1
|
Xu Y, Xu C, Huang J, Xu C, Xiong Y. Astragalus polysaccharide attenuates diabetic nephropathy by reducing apoptosis and enhancing autophagy through activation of Sirt1/FoxO1 pathway. Int Urol Nephrol 2024; 56:3067-3078. [PMID: 38653852 DOI: 10.1007/s11255-024-04038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in diabetic patients. Astragalus polysaccharide (APS) is a natural active ingredient in Astragalus membranaceus with anti-hypertensive and anti-oxidative properties. This study aimed to explore the protective roles of APS and its underlying mechanisms in DN. METHODS After the establishment of a rat model of DN by a high-fat diet and treatment with 30 mg/kg streptozotocin (STZ), the effects of 100 mg/kg APS on the levels of serum creatinine, blood urea nitrogen, blood glucose, and urinary albumin-to-creatinine ratio were measured. Histopathological alterations in renal tissues, renal cell apoptosis, renal inflammation, and oxidative stress were examined. The impacts of 0-200 μg/mL APS on the viability and apoptosis in high glucose (HG)-stimulated podocytes were measured by Cell Counting Kit-8 assays and flow cytometry, respectively. The expression of genes was tested by immunoblotting, quantitative real-time PCR, and immunofluorescence staining. RESULTS APS enhanced the expression of podocin and nephrin, increased viability, and reduced apoptosis in HG-induced podocytes. APS treatment abrogated high glucose-mediate suppression of autophagy in podocytes by activating the Sirt1/FoxO1 pathway. The Sirt1 inhibitor EX-527 eliminated the ameliorative effects of APS on renal dysfunction and renal tissue damage, as well as the inhibitory effects of APS on oxidative stress, inflammation, and apoptosis in DN rats. Moreover, EX-527 inhibited APS-induced autophagy activation in DN rats. CONCLUSION APS mitigated DN under hyperglycemic conditions by activating the Sirt1/FoxO1 autophagy pathway, suggesting that APS is a promising agent for DN treatment.
Collapse
Affiliation(s)
- Yanmei Xu
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Chen Xu
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jie Huang
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Chuanwen Xu
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yan Xiong
- Department of Nephrology, Wuhan Fourth Hospital, 473 Hanzheng Street, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Iruzubieta P, Damborenea A, Ioghen M, Bajew S, Fernandez-Torrón R, Töpf A, Herrero-Reiriz Á, Epure D, Vill K, Hernández-Laín A, Manterola M, Azkargorta M, Pikatza-Menoio O, Pérez-Fernandez L, García-Puga M, Gaina G, Bastian A, Streata I, Walter MC, Müller-Felber W, Thiele S, Moragón S, Bastida-Lertxundi N, López-Cortajarena A, Elortza F, Gereñu G, Alonso-Martin S, Straub V, de Sancho D, Teleanu R, López de Munain A, Blázquez L. Biallelic variants in SNUPN cause a limb girdle muscular dystrophy with myofibrillar-like features. Brain 2024; 147:2867-2883. [PMID: 38366623 PMCID: PMC11292911 DOI: 10.1093/brain/awae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Alterations in RNA-splicing are a molecular hallmark of several neurological diseases, including muscular dystrophies, where mutations in genes involved in RNA metabolism or characterized by alterations in RNA splicing have been described. Here, we present five patients from two unrelated families with a limb-girdle muscular dystrophy (LGMD) phenotype carrying a biallelic variant in SNUPN gene. Snurportin-1, the protein encoded by SNUPN, plays an important role in the nuclear transport of small nuclear ribonucleoproteins (snRNPs), essential components of the spliceosome. We combine deep phenotyping, including clinical features, histopathology and muscle MRI, with functional studies in patient-derived cells and muscle biopsies to demonstrate that variants in SNUPN are the cause of a new type of LGMD according to current definition. Moreover, an in vivo model in Drosophila melanogaster further supports the relevance of Snurportin-1 in muscle. SNUPN patients show a similar phenotype characterized by proximal weakness starting in childhood, restrictive respiratory dysfunction and prominent contractures, although inter-individual variability in terms of severity even in individuals from the same family was found. Muscle biopsy showed myofibrillar-like features consisting of myotilin deposits and Z-disc disorganization. MRI showed predominant impairment of paravertebral, vasti, sartorius, gracilis, peroneal and medial gastrocnemius muscles. Conservation and structural analyses of Snurportin-1 p.Ile309Ser variant suggest an effect in nuclear-cytosol snRNP trafficking. In patient-derived fibroblasts and muscle, cytoplasmic accumulation of snRNP components is observed, while total expression of Snurportin-1 and snRNPs remains unchanged, which demonstrates a functional impact of SNUPN variant in snRNP metabolism. Furthermore, RNA-splicing analysis in patients' muscle showed widespread splicing deregulation, in particular in genes relevant for muscle development and splicing factors that participate in the early steps of spliceosome assembly. In conclusion, we report that SNUPN variants are a new cause of limb girdle muscular dystrophy with specific clinical, histopathological and imaging features, supporting SNUPN as a new gene to be included in genetic testing of myopathies. These results further support the relevance of splicing-related proteins in muscle disorders.
