1
|
Smith JJ, Kratsios P. Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of neuronal identity. Semin Cell Dev Biol 2024; 152-153:58-69. [PMID: 36496326 PMCID: PMC10244487 DOI: 10.1016/j.semcdb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The nervous system emerges from a series of genetic programs that generate a remarkable array of neuronal cell types. Each cell type must acquire a distinct anatomical position, morphology, and function, enabling the generation of specialized circuits that drive animal behavior. How are these diverse cell types and circuits patterned along the anterior-posterior (A-P) axis of the animal body? Hox genes encode transcription factors that regulate cell fate and patterning events along the A-P axis of the nervous system. While most of our understanding of Hox-mediated control of neuronal development stems from studies in segmented animals like flies, mice, and zebrafish, important new themes are emerging from work in a non-segmented animal: the nematode Caenorhabditis elegans. Studies in C. elegans support the idea that Hox genes are needed continuously and across different life stages in the nervous system; they are not only required in dividing progenitor cells, but also in post-mitotic neurons during development and adult life. In C. elegans embryos and young larvae, Hox genes control progenitor cell specification, cell survival, and neuronal migration, consistent with their neural patterning roles in other animals. In late larvae and adults, C. elegans Hox genes control neuron type-specific identity features critical for neuronal function, thereby extending the Hox functional repertoire beyond early patterning. Here, we provide a comprehensive review of Hox studies in the C. elegans nervous system. To relate to readers outside the C. elegans community, we highlight conserved roles of Hox genes in patterning the nervous system of invertebrate and vertebrate animals. We end by calling attention to new functions in adult post-mitotic neurons for these paradigmatic regulators of cell fate.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Riva C, Hajduskova M, Gally C, Suman SK, Ahier A, Jarriault S. A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Rep 2022; 40:111365. [PMID: 36130499 PMCID: PMC9513805 DOI: 10.1016/j.celrep.2022.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/09/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022] Open
Abstract
Transdifferentiation, or direct cell reprogramming, is the conversion of one fully differentiated cell type into another. Whether core mechanisms are shared between natural transdifferentiation events when occurring with or without cell division is unclear. We have previously characterized the Y-to-PDA natural transdifferentiation in Caenorhabditis elegans, which occurs without cell division and requires orthologs of vertebrate reprogramming factors. Here, we identify a rectal-to-GABAergic transdifferentiation and show that cell division is required but not sufficient for conversion. We find shared mechanisms, including erasure of the initial identity, which requires the conserved reprogramming factors SEM-4/SALL, SOX-2, CEH-6/OCT, and EGL-5/HOX. We also find three additional and parallel roles of the Wnt signaling pathway: selection of a specific daughter, removal of the initial identity, and imposition of the precise final subtype identity. Our results support a model in which levels and antagonistic activities of SOX-2 and Wnt signaling provide a timer for the acquisition of final identity.
Collapse
Affiliation(s)
- Claudia Riva
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Martina Hajduskova
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| | - Shashi Kumar Suman
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Arnaud Ahier
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France
| | - Sophie Jarriault
- Development and Stem Cells Department, IGBMC, CNRS UMR 7104, Inserm U 1258, Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
4
|
Li X, Li J, Zhu D, Zhang N, Hao X, Zhang W, Zhang Q, Liu Y, Wu X, Tian Y. Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPR mt activation and lifespan extension in C. elegans. Cell Rep 2022; 39:110931. [PMID: 35675782 DOI: 10.1016/j.celrep.2022.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Coordination of inter-tissue stress signaling is essential for organismal fitness. Neuronal mitochondrial perturbations activate the mitochondrial unfolded-protein response (UPRmt) in the intestine via the mitokine Wnt signaling in Caenorhabditis elegans. Here, we found that the protein disulfide isomerase PDI-6 coordinates inter-tissue UPRmt signaling via regulating the Wnt ligand EGL-20. PDI-6 is expressed in the endoplasmic reticulum (ER) and interacts with EGL-20 through disulfide bonds that are essential for EGL-20 stability and secretion. pdi-6 deficiency results in misfolded EGL-20, which leads to its degradation via ER-associated protein degradation (ERAD) machinery. Expression of PDI-6 declines drastically with aging, and animals with pdi-6 deficiency have decreased lifespan. Overexpression of PDI-6 is sufficient to maintain Wnt/EGL-20 protein levels during aging, activating the UPRmt, and significantly extending lifespan in a Wnt- and UPRmt-dependent manner. Our study reveals that protein disulfide isomerase facilitates Wnt secretion to coordinate the inter-tissue UPRmt signaling and organismal aging.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ning Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xusheng Hao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wenfeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangli Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
5
|
Barrière A, Bertrand V. Neuronal specification in C. elegans: combining lineage inheritance with intercellular signaling. J Neurogenet 2020; 34:273-281. [PMID: 32603241 DOI: 10.1080/01677063.2020.1781850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nervous system is composed of a high diversity of neuronal types. How this diversity is generated during development is a key question in neurobiology. Addressing this question is one of the reasons that led Sydney Brenner to develop the nematode C. elegans as a model organism. While there was initially a debate on whether the neuronal specification follows a 'European' model (determined by ancestry) or an 'American' model (determined by intercellular communication), several decades of research have established that the truth lies somewhere in between. Neurons are specified by the combination of transcription factors inherited from the ancestor cells and signaling between neighboring cells (especially Wnt and Notch signaling). This converges to the activation in newly generated postmitotic neurons of a specific set of terminal selector transcription factors that initiate and maintain the differentiation of the neuron. In this review, we also discuss the evolution of these specification mechanisms in other nematodes and beyond.
