-miR-2127 expresses differently in female and male cell lines. The microarray analysis also revealed high expression level of the gga-miR-302b-3p strand (member of the miR-302/367 cluster) in slowly proliferating PGC lines compared to the gga-miR-302b-5p strand. We confirmed that the inhibition of miR-302b-5p significantly increases the doubling time of the examined PGC lines. In conclusion, we found that gga-miR-181-5p, gga-miR-2127, and members of the gga-miR-302/367 cluster have a dominant role in the regulation of avian primordial germ cell proliferation.
Collapse
|