Collapse
Affiliation(s)
- Pablo Iruzubieta
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Alberto Damborenea
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Mihaela Ioghen
- Clinical Neurosciences Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Paediatric Neurology, 020021 Bucharest, Romania
| | - Simon Bajew
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Roberto Fernandez-Torrón
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, NE4 5NR Newcastle Upon Tyne, UK
| | - Álvaro Herrero-Reiriz
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Diana Epure
- Department of Paediatric Neurology, Doctor Victor Gomoiu Children’s Hospital, 022102 Bucharest, Romania
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children’s Hospital, LMU University Hospital, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Aurelio Hernández-Laín
- Neuropathology Unit, Department of Pathology, 12 de Octubre University Hospital, 28041 Madrid, Spain
- Department of Neuro-oncology, Instituto de Investigación Sanitaria imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Universidad Complutense de Madrid, Facultad de Medicina, 28040 Madrid, Spain
| | - María Manterola
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Oihane Pikatza-Menoio
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Laura Pérez-Fernandez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
| | - Mikel García-Puga
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Gisela Gaina
- Department of Cell Biology, Neurosciences and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ioana Streata
- Human Genomics Laboratory, Regional Centre of Medical Genetics, Craiova University of Medicine and Pharmacy, 200349 Dolj, Romania
| | - Maggie C Walter
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Wolfgang Müller-Felber
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Simone Thiele
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Saioa Moragón
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Nerea Bastida-Lertxundi
- Department of Clinical Genetics, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
| | - Aitziber López-Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Gorka Gereñu
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Sonia Alonso-Martin
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, NE4 5NR Newcastle Upon Tyne, UK
| | - David de Sancho
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Faculty of Chemistry, University of the Basque Country, 20018 San Sebastián, Spain
| | - Raluca Teleanu
- Clinical Neurosciences Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Paediatric Neurology, 020021 Bucharest, Romania
| | - Adolfo López de Munain
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, Osakidetza Basque Health Service, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Faculty of Medicine, University of the Basque Country, 20014 San Sebastián, Spain
- Faculty of Medicine, University of Deusto, 48007 Bilbao, Spain
| | - Lorea Blázquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Biferali B, Mocciaro E, Runfola V, Gabellini D. Long non-coding RNAs and their role in muscle regeneration. Curr Top Dev Biol 2024; 158:433-465. [PMID: 38670715 DOI: 10.1016/bs.ctdb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels. Several of them have been shown to be modulated during myogenic differentiation, playing important roles in the regulation of skeletal muscle development, differentiation and homeostasis, and contributing to neuromuscular diseases. In this chapter, we have summarized the current knowledge about long noncoding RNAs in skeletal muscle and discussed specific examples of long noncoding RNAs (lncRNAs and circRNAs) regulating muscle stem cell biology. We have also discussed selected long noncoding RNAs involved in the most common neuromuscular diseases.
Collapse
Affiliation(s)
- Beatrice Biferali
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Mocciaro
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Runfola
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Gabellini
- Gene Expression Regulation Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Chen SL, Wu CC, Li N, Weng TH. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil 2024; 45:21-39. [PMID: 38206489 DOI: 10.1007/s10974-023-09663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Collapse
Affiliation(s)
- Shen-Liang Chen
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan.
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Tzu-Han Weng
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| |
Collapse
|
5
|
Chen X, Pillay S, Lohmann F, Bieker JJ. Association of DDX5/p68 protein with the upstream erythroid enhancer element (EHS1) of the gene encoding the KLF1 transcription factor. J Biol Chem 2023; 299:105489. [PMID: 38000658 PMCID: PMC10750184 DOI: 10.1016/j.jbc.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Sanjana Pillay
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Felix Lohmann
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA; Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA; Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
6
|
Shaw R, Karmakar S, Basu M, Ghosh MK. DDX5 (p68) orchestrates β-catenin, RelA and SP1 mediated MGMT gene expression in human colon cancer cells: Implication in TMZ chemoresistance. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194991. [PMID: 37793472 DOI: 10.1016/j.bbagrm.2023.194991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, MGMT has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of MGMT gene in the context of colon cancer. This necessitates studying MGMT gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated MGMT gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and vice-versa. Since p68 cannot directly interact with the MGMT promoter, transcription factors viz., β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter via TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of MGMT gene expression.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
7
|
Taylor K, Piasecka A, Kajdasz A, Brzęk A, Polay Espinoza M, Bourgeois CF, Jankowski A, Borowiak M, Raczyńska KD, Sznajder ŁJ, Sobczak K. Modulatory role of RNA helicases in MBNL-dependent alternative splicing regulation. Cell Mol Life Sci 2023; 80:335. [PMID: 37882878 PMCID: PMC10602967 DOI: 10.1007/s00018-023-04927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 10/27/2023]
Abstract
Muscleblind-like splicing regulators (MBNLs) activate or repress the inclusion of alternative splicing (AS) events, enabling the developmental transition of fetal mRNA splicing isoforms to their adult forms. Herein, we sought to elaborate the mechanism by which MBNLs mediate AS related to biological processes. We evaluated the functional role of DEAD-box (DDX) RNA helicases, DDX5 and DDX17 in MBNL-dependent AS regulation. Whole-transcriptome analysis and validation approaches revealed a handful of MBNLs-dependent AS events to be affected by DDX5 and DDX17 in mostly an opposite manner. The opposite expression patterns of these two groups of factors during muscle development and coordination of fetal-to-adult splicing transition indicate the importance of these proteins at early stages of development. The identified pathways of how the helicases modulate MBNL splicing activity include DDX5 and DDX17-dependent changes in the ratio of MBNL splicing isoforms and most likely changes in accessibility of MBNL-binding sites. Another pathway involves the mode of action of the helicases independent of MBNL activity. These findings lead to a deeper understanding of the network of interdependencies between RNA-binding proteins and constitute a valuable element in the discussion on developmental homeostasis and pathological states in which the studied protein factors play a significant role.
Collapse
Affiliation(s)
- Katarzyna Taylor
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Agnieszka Piasecka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Brzęk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Micaela Polay Espinoza
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 Allee d'Italie, 69364, Lyon, France
| | - Artur Jankowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Małgorzata Borowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Katarzyna D Raczyńska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
8
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 581] [Impact Index Per Article: 581.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Dattilo D, Di Timoteo G, Setti A, Giuliani A, Peruzzi G, Beltran Nebot M, Centrón-Broco A, Mariani D, Mozzetta C, Bozzoni I. The m 6A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs. Nat Commun 2023; 14:1898. [PMID: 37019933 PMCID: PMC10076346 DOI: 10.1038/s41467-023-37578-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
N6-Methyladenosine (m6A) is well-known for controlling different processes of linear RNA metabolism. Conversely, its role in the biogenesis and function of circular RNAs (circRNAs) is still poorly understood. Here, we characterize circRNA expression in the pathological context of rhabdomyosarcoma (RMS), observing a global increase when compared to wild-type myoblasts. For a set of circRNAs, such an increase is due to the raised expression of the m6A machinery, which we also find to control the proliferation activity of RMS cells. Furthermore, we identify the RNA helicase DDX5 as a mediator of the back-splicing reaction and as a co-factor of the m6A regulatory network. DDX5 and the m6A reader YTHDC1 are shown to interact and to promote the production of a common subset of circRNAs in RMS. In line with the observation that YTHDC1/DDX5 depletion reduces RMS proliferation, our results provide proteins and RNA candidates for the study of rhabdomyosarcoma tumorigenicity.
Collapse
Affiliation(s)
- Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, 00161, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Davide Mariani
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy.
- Center for Life Nano- & Neuro-Science@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, 00161, Italy.