Collapse
Affiliation(s)
- Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
6
|
Hintze M, Koneru SL, Gilbert SPR, Katsanos D, Lambert J, Barkoulas M. A Cell Fate Switch in the Caenorhabditis elegans Seam Cell Lineage Occurs Through Modulation of the Wnt Asymmetry Pathway in Response to Temperature Increase. Genetics 2020; 214:927-939. [PMID: 31988193 PMCID: PMC7153939 DOI: 10.1534/genetics.119.302896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Populations often display consistent developmental phenotypes across individuals despite inevitable biological stochasticity. Nevertheless, developmental robustness has limits, and systems can fail upon change in the environment or the genetic background. We use here the seam cells, a population of epidermal stem cells in Caenorhabditis elegans, to study the influence of temperature change and genetic variation on cell fate. Seam cell development has mostly been studied so far in the laboratory reference strain (N2), grown at 20° temperature. We demonstrate that an increase in culture temperature to 25° introduces variability in the wild-type seam cell lineage, with a proportion of animals showing an increase in seam cell number. We map this increase to lineage-specific symmetrization events of normally asymmetric cell divisions at the fourth larval stage, leading to the retention of seam cell fate in both daughter cells. Using genetics and single-molecule imaging, we demonstrate that this symmetrization occurs via changes in the Wnt asymmetry pathway, leading to aberrant Wnt target activation in anterior cell daughters. We find that intrinsic differences in the Wnt asymmetry pathway already exist between seam cells at 20° and this may sensitize cells toward a cell fate switch at increased temperature. Finally, we demonstrate that wild isolates of C. elegans display variation in seam cell sensitivity to increased culture temperature, although their average seam cell number is comparable at 20°. Our results highlight how temperature can modulate cell fate decisions in an invertebrate model of stem cell patterning.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Sneha L Koneru
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | | | - Julien Lambert
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | |
Collapse
|
7
|
Chen P, Ijomone OM, Lee KH, Aschner M. Caenorhabditis elegans and its applicability to studies on restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:147-174. [PMID: 31229169 DOI: 10.1016/bs.apha.2018.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Restless legs syndrome (RLS) is a common neurological disorder in the United States. This disorder is characterized by an irresistible urge to move the legs, although the symptoms vary in a wide range. The pathobiology of RLS has been linked to iron (Fe) deficiency and dopaminergic (DAergic) dysfunction. Several genetic factors have been reported to increase the risk of RLS. Caenorhabditis elegans (C. elegans) is a well-established animal model with a fully sequenced genome, which is highly conserved with mammals. Given the detailed knowledge of its genomic architecture, ease of genetic manipulation and conserved biosynthetic and metabolic pathways, as well as its small size, ease of maintenance, speedy generation time and large brood size, C. elegans provides numerous advantages in studying RLS-associated gene-environment interactions. Here we will review current knowledge about RLS symptoms, pathology and treatments, and discuss the application of C. elegans in RLS study, including the worm homologous genes and methods that could be performed to advance the pathophysiology RLS.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omamuyovwi Meashack Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Human Anatomy, Federal University of Technology, Akure, Nigeria
| | - Kun He Lee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
8
|
The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol Ther 2017; 171:13-29. [DOI: 10.1016/j.pharmthera.2016.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
|
9
|
Transcriptional control of non-apoptotic developmental cell death in C. elegans. Cell Death Differ 2016; 23:1985-1994. [PMID: 27472063 DOI: 10.1038/cdd.2016.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death is an essential aspect of animal development. Mutations in vertebrate genes that mediate apoptosis only mildly perturb development, suggesting that other cell death modes likely have important roles. Linker cell-type death (LCD) is a morphologically conserved cell death form operating during the development of Caenorhabditis elegans and vertebrates. We recently described a molecular network governing LCD in C. elegans, delineating a key role for the transcription factor heat-shock factor 1 (HSF-1). Although HSF-1 functions to protect cells from stress in many settings by inducing expression of protein folding chaperones, it promotes LCD by inducing expression of the conserved E2 ubiquitin-conjugating enzyme LET-70/UBE2D2, which is not induced by stress. Following whole-genome RNA interference and candidate gene screens, we identified and characterized four conserved regulators required for LCD. Here we show that two of these, NOB-1/Hox and EOR-1/PLZF, act upstream of HSF-1, in the context of Wnt signaling. A third protein, NHR-67/TLX/NR2E1, also functions upstream of HSF-1, and has a separate activity that prevents precocious expression of HSF-1 transcriptional targets. We demonstrate that the SET-16/mixed lineage leukemia 3/4 (MLL3/4) chromatin regulation complex functions at the same step or downstream of HSF-1 to control LET-70/UBE2D2 expression. Our results identify conserved proteins governing LCD, and demonstrate that transcriptional regulators influence this process at multiple levels.
Collapse
|
10
|
Bertrand V. β-catenin-driven binary cell fate decisions in animal development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:377-88. [PMID: 26952169 PMCID: PMC5069452 DOI: 10.1002/wdev.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/06/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023]
Abstract
The Wnt/β‐catenin pathway plays key roles during animal development. In several species, β‐catenin is used in a reiterative manner to regulate cell fate diversification between daughter cells following division. This binary cell fate specification mechanism has been observed in animals that belong to very diverse phyla: the nematode Caenorhabditis elegans, the annelid Platynereis, and the ascidian Ciona. It may also play a role in the regulation of several stem cell lineages in vertebrates. While the molecular mechanism behind this binary cell fate switch is not fully understood, it appears that both secreted Wnt ligands and asymmetric cortical factors contribute to the generation of the difference in nuclear β‐catenin levels between daughter cells. β‐Catenin then cooperates with lineage specific transcription factors to induce the expression of novel sets of transcription factors at each round of divisions, thereby diversifying cell fate. WIREs Dev Biol 2016, 5:377–388. doi: 10.1002/wdev.228 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Vincent Bertrand
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
11
|
Zacharias AL, Walton T, Preston E, Murray JI. Quantitative Differences in Nuclear β-catenin and TCF Pattern Embryonic Cells in C. elegans. PLoS Genet 2015; 11:e1005585. [PMID: 26488501 PMCID: PMC4619327 DOI: 10.1371/journal.pgen.1005585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
The Wnt signaling pathway plays a conserved role during animal development in transcriptional regulation of distinct targets in different developmental contexts but it remains unclear whether quantitative differences in the nuclear localization of effector proteins TCF and β-catenin contribute to context-specific regulation. We investigated this question in Caenorhabditis elegans embryos by quantifying nuclear localization of fluorescently tagged SYS-1/β-catenin and POP-1/TCF and expression of Wnt ligands at cellular resolution by time-lapse microscopy and automated lineage tracing. We identified reproducible, quantitative differences that generate a subset of Wnt-signaled cells with a significantly higher nuclear concentration of the TCF/β-catenin activating complex. Specifically, β-catenin and TCF are preferentially enriched in nuclei of daughter cells whose parents also had high nuclear levels of that protein, a pattern that could influence developmental gene expression. Consistent with this, we found that expression of synthetic reporters of POP-1-dependent activation is biased towards cells that had high nuclear SYS-1 in consecutive divisions. We identified new genes whose embryonic expression patterns depend on pop-1. Most of these require POP-1 for either transcriptional activation or repression, and targets requiring POP-1 for activation are more likely to be expressed in the cells with high nuclear SYS-1 in consecutive divisions than those requiring POP-1 for repression. Taken together, these results indicate that SYS-1 and POP-1 levels are influenced by the parent cell’s SYS-1/POP-1 levels and this may provide an additional mechanism by which POP-1 regulates distinct targets in different developmental contexts. The Wnt signaling pathway is active during the development of all multi-cellular animals and also improperly re-activated in many cancers. Here, we use time-lapse microscopy to quantify the nuclear localization of several proteins in response to Wnt signaling throughout early embryonic development in the nematode worm, C. elegans. We find that cells that received a Wnt signal in the previous division respond more strongly to a Wnt signal in the next division, in part by localizing more of the regulator β-catenin to the nucleus. This causes the relative enrichment of Wnt pathway proteins in the nuclei of repeatedly signaled cells, which we show likely impacts the activation of Wnt target genes. This represents a novel mechanism for the regulation of Wnt pathway targets in development and disease.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Travis Walton
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elicia Preston
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Murgan S, Bertrand V. How targets select activation or repression in response to Wnt. WORM 2015; 4:e1086869. [PMID: 27123368 PMCID: PMC4826150 DOI: 10.1080/21624054.2015.1086869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022]
Abstract
In metazoans, the Wnt signaling pathway plays a key role in the regulation of binary decisions during development. During this process different sets of target genes are activated in cells where the Wnt pathway is active (classic target genes) versus cells where the pathway is inactive (opposite target genes). While the mechanism of transcriptional activation is well understood for classic target genes, how opposite target genes are activated in the absence of Wnt remains poorly characterized. Here we discuss how the key transcriptional mediator of the Wnt pathway, the TCF family member POP-1, regulates opposite target genes during C. elegans development. We examine recent findings suggesting that the direction of the transcriptional output (activation or repression) can be determined by the way TCF is recruited and physically interacts with its target gene.