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy.
| |
Collapse
|
10
|
Zhang J, Sheng H, Zhang L, Li X, Guo Y, Wang Y, Guo H, Ding X. Bta-miR-206 and a Novel lncRNA-lncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells 2023; 12:cells12071028. [PMID: 37048101 PMCID: PMC10093610 DOI: 10.3390/cells12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq). Based on the ability of miR-206 to regulate myogenic cell differentiation, a new kind of lncRNA-lncA2B1 without protein-coding ability was found, which is expressed in the nucleus and cytoplasm. Subsequently, lncA2B1 inhibited cell proliferation by downregulating the expression of the proliferation marker Pax7 and promoted myogenic differentiation by upregulating the expression of the differentiation marker MyHC, whose regulatory function is closely related to miR-206. By RNA pulldown/LC-MS experiments, heterogeneous ribonucleoprotein A2/B1 (HNRNPA2B1), and DExH-Box Helicase 9 (DHX9) were identified as common binding proteins of lncA2B1 and miR-206. Overexpression of lncA2B1 and miR-206 significantly upregulated the expression level of HNRNPA2B1. Downregulation of HNRNPA2B1 expression significantly decreased the expression level of the differentiation marker MyHC, which indicates that miR-206 and lncA2B1 regulate myogenic differentiation of bovine MuSCs by acting on HNRNPA2B1. This study screened and identified a novel lncRNA-lncA2B1, which functions with miR-206 to regulate myogenesis via the common binding proteins HNRNPA2B1. The results of this study provide a new way to explore the molecular mechanisms by which lncRNAs and miRNAs regulate muscle growth and development.
Collapse
Affiliation(s)
- Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yimin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence:
| |
Collapse
|
11
|
Tabassum S, Basu M, Ghosh MK. The DEAD-box RNA helicase DDX5 (p68) and β-catenin: The crucial regulators of FOXM1 gene expression in arbitrating colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2023; 1866:194933. [PMID: 36997114 DOI: 10.1016/j.bbagrm.2023.194933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Forkhead box M1 (FOXM1), a vital member of the Forkhead box family of transcription factors, helps in mediating oncogenesis. However, limited knowledge exists regarding the mechanistic insights into the FOXM1 gene regulation. DDX5 (p68), an archetypal member of the DEAD-box family of RNA helicases, shows multifaceted action in cancer progression by arbitrating RNA metabolism and transcriptionally coactivating transcription factors. Here, we report a novel mechanism of alliance between DDX5 (p68) and the Wnt/β-catenin pathway in regulating FOXM1 gene expression and driving colon carcinogenesis. Initial bioinformatic analyses highlighted elevated expression levels of FOXM1 and DDX5 (p68) in colorectal cancer datasets. Immunohistochemical assays confirmed that FOXM1 showed a positive correlation with DDX5 (p68) and β-catenin in both normal and colon carcinoma patient samples. Overexpression of DDX5 (p68) and β-catenin increased the protein and mRNA expression profiles of FOXM1, and the converse correlation occurred during downregulation. Mechanistically, overexpression and knockdown of DDX5 (p68) and β-catenin elevated and diminished FOXM1 promoter activity respectively. Additionally, Chromatin immunoprecipitation assay demonstrated the occupancy of DDX5 (p68) and β-catenin at the TCF4/LEF binding element (TBE) sites on the FOXM1 promoter. Thiostrepton delineated the effect of FOXM1 inhibition on cell proliferation and migration. Colony formation assay, migration assay, and cell cycle data reveal the importance of the DDX5 (p68)/β-catenin/FOXM1 axis in oncogenesis. Collectively, our study mechanistically highlights the regulation of FOXM1 gene expression by DDX5 (p68) and β-catenin in colorectal cancer.
Collapse
|
12
|
Takeda K, Tago K, Funakoshi-Tago M. The indispensable role of the RNA helicase DDX5 in tumorigenesis induced by the myeloproliferative neoplasm-associated JAK2V617F mutant. Cell Signal 2023; 102:110537. [PMID: 36442590 DOI: 10.1016/j.cellsig.2022.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A point mutation (V617F) in the Janus kinase 2 (JAK2) gene results in the production of disorderly activated tyrosine kinase, which causes myeloproliferative neoplasms (MPN). We herein demonstrated that the RNA helicase DDX5 was highly expressed at the mRNA and protein levels through the activation of signal transducer and activator of transcription 5 (STAT5) in Ba/F3 cells expressing a JAK2V617F mutant and erythropoietin receptor (V617F/EpoR cells) and MPN patient-derived HEL cells. A treatment with the JAK1/2 inhibitor, ruxolitinib and STAT5 inhibitor, pimozide significantly inhibited DDX5 mRNA expression and enhanced the degradation of DDX5 in these cells, suggesting that the JAK2V617F mutant positively regulates DDX5 mRNA expression and DDX5 protein stability by activating STAT5. The knockdown of DDX5 specifically inhibited the activation of mechanistic target of rapamycin (mTOR) in V617F/EpoR cells and HEL cells and significantly suppressed the proliferation of these cells. Furthermore, the knockdown of DDX5 markedly suppressed tumorigenesis, splenomegaly, and liver hypertrophy caused by an inoculation of V617F/EpoR cells in nude mice. Collectively, these results revealed that JAK2V617F exhibits transforming activity by inducing the expression of DDX5 in a STAT5-dependent manner, indicating the potential of the JAK2V617F/STAT5/DDX5 axis as a therapeutic target in the treatment of MPN.
Collapse
Affiliation(s)
- Kengo Takeda
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi-ken 329-0498, Japan.
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
13
|
Yuan Y, Yang B, He Y, Zhang W, E G. Genome-Wide Selection Signal Analysis of Australian Boer Goat by Insertion/Deletion Variants. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Battistelli C, Garbo S, Maione R. MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming. Cells 2022; 11:3435. [PMID: 36359831 PMCID: PMC9654159 DOI: 10.3390/cells11213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 10/20/2023] Open
Abstract
The discovery of the skeletal muscle-specific transcription factor MyoD represents a milestone in the field of transcriptional regulation during differentiation and cell-fate reprogramming. MyoD was the first tissue-specific factor found capable of converting non-muscle somatic cells into skeletal muscle cells. A unique feature of MyoD, with respect to other lineage-specific factors able to drive trans-differentiation processes, is its ability to dramatically change the cell fate even when expressed alone. The present review will outline the molecular strategies by which MyoD reprograms the transcriptional regulation of the cell of origin during the myogenic conversion, focusing on the activation and coordination of a complex network of co-factors and epigenetic mechanisms. Some molecular roadblocks, found to restrain MyoD-dependent trans-differentiation, and the possible ways for overcoming these barriers, will also be discussed. Indeed, they are of critical importance not only to expand our knowledge of basic muscle biology but also to improve the generation skeletal muscle cells for translational research.
Collapse
Affiliation(s)
| | | | - Rossella Maione
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
15
|
Oviduct Transcriptomic Reveals the Regulation of mRNAs and lncRNAs Related to Goat Prolificacy in the Luteal Phase. Animals (Basel) 2022; 12:ani12202823. [PMID: 36290212 PMCID: PMC9597788 DOI: 10.3390/ani12202823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The kidding number is an important reproductive trait in domestic goats. The oviduct, as one of the most major organs, is directly involved in the reproductive process, providing nutrition and a location for early embryonic development. The current study provides genome-wide expression profiles of mRNA and long noncoding RNAs (lncRNAs) expression in Yunshang black goat, a new breed of meat goat bred in China with a high kidding number. During the luteal phases, oviduct mRNAs and lncRNAs associated with high- and low-fecundity Yunshang black goats were identified, and their potential biological functions were predicted using GO, KEGG, and GSEA enrichment analysis. These findings shed light on the oviduct-based prolificacy mechanism in goats. Abstract The oviduct is associated with embryo development and transportation and regulates the pregnancy success of mammals. Previous studies have indicated a molecular mechanism of lncRNAs in gene regulation and reproduction. However, little is known about the function of lncRNAs in the oviduct in modulating goat kidding numbers. Therefore, we combined RNA sequencing (RNA-seq) to map the expression profiles of the oviduct at the luteal phase from high- and low-fecundity goats. The results showed that 2023 differentially expressed mRNAs (DEGs) and 377 differentially expressed lncRNAs (DELs) transcripts were screened, and 2109 regulated lncRNA-mRNA pairs were identified. Subsequently, the genes related to reproduction (IGF1, FGFRL1, and CREB1) and those associated with embryonic development and maturation (DHX34, LHX6) were identified. KEGG analysis of the DEGs revealed that the GnRH- and prolactin-signaling pathways, progesterone-mediated oocyte maturation, and oocyte meiosis were related to reproduction. GSEA and KEGG analyses of the target genes of DELs demonstrated that several biological processes and pathways might interact with oviduct functions and the prolificacy of goats. Furthermore, the co-expression network analysis showed that XLOC_029185, XLOC_040647, and XLOC_090025 were the cis-regulatory elements of the DEGs MUC1, PPP1R9A, and ALDOB, respectively; these factors might be associated with the success of pregnancy and glucolipid metabolism. In addition, the GATA4, LAMA2, SLC39A5, and S100G were trans-regulated by lncRNAs, predominantly mediating oviductal transport to the embryo and energy metabolism. Our findings could pave the way for a better understanding of the roles of mRNAs and lncRNAs in fecundity-related oviduct function in goats.
Collapse
|
16
|
The RNA helicase DDX5 cooperates with EHMT2 to sustain alveolar rhabdomyosarcoma growth. Cell Rep 2022; 40:111267. [PMID: 36044855 DOI: 10.1016/j.celrep.2022.111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood characterized by the inability to exit the proliferative myoblast-like stage. The alveolar fusion positive subtype (FP-RMS) is the most aggressive and is mainly caused by the expression of PAX3/7-FOXO1 oncoproteins, which are challenging pharmacological targets. Here, we show that the DEAD box RNA helicase 5 (DDX5) is overexpressed in alveolar RMS cells and that its depletion and pharmacological inhibition decrease FP-RMS viability and slow tumor growth in xenograft models. Mechanistically, we provide evidence that DDX5 functions upstream of the EHMT2/AKT survival signaling pathway, by directly interacting with EHMT2 mRNA, modulating its stability and consequent protein expression. We show that EHMT2 in turns regulates PAX3-FOXO1 activity in a methylation-dependent manner, thus sustaining FP-RMS myoblastic state. Together, our findings identify another survival-promoting loop in FP-RMS and highlight DDX5 as a potential therapeutic target to arrest RMS growth.
Collapse
|
17
|
Xu K, Sun S, Yan M, Cui J, Yang Y, Li W, Huang X, Dou L, Chen B, Tang W, Lan M, Li J, Shen T. DDX5 and DDX17—multifaceted proteins in the regulation of tumorigenesis and tumor progression. Front Oncol 2022; 12:943032. [PMID: 35992805 PMCID: PMC9382309 DOI: 10.3389/fonc.2022.943032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
DEAD-box (DDX)5 and DDX17, which belong to the DEAD-box RNA helicase family, are nuclear and cytoplasmic shuttle proteins. These proteins are expressed in most tissues and cells and participate in the regulation of normal physiological functions; their abnormal expression is closely related to tumorigenesis and tumor progression. DDX5/DDX17 participate in almost all processes of RNA metabolism, such as the alternative splicing of mRNA, biogenesis of microRNAs (miRNAs) and ribosomes, degradation of mRNA, interaction with long noncoding RNAs (lncRNAs) and coregulation of transcriptional activity. Moreover, different posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, and sumoylation, endow DDX5/DDX17 with different functions in tumorigenesis and tumor progression. Indeed, DDX5 and DDX17 also interact with multiple key tumor-promoting molecules and participate in tumorigenesis and tumor progression signaling pathways. When DDX5/DDX17 expression or their posttranslational modification is dysregulated, the normal cellular signaling network collapses, leading to many pathological states, including tumorigenesis and tumor development. This review mainly discusses the molecular structure features and biological functions of DDX5/DDX17 and their effects on tumorigenesis and tumor progression, as well as their potential clinical application for tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ming Lan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Tao Shen,
| |
Collapse
|
18
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
19
|
So KKH, Huang Y, Zhang S, Qiao Y, He L, Li Y, Chen X, Sham MH, Sun H, Wang H. seRNA PAM controls skeletal muscle satellite cell proliferation and aging through trans regulation of Timp2 expression synergistically with Ddx5. Aging Cell 2022; 21:e13673. [PMID: 35851988 PMCID: PMC9381903 DOI: 10.1111/acel.13673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 12/11/2022] Open
Abstract
Muscle satellite cells (SCs) are responsible for muscle homeostasis and regeneration and lncRNAs play important roles in regulating SC activities. Here, in this study, we identify PAM (Pax7 Associated Muscle lncRNA) that is induced in activated/proliferating SCs upon injury to promote SC proliferation as myoblast cells. PAM is generated from a myoblast-specific super-enhancer (SE); as a seRNA it binds with a number of target genomic loci predominantly in trans. Further studies demonstrate that it interacts with Ddx5 to tether PAM SE to its inter-chromosomal targets Timp2 and Vim to activate the gene expression. Lastly, we show that PAM expression is increased in aging SCs, which leads to enhanced inter-chromosomal interaction and target genes upregulation. Altogether, our findings identify PAM as a previously unknown lncRNA that regulates both SC proliferation and aging through its trans gene regulatory activity.