Collapse
Affiliation(s)
- Sabrina Murgan
- Aix-Marseille UniversitéCNRSInstitut de Biologie du Développement de Marseille ; Marseille, France
| | - Vincent Bertrand
- Aix-Marseille UniversitéCNRSInstitut de Biologie du Développement de Marseille ; Marseille, France
| |
Collapse
|
13
|
Yoshioka K, Oda A, Notsu C, Ohtsuka T, Kawai Y, Suzuki S, Nakamura T, Mabuchi Y, Matsuzaki Y, Goitsuka R. Loss of the Homeodomain Transcription Factor Prep1 Perturbs Adult Hematopoiesis in the Bone Marrow. PLoS One 2015; 10:e0136107. [PMID: 26285139 PMCID: PMC4540428 DOI: 10.1371/journal.pone.0136107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022] Open
Abstract
Prep1, a TALE-family homeodomain transcription factor, has been demonstrated to play a critical role in embryonic hematopoiesis, as its insufficiency caused late embryonic lethality associated with defective hematopoiesis and angiogenesis. In the present study, we generated hematopoietic- and endothelial cell-specific Prep1-deficient mice and demonstrated that expression of Prep1 in the hematopoietic cell compartment is not essential for either embryonic or adult hematopoiesis, although its absence causes significant hematopoietic abnormalities in the adult bone marrow. Loss of Prep1 promotes cell cycling of hematopoietic stem/progenitor cells (HSPC), leading to the expansion of the HSPC pool. Prep1 deficiency also results in the accumulation of lineage-committed progenitors, increased monocyte/macrophage differentiation and arrested erythroid maturation. Maturation of T cells and B cells is also perturbed in Prep-deficient mice. These findings provide novel insight into the pleiotropic roles of Prep1 in adult hematopoiesis that were unrecognized in previous studies using germline Prep1 hypomorphic mice.
Collapse
Affiliation(s)
- Kentaro Yoshioka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akihisa Oda
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Chihiro Notsu
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Takafumi Ohtsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhiro Kawai
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Cancer Biology, Faculty of Medicine, Shimane University, Izumo-shi, Shimane, Japan
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
14
|
Gorrepati L, Krause MW, Chen W, Brodigan TM, Correa-Mendez M, Eisenmann DM. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2015; 5:1551-66. [PMID: 26048561 PMCID: PMC4528312 DOI: 10.1534/g3.115.017715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/18/2015] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | | | - Weiping Chen
- Intramural Research Program, NIDDK, Bethesda, Maryland 20814
| | | | - Margarita Correa-Mendez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - David M Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250
| |
Collapse
|
15
|
Gorrepati L, Eisenmann DM. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells. WORM 2015; 4:e996419. [PMID: 26430560 PMCID: PMC4588385 DOI: 10.1080/23723556.2014.996419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 10/23/2022]
Abstract
In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.
Collapse
Affiliation(s)
- Lakshmi Gorrepati
- Carnegie Institution for Science; Department of Embryology; Baltimore, MD USA
| | - David M Eisenmann
- Department of Biological Sciences; University of Maryland Baltimore County; Baltimore, MD USA
| |
Collapse
|
16
|
LaBonty M, Szmygiel C, Byrnes LE, Hughes S, Woollard A, Cram EJ. CACN-1/Cactin plays a role in Wnt signaling in C. elegans. PLoS One 2014; 9:e101945. [PMID: 24999833 PMCID: PMC4084952 DOI: 10.1371/journal.pone.0101945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/13/2014] [Indexed: 11/19/2022] Open
Abstract
Wnt signaling is tightly regulated during animal development and controls cell proliferation and differentiation. In C. elegans, activation of Wnt signaling alters the activity of the TCF/LEF transcription factor, POP-1, through activation of the Wnt/β-catenin or Wnt/β-catenin asymmetry pathways. In this study, we have identified CACN-1 as a potential regulator of POP-1 in C. elegans larval development. CACN-1/Cactin is a well-conserved protein of unknown molecular function previously implicated in the regulation of several developmental signaling pathways. Here we have used activation of POPTOP, a POP-1-responsive reporter construct, as a proxy for Wnt signaling. POPTOP requires POP-1 and SYS-1/β-catenin for activation in L4 uterine cells. RNAi depletion experiments show that CACN-1 is needed to prevent excessive activation of POPTOP and for proper levels and/or localization of POP-1. Surprisingly, high POPTOP expression correlates with increased levels of POP-1 in uterine nuclei, suggesting POPTOP may not mirror endogenous gene expression in all respects. Genetic interaction studies suggest that CACN-1 may act partially through LIT-1/NLK to alter POP-1 localization and POPTOP activation. Additionally, CACN-1 is required for proper proliferation of larval seam cells. Depletion of CACN-1 results in a loss of POP-1 asymmetry and reduction of terminal seam cell number, suggesting an adoption of the anterior, differentiated fate by the posterior daughter cells. These findings suggest CACN-1/Cactin modulates Wnt signaling during larval development.
Collapse
Affiliation(s)
- Melissa LaBonty
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Cleo Szmygiel
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Lauren E. Byrnes
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Samantha Hughes
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Magnani E, de Klein N, Nam HI, Kim JG, Pham K, Fiume E, Mudgett MB, Rhee SY. A comprehensive analysis of microProteins reveals their potentially widespread mechanism of transcriptional regulation. PLANT PHYSIOLOGY 2014; 165:149-59. [PMID: 24616380 PMCID: PMC4012575 DOI: 10.1104/pp.114.235903] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/17/2014] [Indexed: 05/20/2023]
Abstract
Truncated transcription factor-like proteins called microProteins (miPs) can modulate transcription factor activities, thereby increasing transcriptional regulatory complexity. To understand their prevalence, evolution, and function, we predicted over 400 genes that encode putative miPs from Arabidopsis (Arabidopsis thaliana) using a bioinformatics pipeline and validated two novel miPs involved in flowering time and response to abiotic and biotic stress. We provide an evolutionary perspective for a class of miPs targeting homeodomain transcription factors in plants and metazoans. We identify domain loss as one mechanism of miP evolution and suggest the possible roles of miPs on the evolution of their target transcription factors. Overall, we reveal a prominent layer of transcriptional regulation by miPs, show pervasiveness of such proteins both within and across genomes, and provide a framework for studying their function and evolution.
Collapse
|
18
|
Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development. G3-GENES GENOMES GENETICS 2014; 4:733-47. [PMID: 24569038 PMCID: PMC4059243 DOI: 10.1534/g3.113.009522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Collapse
|
19
|
Bhambhani C, Ravindranath AJ, Mentink RA, Chang MV, Betist MC, Yang YX, Koushika SP, Korswagen HC, Cadigan KM. Distinct DNA binding sites contribute to the TCF transcriptional switch in C. elegans and Drosophila. PLoS Genet 2014; 10:e1004133. [PMID: 24516405 PMCID: PMC3916239 DOI: 10.1371/journal.pgen.1004133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation. The DNA of cells must be correctly “read” so that the proper genes are expressed. Transcription factors are the primary “DNA readers”, and these proteins bind to specific DNA sequences. Using nematodes as a model system, we investigated the rules of DNA binding for a particular transcription factor, called POP-1, which mediates Wnt signaling, an important cell-cell communication pathway. In addition to its known DNA binding site, we found that POP-1 recognizes additional sequences, termed Helper sites, which are essential for activation of Wnt targets. We used this knowledge to discover that Wnt signaling is active in pacemaker cells in the nematode intestine, which control defecation, a rhythmic behavior with parallels to the vertebrate heartbeat. POP-1 has a dual role in regulating Wnt targets, repressing target genes in the absence of signaling and activating them upon signal stimulation. Surprisingly, we found that Helper sites are only required for activation and not repression, and that this is also the case in the fruit fly Drosophila. This work thus reveals an unexpected complexity in POP-1 DNA binding, which is likely to be relevant for its human counterparts, which play important roles in stem cell biology and cancer.
Collapse
Affiliation(s)
- Chandan Bhambhani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aditi J. Ravindranath
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Remco A. Mentink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mikyung V. Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marco C. Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yaxuan X. Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ken M. Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
20
|
Ariki R, Morikawa S, Mabuchi Y, Suzuki S, Nakatake M, Yoshioka K, Hidano S, Nakauchi H, Matsuzaki Y, Nakamura T, Goitsuka R. Homeodomain transcription factor Meis1 is a critical regulator of adult bone marrow hematopoiesis. PLoS One 2014; 9:e87646. [PMID: 24498346 PMCID: PMC3911998 DOI: 10.1371/journal.pone.0087646] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/26/2013] [Indexed: 12/02/2022] Open
Abstract
Hematopoietic stem cells in the bone marrow have the capacity to both self-renew and to generate all cells of the hematopoietic system. The balance of these two activities is controlled by hematopoietic stem cell-intrinsic regulatory mechanisms as well as extrinsic signals from the microenvironment. Here we demonstrate that Meis1, a TALE family homeodomain transcription factor involved in numerous embryonic developmental processes, is selectively expressed in hematopoietic stem/progenitor cells. Conditional Meis1 knockout in adult hematopoietic cells resulted in a significant reduction in the hematopoietic stem/progenitor cells. Suppression of hematopoiesis by Meis1 deletion appears to be caused by impaired self-renewal activity and reduced cellular quiescence of hematopoietic stem/progenitor cells in a cell autonomous manner, resulting in stem cell exhaustion and defective long-term hematopoiesis. Meis1 deficiency down-regulated a subset of Pbx1-dependent hematopoietic stem cell signature genes, suggesting a functional link between them in the maintenance of hematopoietic stem/progenitor cells. These results show the importance of Meis1 in adult hematopoiesis.
Collapse
Affiliation(s)
- Reina Ariki
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Satoru Morikawa
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mayuka Nakatake
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Kentaro Yoshioka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shinya Hidano
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiromitsu Nakauchi
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
- * E-mail: (TN); (RG)
| | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail: (TN); (RG)
| |
Collapse
|
21
|
Hughes S, Brabin C, Appleford PJ, Woollard A. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells. Biol Open 2013; 2:718-27. [PMID: 23862020 PMCID: PMC3711040 DOI: 10.1242/bio.20134549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK
| | | | | | | |
Collapse
|
22
|
Reinke V, Krause M, Okkema P. Transcriptional regulation of gene expression in C. elegans. ACTA ACUST UNITED AC 2013:1-34. [PMID: 23801596 DOI: 10.1895/wormbook.1.45.2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single-cell and minute-time-scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated proteins and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation.
Collapse
Affiliation(s)
- Valerie Reinke
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
23
|
Barber BA, Liyanage VRB, Zachariah RM, Olson CO, Bailey MAG, Rastegar M. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat 2013; 195:431-40. [PMID: 23756022 DOI: 10.1016/j.aanat.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Benjamin A Barber
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Gorrepati L, Thompson KW, Eisenmann DM. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells. Development 2013; 140:2093-102. [PMID: 23633508 PMCID: PMC3640217 DOI: 10.1242/dev.091124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/20/2022]
Abstract
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.
Collapse
Affiliation(s)
| | | | - David M. Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
25
|
Chen CCG, Wang IE, Reddien PW. pbx is required for pole and eye regeneration in planarians. Development 2013; 140:719-29. [PMID: 23318641 DOI: 10.1242/dev.083741] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Planarian regeneration involves regionalized gene expression that specifies the body plan. After amputation, planarians are capable of regenerating new anterior and posterior poles, as well as tissues polarized along the anterior-posterior, dorsal-ventral and medial-lateral axes. Wnt and several Hox genes are expressed at the posterior pole, whereas Wnt inhibitory genes, Fgf inhibitory genes, and prep, which encodes a TALE-family homeodomain protein, are expressed at the anterior pole. We found that Smed-pbx (pbx for short), which encodes a second planarian TALE-family homeodomain transcription factor, is required for restored expression of these genes at anterior and posterior poles during regeneration. Moreover, pbx(RNAi) animals gradually lose pole gene expression during homeostasis. By contrast, pbx was not required for initial anterior-posterior polarized responses to wounds, indicating that pbx is required after wound responses for development and maintenance of poles during regeneration and homeostatic tissue turnover. Independently of the requirement for pbx in pole regeneration, pbx is required for eye precursor formation and, consequently, eye regeneration and eye replacement in homeostasis. Together, these data indicate that pbx promotes pole formation of body axes and formation of regenerative progenitors for eyes.