Collapse
Affiliation(s)
- Karl Kam Hei So
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Yile Huang
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Yulong Qiao
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| | - Mai Har Sham
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| |
Collapse
|
20
|
Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, Zhao J, Chen L. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep 2022; 12:5370. [PMID: 35354841 PMCID: PMC8968712 DOI: 10.1038/s41598-022-09174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The role of aerobic exercise in preventing and improving non-alcoholic fatty liver has been widely established. SRA is a long non-coding RNA, which has received increasing attention due to its important role in lipid metabolism. However, it is unclear whether aerobic exercise can prevent and treat hepatic lipid accumulation via SRA. The mice were randomly divided into four groups as follows, normal control group, normal aerobic exercise group, high-fat diet group (HFD), and high-fat diet plus aerobic exercise (8 weeks, 6 days/week, 18 m/min for 50 min, 6% slope) group (HAE). After 8 weeks, the mice in the HAE group showed significant improvement in hepatic steatosis. Body weight as well as blood TC, LDL-C, and liver TG levels were significantly lower in the HAE group than in the HFD group. Compared with the HFD group, the expression of SRA was markedly suppressed and the expression of ATGL was significantly increased in the HAE group. Additionally, the JNK/P38 signaling was inhibited, the pro-inflammatory factors were down-regulated, and the anti-inflammatory factor was increased. In addition to this, the same results were shown in experiments with overexpression of SRA. The results of this study provided new support for aerobic exercise to improve hepatic lipid metabolism via lncRNA.
Collapse
|
21
|
He C, Liu M, Ding Q, Yang F, Xu T. Upregulated miR-9-5p inhibits osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose treatment. J Bone Miner Metab 2022; 40:208-219. [PMID: 34750680 DOI: 10.1007/s00774-021-01280-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic osteoporosis (DOP) is a chronic diabetic complication, which is attributed to high glucose (HG)-induced dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have revealed that microRNAs (miRNAs) play critical roles in osteogenic differentiation of BMSCs in DOP. Here, the role of miR-9-5p in DOP progression was explored. MATERIALS AND METHODS The rat model of DOP was established by intraperitoneal injection of streptozotocin (STZ). BMSCs were treated with high glucose (HG) to establish in vitro models. Gene expression in BMSCs and bone tissues of rats was tested by RT-qPCR. The degree of osteogenic differentiation of BMSCs was examined by Alizarin Red staining and ALP activity analysis. The protein levels of collagen-I (COL1), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor-2 (RUNX2), and DEAD-Box Helicase 17 (DDX17) in BMSCs were evaluated by western blotting. The interaction between miR-9-5p and DDX17 was identified by luciferase reporter assay. H&E staining was used to test morphological structure of femurs of rats with STZ treatment. RESULTS MiR-9-5p was overexpressed in HG-treated BMSCs, while DDX17 was downregulated. Functionally, miR-9-5p knockdown promoted BMSCs osteogenic differentiation under HG condition. Mechanically, miR-9-5p targeted DDX17. DDX17 knockdown reversed the effect of miR-9-5p silencing on osteogenic differentiation of HG-treated BMSCs. In in vivo studies, miR-9-5p downregulation ameliorated the DOP condition of rats and miR-9-5p expression was negatively correlated with DDX17 expression in bone tissues of rats with STZ treatment. CONCLUSION MiR-9-5p knockdown promotes HG-induced osteogenic differentiation BMSCs in vitro and mitigates the DOP condition of rats in vivo by targeting DDX17.
Collapse
Affiliation(s)
- Chuanmei He
- Department of Nephrology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedics, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Qun Ding
- Department of Endocrinology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, 41 Hailian East Road, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Fumeng Yang
- Department of Laboratory, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Tongdao Xu
- Department of Endocrinology, The Affiliated Lianyungang No.2 Hospital of Bengbu Medical College, 41 Hailian East Road, Haizhou District, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
22
|
Suthapot P, Xiao T, Felsenfeld G, Hongeng S, Wongtrakoongate P. The RNA helicases DDX5 and DDX17 facilitate neural differentiation of human pluripotent stem cells NTERA2. Life Sci 2022; 291:120298. [PMID: 35007564 DOI: 10.1016/j.lfs.2021.120298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022]
Abstract
AIMS Understanding human neurogenesis is critical toward regenerative medicine for neurodegeneration. However, little is known how neural differentiation is regulated by DEAD box-containing RNA helicases, which comprise a diverse class of RNA remodeling enzymes. MATERIALS AND METHODS ChIP-seq was utilized to identify binding sites of DDX5 and DDX17 in both human pluripotent stem cell (hPSC) line NTERA2 and their retinoic acid-induced neural derivatives. RNA-seq was used to elucidate genes differentially expressed upon depletion of DDX5 and DDX17. Neurosphere assay, flow cytometry, and immunofluorescence staining were performed to test the effect of depletion of the two RNA helicases in neural differentiation. KEY FINDINGS We show here that expression of DDX5 and DDX17 is abundant throughout neural differentiation of NTERA2, and is mostly localized within the nucleus. The two RNA helicases occupy chromatin genome-wide at regions associated with neurogenesis-related genes in both hPSCs and their neural derivatives. Further, both DDX5 and DDX17 are mutually required for controlling transcriptional expression of these genes, but are not important for maintenance of stem cell state of hPSCs. In contrast, they facilitate early neural differentiation of hPSCs, generation of neurospheres from the stem cells, and transcriptional expression of key neurogenic transcription factors such as SOX1 and PAX6 during neural differentiation. Importantly, DDX5 and DDX17 are critical for differentiation of hPSCs toward NESTIN- and TUBB3-positive cells, which represent neural progenitors and mature neurons, respectively. SIGNIFICANCE Collectively, our findings suggest the role of DDX5 and DDX17 in transcriptional regulation of genes involved in neurogenesis, and hence in neural differentiation of hPSCs.