Collapse
Affiliation(s)
- Chun-Chieh G Chen
- Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
26
|
Jackson BM, Eisenmann DM. β-catenin-dependent Wnt signaling in C. elegans: teaching an old dog a new trick. Cold Spring Harb Perspect Biol 2012; 4:a007948. [PMID: 22745286 PMCID: PMC3405868 DOI: 10.1101/cshperspect.a007948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans.
Collapse
Affiliation(s)
- Belinda M Jackson
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
27
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
28
|
Hayes GD, Riedel CG, Ruvkun G. The Caenorhabditis elegans SOMI-1 zinc finger protein and SWI/SNF promote regulation of development by the mir-84 microRNA. Genes Dev 2011; 25:2079-92. [PMID: 21979920 DOI: 10.1101/gad.17153811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hundreds of microRNAs (miRNAs) have been discovered in metazoans and plants, and understanding of their biogenesis has advanced dramatically; however, relatively little is known about the cofactors necessary for miRNA regulation of target gene expression. In Caenorhabditis elegans, the conserved miRNA let-7 and its paralogs, including mir-84, control the timing of stage-specific developmental events. To identify factors required for the activity of mir-84 and possibly other miRNAs, we screened for mutations that suppress the developmental defects caused by overexpression of mir-84. Mutations in the somi-1 gene prevent these defects without affecting the expression level of mir-84. Loss of somi-1 also causes phenotypes similar to deletion of mir-84, showing that somi-1 is necessary for the normal function of this miRNA. somi-1 encodes a zinc finger protein that localizes to nuclear foci and binds the promoters of let-60/RAS, lin-14, and lin-28, genes that may be targeted by mir-84 and similar miRNAs. Genetic evidence shows that somi-1 inhibits lin-14 and induction of the vulval precursors by the let-60/RAS pathway. Proteomic and genetic screens identified conserved chromatin-remodeling and homeodomain transcription factor complexes that work with somi-1 to regulate differentiation. Our results suggest that somi-1 coordinates a nuclear response that complements the activity of mir-84.
Collapse
Affiliation(s)
- Gabriel D Hayes
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
29
|
Shibata Y, Uchida M, Takeshita H, Nishiwaki K, Sawa H. Multiple functions of PBRM-1/Polybromo- and LET-526/Osa-containing chromatin remodeling complexes in C. elegans development. Dev Biol 2011; 361:349-57. [PMID: 22119053 DOI: 10.1016/j.ydbio.2011.10.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/28/2022]
Abstract
The SWI/SNF-like chromatin remodeling complexes consist of two evolutionarily conserved subclasses, which are characterized by specific accessory components, the OSA/BAF250 and Polybromo proteins. These complexes regulate the expressions of distinct sets of target genes, with some overlap, and the regulatory components are thought to determine the target specificity for each complex. Here we isolated C. elegans mutants of the genes for the OSA/BAF250 homolog, LET-526, and the Polybromo homolog, PBRM-1, in a screen for the abnormal asymmetric cell division phenotype. In the asymmetric division of the T cell, both LET-526 and PBRM-1 regulated the asymmetric expression of psa-3/Meis between the T cell daughters, suggesting that the two subclasses share the same target. In the gonad, PBRM-1 regulated gonad primordium formation during embryogenesis, whereas LET-526 was required post-embryonically for distal tip cell (DTC) production from the gonad primordium, suggesting that these proteins have distinct targets for DTC development. Thus, the same cellular process is regulated by LET-526 and PBRM-1 in the asymmetric division of the T cell, but they regulate distinct cellular processes in the gonad morphogenesis. Although disruption of the core component PSA-1 or PSA-4 caused similar defects in the gonad and T cell, it also caused early embryonic arrest, which was not observed in the let-526, pbrm-1, or let-526 pbrm-1 double mutants, suggesting that some targets of SWI/SNF-like complexes do not require LET-526 or PBRM-1 for their transcription. Our results show that the target selection by SWI/SNF-like complexes during C. elegans development is intricately regulated by accessory components.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Laboratory for Cell Fate Decision, RIKEN, Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
30
|
Directed neural differentiation of mouse embryonic stem cells is a sensitive system for the identification of novel Hox gene effectors. PLoS One 2011; 6:e20197. [PMID: 21637844 PMCID: PMC3102681 DOI: 10.1371/journal.pone.0020197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/20/2011] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved Hox family of homeodomain transcription factors
plays fundamental roles in regulating cell specification along the anterior
posterior axis during development of all bilaterian animals by controlling cell
fate choices in a highly localized, extracellular signal and cell context
dependent manner. Some studies have established downstream target genes in
specific systems but their identification is insufficient to explain either the
ability of Hox genes to direct homeotic transformations or the
breadth of their patterning potential. To begin delineating Hox
gene function in neural development we used a mouse ES cell based system that
combines efficient neural differentiation with inducible Hoxb1 expression. Gene
expression profiling suggested that Hoxb1 acted as both
activator and repressor in the short term but predominantly as a repressor in
the long run. Activated and repressed genes segregated in distinct processes
suggesting that, in the context examined, Hoxb1 blocked
differentiation while activating genes related to early developmental processes,
wnt and cell surface receptor linked signal transduction and cell-to-cell
communication. To further elucidate aspects of Hoxb1 function
we used loss and gain of function approaches in the mouse and chick embryos. We
show that Hoxb1 acts as an activator to establish the full expression domain of
CRABPI and II in rhombomere 4 and as a
repressor to restrict expression of Lhx5 and
Lhx9. Thus the Hoxb1 patterning activity
includes the regulation of the cellular response to retinoic acid and the delay
of the expression of genes that commit cells to neural differentiation. The
results of this study show that ES neural differentiation and inducible
Hox gene expression can be used as a sensitive model system
to systematically identify Hox novel target genes, delineate
their interactions with signaling pathways in dictating cell fate and define the
extent of functional overlap among different Hox genes.