Collapse
Affiliation(s)
- Praewa Suthapot
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0540, MD, USA
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
23
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
24
|
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. Comprehensive Analysis of mRNA, lncRNA, circRNA, and miRNA Expression Profiles and Their ceRNA Networks in the Longissimus Dorsi Muscle of Cattle-Yak and Yak. Front Genet 2021; 12:772557. [PMID: 34966412 PMCID: PMC8710697 DOI: 10.3389/fgene.2021.772557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens), demonstrates obvious heterosis in production performance. Male hybrid sterility has been focused on for a long time; however, the mRNAs and non-coding RNAs related to muscle development as well as their regulatory networks remain unclear. The phenotypic data showed that the production performance (i.e., body weight, withers height, body length, and chest girth) of cattle-yak was significantly better than that of the yak, and the economic benefits of the cattle-yak were higher under the same feeding conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of cattle-yak and yak to systematically reveal the molecular basis using the high-throughput sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were identified to be differentially expressed between cattle-yaks and yaks in the longissimus dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were significantly enriched in myoblast differentiation and some signaling pathways related to muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway). We constructed a competing endogenous RNA (ceRNA) network and found that some non-coding RNAs differentially expressed may be involved in the regulation of muscle traits. Taken together, this study may be used as a reference tool to provide the molecular basis for studying muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Renqing Dingkao
- Livestock Institute of Gannan Tibetan Autonomous Prefecture, Hezuo, China
| | - Zhuoma Zhaxi
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Getu Burenchao
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
25
|
Myoparr-Associated and -Independent Multiple Roles of Heterogeneous Nuclear Ribonucleoprotein K during Skeletal Muscle Cell Differentiation. Int J Mol Sci 2021; 23:ijms23010108. [PMID: 35008534 PMCID: PMC8744952 DOI: 10.3390/ijms23010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
Collapse
|
26
|
Li J, Shen J, Qin L, Lu D, Ding E. LBX2-AS1 Activates FSTL3 by Binding to Transcription Factor RARα to Foster Proliferation, Migration, and Invasion of Thyroid Cancer. Front Genet 2021; 12:765033. [PMID: 34858481 PMCID: PMC8632031 DOI: 10.3389/fgene.2021.765033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Background: Thyroid cancer is a frequent endocrine tumor in women. It is of great significance to investigate the molecular mechanism of progression of thyroid cancer. Methods: Gene expression data set and clinical data were downloaded from The Cancer Genome Atlas database for differential expression analysis. The triplet of downstream transcription factors (TFs) and modulatory genes of target lncRNA in thyroid cancer was predicted by the lncMAP database. mRNA and protein expression of lncRNA LBX2-AS1, RARα, and FSTL3 were detected by qRT-PCR and western blot. The localization of lncRNA LBX2-AS1 in cells was tested by Fluorescence in situ hybridization assay. The RNA immunoprecipitation assay was applied to verify the binding relationship between lncRNA LBX2-AS1 and FSTL3. ChIP and dual-luciferase assays were used to prove the binding relationship between RARα and FSTL3. Cell function experiments were used to test cell proliferation, migration and invasion in each treatment group. The role of lncRNA LBX2-AS1 in thyroid cancer progression was also confirmed in nude mice. Results: Bioinformatics analysis indicated that lncRNA LBX2-AS1, RARα, FSTL3 were remarkably fostered in thyroid cancer tissue, and LBX2-AS1 was evidently correlated with clinical features. The LncMAP triplet prediction showed that LBX2-AS1 recruited TF RARα to modulate FSTL3. RIP assay confirmed that LBX2-AS1 was prominently enriched on RARα. ChIP and dual-luciferase report assays unveiled that RARα bound to the promoter region of FSTL3 and functioned as a TF. Cell function experiments uncovered that LBX2-AS1 boosted the progression of thyroid cancer. The rescue experiments showed that LBX2-AS1 recruited the TF RARα to hasten the transcription activity of FSTL3 and thus promoted the development of thyroid cancer. Conclusion: The integrative results demonstrated that LBX2-AS1 activated FSTL3 by binding to TF RARα to hasten proliferation, migration and invasion of thyroid cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Nuclear Medicine, Tianjin First Central Hospital, School of Medicine Nankai University, Tianjin, China
| | - Jie Shen
- Department of Nuclear Medicine, Tianjin First Central Hospital, School of Medicine Nankai University, Tianjin, China
| | - Lan Qin
- Department of Nuclear Medicine, Tianjin First Central Hospital, School of Medicine Nankai University, Tianjin, China
| | - Dongyan Lu
- Department of Nuclear Medicine, Tianjin First Central Hospital, School of Medicine Nankai University, Tianjin, China
| | - Enci Ding
- Department of Nuclear Medicine, Tianjin First Central Hospital, School of Medicine Nankai University, Tianjin, China
| |
Collapse
|
27
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
28
|
Adipose Tissue Steroid Receptor RNA Activator 1 (SRA1) Expression Is Associated with Obesity, Insulin Resistance, and Inflammation. Cells 2021; 10:cells10102602. [PMID: 34685582 PMCID: PMC8534244 DOI: 10.3390/cells10102602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Steroid receptor RNA activator 1 (SRA1) is involved in pathophysiological responses of adipose tissue (AT) in obesity. In vitro and animal studies have elucidated its role in meta-inflammation. Since SRA1 AT expression in obesity/type 2 diabetes (T2D) and the relationship with immune-metabolic signatures remains unclear, we assessed AT SRA1 expression and its association with immune–metabolic markers in individuals with obesity/T2D. For this, 55 non-diabetic and 53 T2D individuals classified as normal weight (NW; lean), overweight, and obese were recruited and fasting blood and subcutaneous fat biopsy samples were collected. Plasma metabolic markers were assessed using commercial kits and AT expression of SRA1 and selected immune markers using RT-qPCR. SRA1 expression was significantly higher in non-diabetic obese compared with NW individuals. SRA1 expression associated with BMI, PBF, serum insulin, and HOMA-IR in the total study population and people without diabetes. SRA1 associated with waist circumference in people without diabetes and NW participants, whereas it associated inversely with HbA1c in overweight participants. In most study subgroups AT SRA1 expression associated directly with CXCL9, CXCL10, CXCL11, TNF-α, TGF-β, IL2RA, and IL18, but inversely with CCL19 and CCR2. TGF-β/IL18 independently predicted the SRA1 expression in people without diabetes and in the total study population, while TNF-α/IL-2RA predicted SRA1 only in people with diabetes. TNF-α also predicted SRA1 in both NW and obese people regardless of the diabetes status. In conclusion, AT SRA1 expression is elevated in people with obesity which associates with typical immunometabolic markers of obesity/T2D, implying that SRA1 may have potential as a biomarker of metabolic derangements.
Collapse
|
29
|
Dong A, Cheung TH. Deciphering the chromatin organization and dynamics for muscle stem cell function. Curr Opin Cell Biol 2021; 73:124-132. [PMID: 34534837 DOI: 10.1016/j.ceb.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
The chromatin landscape represents a critical regulatory layer for precise transcriptional control. Chromosome architecture restrains the physical access to the DNA elements and is one of the determinants that specifies cell identity. Adult stem cells possess the unique ability to differentiate into a specific lineage. One of the underexplored areas in skeletal muscle biology is the molecular mechanism guiding the chromatin organization changes in muscle stem cell specification, myogenic determination, and differentiation. In this review, we focus on the regulatory network guiding the progression of muscle stem cells to differentiated progeny. We summarize recent findings regarding the mechanisms directing myogenic cell fate decision and differentiation, with a particular focus on three-dimensional chromosome architecture and long noncoding RNA-associated chromatin accessibility changes.
Collapse
Affiliation(s)
- Anqi Dong
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
30
|
Fortuna TR, Kour S, Anderson EN, Ward C, Rajasundaram D, Donnelly CJ, Hermann A, Wyne H, Shewmaker F, Pandey UB. DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathol 2021; 142:515-536. [PMID: 34061233 DOI: 10.1007/s00401-021-02333-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration. We observed the expression levels of DEAD-Box Helicase 17 (DDX17) to be significantly downregulated in response to mutant FUS in Drosophila and human cell lines. Mutant FUS recruits nuclear DDX17 into cytoplasmic stress granules and physically interacts with DDX17 through the RGG1 domain of FUS. Ectopic expression of DDX17 reduces cytoplasmic mislocalization and sequestration of mutant FUS into cytoplasmic stress granules. We identified DDX17 as a novel regulator of the DNA damage response pathway whose upregulation repairs defective DNA damage repair machinery caused by mutant neuronal FUS ALS. In addition, we show DDX17 is a novel modifier of FUS-mediated neurodegeneration in vivo. Our findings indicate DDX17 is downregulated in response to mutant FUS, and restoration of DDX17 levels suppresses FUS-mediated neuropathogenesis and toxicity in vivo.
Collapse
|
31
|
Peng Y, Lin H. [Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1051-1056. [PMID: 34387437 DOI: 10.7507/1002-1892.202103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration. Methods The characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years. Results Neuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients' quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells. Conclusion At present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.
Collapse
Affiliation(s)
- Ying Peng
- Trauma Clinic Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R.China
| | - Haodong Lin
- Trauma Clinic Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R.China
| |
Collapse
|
32
|
The Key Lnc (RNA)s in Cardiac and Skeletal Muscle Development, Regeneration, and Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8080084. [PMID: 34436226 PMCID: PMC8397000 DOI: 10.3390/jcdd8080084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a key role in the regulation of transcriptional and epigenetic activity in mammalian cells. Comprehensive analysis of these ncRNAs has revealed sophisticated gene regulatory mechanisms which finely tune the proper gene output required for cellular homeostasis, proliferation, and differentiation. However, this elaborate circuitry has also made it vulnerable to perturbations that often result in disease. Among the many types of ncRNAs, long non-coding RNAs (lncRNAs) appear to have the most diverse mechanisms of action including competitive binding to miRNA targets, direct binding to mRNA, interactions with transcription factors, and facilitation of epigenetic modifications. Moreover, many lncRNAs display tissue-specific expression patterns suggesting an important regulatory role in organogenesis, yet the molecular mechanisms through which these molecules regulate cardiac and skeletal muscle development remains surprisingly limited. Given the structural and metabolic similarities of cardiac and skeletal muscle, it is likely that several lncRNAs expressed in both of these tissues have conserved functions in establishing the striated muscle phenotype. As many aspects of regeneration recapitulate development, understanding the role lncRNAs play in these processes may provide novel insights to improve regenerative therapeutic interventions in cardiac and skeletal muscle diseases. This review highlights key lncRNAs that function as regulators of development, regeneration, and disease in cardiac and skeletal muscle. Finally, we highlight lncRNAs encoded by imprinted genes in striated muscle and the contributions of these loci on the regulation of gene expression.
Collapse
|
33
|
Sourabh S, Chauhan M, Yasmin R, Shehzad S, Gupta D, Tuteja R. Plasmodium falciparum DDX17 is an RNA helicase crucial for parasite development. Biochem Biophys Rep 2021; 26:101000. [PMID: 33981864 PMCID: PMC8081931 DOI: 10.1016/j.bbrep.2021.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 11/05/2022] Open
Abstract
Malaria is one of the major global health concerns still prevailing in this 21st century. Even the effect of artemisinin combination therapies (ACT) have declined and causing more mortality across the globe. Therefore, it is important to understand the basic biology of malaria parasite in order to find novel drug targets. Helicases play important role in nucleic acid metabolism and are components of cellular machinery in various organisms. In this manuscript we have performed the biochemical characterization of homologue of DDX17 from Plasmodium falciparum (PfDDX17). Our results show that PfDDX17 is an active RNA helicase and uses mostly ATP for its function. The qRT-PCR experiment results suggest that PfDDX17 is highly expressed in the trophozoite stage and it is localised mainly in the cytoplasm and in infected RBC (iRBC) membrane mostly in the trophozoite stage. The dsRNA knockdown study suggests that PfDDX17 is important for cell cycle progression. These studies report the biochemical functions of PfDDX17 helicase and further augment the fundamental knowledge about helicase families of P. falciparum. Biochemical characterization of homologue of DDX17 from Plasmodium falciparum (PfDDX17) is presented. Results show that PfDDX17 is an active RNA helicase and uses mostly ATP for its function. Results also suggest that PfDDX17 is highly expressed in the trophozoite stage. dsRNA knockdown study revealed that PfDDX17 is important for cell cycle progression.