Collapse
|
31
|
Tian C, Shi H, Colledge C, Stern M, Waterston R, Liu J. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm. Development 2011; 138:1033-43. [PMID: 21307099 DOI: 10.1242/dev.062240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kalis AK, Murphy MW, Zarkower D. EGL-5/ABD-B plays an instructive role in male cell fate determination in the C. elegans somatic gonad. Dev Biol 2010; 344:827-35. [PMID: 20553900 DOI: 10.1016/j.ydbio.2010.05.516] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/15/2023]
Abstract
Hox genes of the Abdominal-B (Abd-B) class regulate gonadal development in diverse metazoans. Here we have investigated the role of the Abd-B homolog egl-5 in C. elegans gonadal development. Previous work showed that egl-5 is required male-specifically in the gonad and that mutant gonads are highly dysgenic and possibly feminized. We have used sex-specific gonadal reporter genes to confirm that the gonads of egl-5 males are extensively feminized. Sex-specific expression of egl-5 requires the global sex determination gene tra-1 and the gonadal masculinizing gene fkh-6, but mutagenesis of a short male gonadal enhancer element in egl-5 suggested that this regulation is indirect. Ectopic expression of EGL-5 in hermaphrodites is sufficient to induce male gonadal gene expression, indicating that EGL-5 plays an instructive role in male gonadal fate determination. EGL-5 acts in parallel with a Wnt/beta-catenin pathway to regulate male gonadal fates and can physically interact with the Wnt pathway transcription factor POP-1 and modulate activity of a POP-1 dependent reporter gene. We propose that EGL-5 imparts sex-specific function on POP-1 by recruiting it to male-specific gonadal target genes.
Collapse
Affiliation(s)
- Andrea K Kalis
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
33
|
Bertrand V, Hobert O. Lineage programming: navigating through transient regulatory states via binary decisions. Curr Opin Genet Dev 2010; 20:362-8. [PMID: 20537527 DOI: 10.1016/j.gde.2010.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/16/2022]
Abstract
Lineage-based mechanisms are widely used to generate cell type diversity in both vertebrates and invertebrates. For the past few decades, the nematode Caenorhabditis elegans has served as a primary model system to study this process because of its fixed and well-characterized cell lineage. Recent studies conducted at the level of single cells and individual cis-regulatory elements suggest a general model by which cellular diversity is generated in this organism. During its developmental history a cell passes through multiple transient regulatory states characterized by the expression of specific sets of transcription factors. The transition from one state to another is driven by a general binary decision mechanism acting at each successive division in a reiterative manner and ending up with the activation of the terminal differentiation program upon terminal division. A similar cell fate specification system seems to play a role in generating cellular diversity in the nervous system of more complex organisms such as Drosophila and vertebrates.
Collapse
Affiliation(s)
- Vincent Bertrand
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
34
|
Elkouby YM, Elias S, Casey ES, Blythe SA, Tsabar N, Klein PS, Root H, Liu KJ, Frank D. Mesodermal Wnt signaling organizes the neural plate via Meis3. Development 2010; 137:1531-41. [PMID: 20356957 DOI: 10.1242/dev.044750] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, canonical Wnt signaling controls posterior neural cell lineage specification. Although Wnt signaling to the neural plate is sufficient for posterior identity, the source and timing of this activity remain uncertain. Furthermore, crucial molecular targets of this activity have not been defined. Here, we identify the endogenous Wnt activity and its role in controlling an essential downstream transcription factor, Meis3. Wnt3a is expressed in a specialized mesodermal domain, the paraxial dorsolateral mesoderm, which signals to overlying neuroectoderm. Loss of zygotic Wnt3a in this region does not alter mesoderm cell fates, but blocks Meis3 expression in the neuroectoderm, triggering the loss of posterior neural fates. Ectopic Meis3 protein expression is sufficient to rescue this phenotype. Moreover, Wnt3a induction of the posterior nervous system requires functional Meis3 in the neural plate. Using ChIP and promoter analysis, we show that Meis3 is a direct target of Wnt/beta-catenin signaling. This suggests a new model for neural anteroposterior patterning, in which Wnt3a from the paraxial mesoderm induces posterior cell fates via direct activation of a crucial transcription factor in the overlying neural plate.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shibata Y, Takeshita H, Sasakawa N, Sawa H. Double bromodomain protein BET-1 and MYST HATs establish and maintain stable cell fates in C. elegans. Development 2010; 137:1045-53. [PMID: 20181741 DOI: 10.1242/dev.042812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The maintenance of cell fate is important for normal development and tissue homeostasis. Epigenetic mechanisms, including histone modifications, are likely to play crucial roles in cell-fate maintenance. However, in contrast to the established functions of histone methylation, which are mediated by the polycomb proteins, the roles of histone acetylation in cell-fate maintenance are poorly understood. Here, we show that the C. elegans acetylated-histone-binding protein BET-1 is required for the establishment and maintenance of stable fate in various lineages. In most bet-1 mutants, cells adopted the correct fate initially, but at later stages they often transformed into a different cell type. By expressing BET-1 at various times in development and examining the rescue of the Bet-1 phenotype, we showed that BET-1 functions both at the time of fate acquisition, to establish a stable fate, and at later stages, to maintain the established fate. Furthermore, the disruption of the MYST HATs perturbed the subnuclear localization of BET-1 and caused bet-1-like phenotypes, suggesting that BET-1 is recruited to its targets through acetylated histones. Our results therefore indicate that histone acetylation plays a crucial role in cell-fate maintenance.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Laboratory for Cell Fate Decision, Riken, Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | | | | | | |
Collapse
|
36
|
Aboobaker A, Blaxter M. The nematode story: Hox gene loss and rapid evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:101-10. [PMID: 20795325 DOI: 10.1007/978-1-4419-6673-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The loss in some taxa of conserved developmental control genes that are present in the vast majority of animal lineages is an understudied phenomenon. It is likely that in those lineages in which loss has occurred it may be a strong signal of the mode, tempo and direction of developmental evolution and thus identify ways of generating morphological novelties. Intuitively we might expect these novelties to be particularly those associated with morphological simplifications. One striking example of this has occurred within the nematodes. It appears that over half the ancestral bilaterian Hox cluster has been lost from the model organism Caenorhabditis elegans and its closest related species. Studying the Hox gene complement of nematodes across the phylum has shown that many, if not all these losses occurred within the phylum. Other nematode clades only distantly related to C. elegans have additional Hox genes orthologous to those present in the ancestral bilaterian but absent from the model nematode. In some of these cases rapid sequence evolution of the homeodomain itself obscures orthology assignment until comparison is made with sequences from multiple nematode clades with slower evolving Hox genes. Across the phylum the homeodomains of the Hox genes that are present are evolving very rapidly. In one particular case the genomic arrangement of two homeodomains suggests a mechanism for gene loss. Studying the function in nematodes of the Hox genes absent from C. elegans awaits further research and the establishment of new nematode models. However, what we do know about Hox gene functions suggests that the genetic circuits within which Hox genes act have changed significantly within C. elegans and its close relatives.
Collapse
Affiliation(s)
- Aziz Aboobaker
- Institute of Genetics, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
37
|
Sawa H. Specification of neurons through asymmetric cell divisions. Curr Opin Neurobiol 2009; 20:44-9. [PMID: 19896361 DOI: 10.1016/j.conb.2009.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 11/20/2022]
Abstract
The brain requires diverse neuronal subtypes to carry out its complex functions. Many types of neurons are produced through asymmetric division, and the molecular mechanisms of asymmetric division have been extensively studied in C. elegans and Drosophila. In these model organisms, the same molecular mechanisms regulate asymmetric divisions throughout development, although diverse cell types are created. How these common mechanisms for asymmetric division can specify diverse neuronal fates, however, is still being discovered. Recent studies suggest that neurons are specified by the combined effects of asymmetric divisions, which are regulated by common mechanisms, and specific transcription factors expressed in the mother cell.
Collapse
Affiliation(s)
- Hitoshi Sawa
- Laboratory for Cell Fate Decision, Riken Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
38
|
Murphy MJ, Polok BK, Schorderet DF, Cleary ML. Essential role for Pbx1 in corneal morphogenesis. Invest Ophthalmol Vis Sci 2009; 51:795-803. [PMID: 19797217 DOI: 10.1167/iovs.08-3327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The Pbx TALE (three-amino-acid loop extension) homeodomain proteins interact with class 1 Hox proteins, which are master regulators of cell fate decisions. This study was performed to elucidate the role of the Pbx1 TALE protein in the corneal epithelium of mice. METHODS Pbx1(f/f) mice were crossed with mice containing Cre recombinase under the control of the K14 promoter. Subsequently, the eyes of these mice were dissected and prepared for histologic or molecular analysis. RESULTS Tissue-specific deletion of Pbx1 in the corneal epithelium of mice resulted in corneal dystrophy and clouding that was apparent in newborns and progressively worsened with age. Thickening of the cornea epithelium was accompanied by stromal infiltration with atypical basal cells, severe disorganization of stromal collagen matrix, and loss of corneal barrier function. High epithelial cell turnover was associated with perturbed expression of developmental regulators and aberrant differentiation, suggesting an important function for Pbx1 in determining corneal identity. CONCLUSIONS These studies establish an essential role of the Pbx1 proto-oncogene in corneal morphogenesis.
Collapse
Affiliation(s)
- Mark J Murphy
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
39
|
Phillips BT, Kimble J. A new look at TCF and beta-catenin through the lens of a divergent C. elegans Wnt pathway. Dev Cell 2009; 17:27-34. [PMID: 19619489 DOI: 10.1016/j.devcel.2009.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The canonical Wnt/beta-catenin pathway is extensively characterized, broadly conserved, and clinically important. In this review, we describe the C. elegans Wnt/beta-catenin asymmetry pathway and suggest that some of its unusual features may have important implications for the canonical Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Bryan T Phillips
- Department of Biochemistry and Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.
| | | |
Collapse
|
40
|
Jiang Y, Shi H, Liu J. Two Hox cofactors, the Meis/Hth homolog UNC-62 and the Pbx/Exd homolog CEH-20, function together during C. elegans postembryonic mesodermal development. Dev Biol 2009; 334:535-46. [PMID: 19643105 DOI: 10.1016/j.ydbio.2009.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 01/12/2023]
Abstract
The TALE homeodomain-containing PBC and MEIS proteins play multiple roles during metazoan development. Mutations in these proteins can cause various disorders, including cancer. In this study, we examined the roles of MEIS proteins in mesoderm development in C. elegans using the postembryonic mesodermal M lineage as a model system. We found that the MEIS protein UNC-62 plays essential roles in regulating cell fate specification and differentiation in the M lineage. Furthermore, UNC-62 appears to function together with the PBC protein CEH-20 in regulating these processes. Both unc-62 and ceh-20 have overlapping expression patterns within and outside of the M lineage, and they share physical and regulatory interactions. In particular, we found that ceh-20 is genetically required for the promoter activity of unc-62, providing evidence for another layer of regulatory interactions between MEIS and PBC proteins.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Molecular Biology and Genetics, Cornell University, 439 Biotechnology Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
41
|
Huang X, Tian E, Xu Y, Zhang H. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells. Dev Biol 2009; 333:337-47. [PMID: 19607822 DOI: 10.1016/j.ydbio.2009.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/01/2009] [Accepted: 07/06/2009] [Indexed: 12/24/2022]
Abstract
Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.
Collapse
Affiliation(s)
- Xinxin Huang
- College of Life Sciences, Beijing Normal University, Beijing, 100875, PR China
| | | | | | | |
Collapse
|
42
|
Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Dev Biol 2009; 332:223-33. [PMID: 19497318 DOI: 10.1016/j.ydbio.2009.05.571] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
A role for Wnt/beta-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/beta-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/beta-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/beta-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/beta-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo-increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.
Collapse
|
43
|
Li X, Kulkarni RP, Hill RJ, Chamberlin HM. HOM-C genes, Wnt signaling and axial patterning in the C. elegans posterior ventral epidermis. Dev Biol 2009; 332:156-65. [PMID: 19481074 DOI: 10.1016/j.ydbio.2009.05.567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 12/27/2022]
Abstract
Wnt signaling and HOM-C/Hox genes pattern cell fate along the anterior/posterior axis in many animals. In general, Wnt signaling participates in establishing the anterior/posterior axis, whereas HOM-C genes confer regional identities to cells along the axis. However, recent work in non-bilaterial metazoans suggests that the ancestral patterning system relied on Wnts, with a later co-option of HOM-C genes to replace Wnts in regional patterning. Here we provide direct experimental support for this model from C. elegans, where a regional Wnt patterning system is uncovered in HOM-C gene mutants. Anterior/posterior patterning of P11/P12 cell fate in the C. elegans tail is normally dependent on the HOM-C gene egl-5/Abdominal-B. If the HOM-C gene mab-5/fushi tarazu is also mutant, however, a Wnt signal can promote P12 fate in the absence of egl-5. Furthermore, transcription of egl-5 in the P12.pa cell is influenced by an autoregulatory element that is essential in wild type, but not in mab-5 egl-5 double mutants, identifying regulatory parallels between P12 cell fate specification and egl-5 transcriptional regulation in the P12 lineage. Together, our results identify complex regulatory relationships among signaling pathways and HOM-C genes, and uncover a layering of patterning systems that may reflect their evolutionary history.
Collapse
Affiliation(s)
- Xin Li
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
44
|
Bertrand V, Hobert O. Linking asymmetric cell division to the terminal differentiation program of postmitotic neurons in C. elegans. Dev Cell 2009; 16:563-75. [PMID: 19386265 DOI: 10.1016/j.devcel.2009.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 01/09/2009] [Accepted: 02/13/2009] [Indexed: 01/02/2023]
Abstract
How asymmetric divisions are connected to the terminal differentiation program of neuronal subtypes is poorly understood. In C. elegans, two homeodomain transcription factors, TTX-3 (a LHX2/9 ortholog) and CEH-10 (a CHX10 ortholog), directly activate a large battery of terminal differentiation genes in the cholinergic interneuron AIY. We establish here a transcriptional cascade linking asymmetric division to this differentiation program. A transient lineage-specific input formed by the Zic factor REF-2 and the bHLH factor HLH-2 directly activates ttx-3 expression in the AIY mother. During the terminal division of the AIY mother, an asymmetric Wnt/beta-catenin pathway cooperates with TTX-3 to directly restrict ceh-10 expression to only one of the two daughter cells. TTX-3 and CEH-10 automaintain their expression, thereby locking in the differentiation state. Our study establishes how transient lineage and asymmetric division inputs are integrated and suggests that the Wnt/beta-catenin pathway is widely used to control the identity of neuronal lineages.
Collapse
Affiliation(s)
- Vincent Bertrand
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA.
| | | |
Collapse
|
45
|
Lei H, Liu J, Fukushige T, Fire A, Krause M. Caudal-like PAL-1 directly activates the bodywall muscle module regulator hlh-1 in C. elegans to initiate the embryonic muscle gene regulatory network. Development 2009; 136:1241-9. [PMID: 19261701 DOI: 10.1242/dev.030668] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous work in C. elegans has shown that posterior embryonic bodywall muscle lineages are regulated through a genetically defined transcriptional cascade that includes PAL-1/Caudal-mediated activation of muscle-specific transcription factors, including HLH-1/MRF and UNC-120/SRF, which together orchestrate specification and differentiation. Using chromatin immunoprecipitation (ChIP) in embryos, we now demonstrate direct binding of PAL-1 in vivo to an hlh-1 enhancer element. Through mutational analysis of the evolutionarily conserved sequences within this enhancer, we identify two cis-acting elements and their associated transacting factors (PAL-1 and HLH-1) that are crucial for the temporal-spatial expression of hlh-1 and proper myogenesis. Our data demonstrate that hlh-1 is indeed a direct target of PAL-1 in the posterior embryonic C. elegans muscle lineages, defining a novel in vivo binding site for this crucial developmental regulator. We find that the same enhancer element is also a target of HLH-1 positive auto regulation, underlying (at least in part) the sustained high levels of CeMyoD in bodywall muscle throughout development. Together, these results provide a molecular framework for the gene regulatory network activating the muscle module during embryogenesis.
Collapse
Affiliation(s)
- Haiyan Lei
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
46
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
47
|
Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:250-60. [PMID: 18778800 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
|
48
|
Johnson RW, Chamberlin HM. Positive and negative regulatory inputs restrict pax-6/vab-3 transcription to sensory organ precursors in Caenorhabditis elegans. Mech Dev 2008; 125:486-97. [PMID: 18313275 DOI: 10.1016/j.mod.2008.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/29/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
The Pax-6 gene encodes a transcription factor essential for the development of eyes and other sensory organs in species ranging from planaria to mice. Because Pax-6 activity can be both necessary and sufficient for eye organogenesis, much work has focused on PAX-6 function and regulation of target genes. However, less is known about the genetic mechanisms that establish the Pax-6 expression pattern. We have utilized Caenorhabditis elegans as a relatively simple model system to characterize the regulation of Pax-6 transcription in sensory organ precursors. In C. elegans males, two sensory mating structures, the copulatory spicules and the post-cloacal sensilla, are formed from stereotyped divisions of the two post-embryonic blast cells, B.a and Y.p, respectively. A C. elegans pax-6 transcript, vab-3, is necessary for the development of these sensory structures. Using a green fluorescent protein (GFP)-based vab-3 transcriptional reporter, we show that expression is restricted to the sensory organ lineages of B.a and Y.p. Transcription of vab-3 in the tail region of the worm requires the Abdominal B homeobox gene, egl-5. Opposing this activation, a transcription factor cascade and a Wnt signaling pathway each act to restrict vab-3 expression to the appropriate cell lineages. Thus we have identified multiple genetic pathways that act to restrict pax-6/vab-3 gene expression to the sensory organ precursor cells.
Collapse
Affiliation(s)
- Ryan W Johnson
- Department of Molecular Genetics, Ohio State University, 936 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
49
|
Ryan JF, Baxevanis AD. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2007; 2:37. [PMID: 18078518 PMCID: PMC2222619 DOI: 10.1186/1745-6150-2-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/12/2022] Open
Abstract
The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less specialized along their primary body axis. As such, they present an attractive outgroup from which to investigate how evolutionary changes in the genetic toolkit may have contributed to the emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa. Specifically, we examine these data in the context of how they may explain the evolutionary development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Joseph F Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Cellot S, Krosl J, Chagraoui J, Meloche S, Humphries RK, Sauvageau G. Sustained in vitro trigger of self-renewal divisions in Hoxb4hiPbx1(10) hematopoietic stem cells. Exp Hematol 2007; 35:802-16. [PMID: 17577929 PMCID: PMC2752385 DOI: 10.1016/j.exphem.2007.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Factors that trigger and sustain self-renewal divisions in tissue stem cells remain poorly characterized. By modulating the levels of Hoxb4 and its co-factor Pbxl in primary hematopoietic cells (Hoxb4hiPbxl(10) cells), we report an in vitro expansion of mouse hematopoietic stem cells (HSCs) by 105-fold over 2 weeks, with subsequent preservation of HSC properties. Clonal analyses of the hematopoietic system in recipients of expanded HSCs indicate that up to 70% of Hoxb4hiPbxl(10) stem cells present at initiation of culture underwent self-renewal in vitro. In this setting, Hoxb4 and its co-factor did not promote an increase in DNA synthesis, or a decrease in doubling time of Scal+Lin- cells when compared to controls. Q-PCR analyses further revealed a downregulation of Cdknlb (p27Kipl) and Mxdl (MadI) transcript levels in Hoxb4hiPbxl(l0) primitive cells, accompanied by a more subtle increase in c-myc and reduction in Ccnd3 (Cyclin D3). We thus put forward this strategy as an efficient in vitro HSC expansion tool, enabling a further step into the avenue of self-renewal molecular effectors.
Collapse
Affiliation(s)
- Sonia Cellot
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jana Krosl
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jalila Chagraoui
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Sylvain Meloche
- Signaling and Cell Growth, Institut de Recherche en Immunologie et Cancérologie (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Departments of Molecular Biology and Pharmacology, Université de Montréal
| | - R. Keith Humphries
- Terry Fox Laboratories, British Columbia Cancer Agency, Vancouver, British Columbia and Department of Medicine, University of British Columbia, Vancouver, British Columbia
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer (IRIC), C.P. 6128 succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Department of Medicine and Division of Hematology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
| |
Collapse
|