Collapse
Affiliation(s)
- Suman Sourabh
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manish Chauhan
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahena Yasmin
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sadaf Shehzad
- Translational Bioinformatics Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
34
|
Sergeeva O, Zatsepin T. RNA Helicases as Shadow Modulators of Cell Cycle Progression. Int J Mol Sci 2021; 22:2984. [PMID: 33804185 PMCID: PMC8001981 DOI: 10.3390/ijms22062984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The progress of the cell cycle is directly regulated by modulation of cyclins and cyclin-dependent kinases. However, many proteins that control DNA replication, RNA transcription and the synthesis and degradation of proteins can manage the activity or levels of master cell cycle regulators. Among them, RNA helicases are key participants in RNA metabolism involved in the global or specific tuning of cell cycle regulators at the level of transcription and translation. Several RNA helicases have been recently evaluated as promising therapeutic targets, including eIF4A, DDX3 and DDX5. However, targeting RNA helicases can result in side effects due to the influence on the cell cycle. In this review, we discuss direct and indirect participation of RNA helicases in the regulation of the cell cycle in order to draw attention to downstream events that may occur after suppression or inhibition of RNA helicases.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30b1, 121205 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
35
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
36
|
Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:22. [PMID: 33622377 PMCID: PMC7903707 DOI: 10.1186/s12986-021-00552-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
37
|
The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD. Biomedicines 2021; 9:biomedicines9020219. [PMID: 33672764 PMCID: PMC7924625 DOI: 10.3390/biomedicines9020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion.
Collapse
|
38
|
Legrand M, Jourdan ML, Tallet A, Collin C, Audard V, Larousserie F, Aubert S, Gomez-Brouchet A, Bouvier C, de Pinieux G. Novel partners of USP6 gene in a spectrum of bone and soft tissue lesions. Virchows Arch 2021; 479:147-156. [PMID: 33558945 DOI: 10.1007/s00428-021-03047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Nodular fasciitis, primary aneurysmal bone cyst, myositis ossificans, and their related lesions are benign tumors that share common histological features and a chromosomal rearrangement involving the ubiquitin-specific peptidase 6 (USP6) gene. The identification of an increasing number of new partners implicated in USP6 rearrangements demonstrates a complex tumorogenesis of this tumor spectrum. In this study on a series of 77 tumors (28 nodular fasciitis, 42 aneurysmal bone cysts, and 7 myositis ossificans) from the database of the French Sarcoma Group, we describe 7 new partners of the USP6 gene. For this purpose, rearrangements were first researched by multiplexed RT-qPCRs in the entire population. A targeted RNA sequencing was then used on samples selected according to a high USP6-transcription level expression estimated by RT-qPCR. Thanks to this multistep approach, besides the common USP6 fusions observed, we detected novel USP6 partners: PDLIM7 and MYL12A in nodular fasciitis and TPM4, DDX17, GTF2I, KLF3, and MEF2A in aneurysmal bone cysts. In order to try to bring to light the role played by the recently identified USP6 partners in this lesional spectrum, their functions are discussed. Taking into account that a traumatic participation has long been mentioned in the histogenesis of most of these lesions and because of their morphological resemblance to organizing granulation reparative tissue or callus, a focus is placed on their relationship with tissue remodeling and, to a lesser extent, with bone metabolism.
Collapse
Affiliation(s)
- Mélanie Legrand
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, Avenue de la République, 37044 Cedex 9, Tours, France
| | - Marie-Lise Jourdan
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Anne Tallet
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Christine Collin
- Plateforme de Génétique moléculaire des cancers, CHRU de Tours, Tours, France
| | - Virginie Audard
- Service d'anatomie et cytologie pathologiques, Hôpital Cochin, Paris, France
| | | | - Sébastien Aubert
- Service d'anatomie et cytologie pathologiques, CHU de Lille, Lille, France
| | | | - Corinne Bouvier
- Service d'anatomie et cytologie pathologiques, CHU de Marseille La Timone, Marseille, France
| | - Gonzague de Pinieux
- Service d'anatomie et cytologie pathologiques, CHRU de Tours, Avenue de la République, 37044 Cedex 9, Tours, France. .,PRES Centre-Val de Loire Université, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
39
|
Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional Non-coding RNA During Embryonic Myogenesis and Postnatal Muscle Development and Disease. Front Cell Dev Biol 2021; 9:628339. [PMID: 33585483 PMCID: PMC7876409 DOI: 10.3389/fcell.2021.628339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian metabolism and motion maintenance. Myogenesis is a complex biological process that includes embryonic and postnatal development, which is regulated by specific signaling pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the majority of total RNA in cells and have an important regulatory role in myogenesis. In this review, we introduced the research progress in miRNAs, circRNAs, and lncRNAs related to embryonic and postnatal muscle development. We mainly focused on ncRNAs that regulate myoblast proliferation, differentiation, and postnatal muscle development through multiple mechanisms. Finally, challenges and future perspectives related to the identification and verification of functional ncRNAs are discussed. The identification and elucidation of ncRNAs related to myogenesis will enrich the myogenic regulatory network, and the effective application of ncRNAs will enhance the function of skeletal muscle.
Collapse
Affiliation(s)
- Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
40
|
Fodor A, Liu J, Turner L, Swalla BJ. Transitional chordates and vertebrate origins: Tunicates. Curr Top Dev Biol 2021; 141:149-171. [DOI: 10.1016/bs.ctdb.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
A long noncoding RNA, LncMyoD, modulates chromatin accessibility to regulate muscle stem cell myogenic lineage progression. Proc Natl Acad Sci U S A 2020; 117:32464-32475. [PMID: 33293420 PMCID: PMC7768704 DOI: 10.1073/pnas.2005868117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic regulations control the accessibility of transcription factors to their target regions. Modulation of chromatin accessibility determines which transcripts to be expressed and therefore, defines cell identity. Chromatin modulation during cell fate determination involves a complex regulatory network, yet the comprehensive view remains to be explored. Here, we provide a global view of chromatin accessibility during muscle stem cell activation. We identified a long noncoding RNA (lncRNA), LncMyoD, which regulates lineage determination and progression through modulating chromatin accessibility. Functional analysis showed that loss of LncMyoD strongly impairs reprogramming of fibroblasts into myogenic lineage and causes defects in muscle stem cell differentiation. Our findings provide an epigenetic mechanism for the regulation of muscle stem cell myogenic lineage progression by an lncRNA. Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA, LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion of LncMyoD in muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation. LncMyoD exclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss of LncMyoD prevents the establishment of a permissive chromatin environment at myogenic E-box–containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion of LncMyoD strongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows that LncMyoD associates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.
Collapse
|
42
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
43
|
Hao Q, Zong X, Sun Q, Lin YC, Song YJ, Hashemikhabir S, Hsu RY, Kamran M, Chaudhary R, Tripathi V, Singh DK, Chakraborty A, Li XL, Kim YJ, Orjalo AV, Polycarpou-Schwarz M, Moriarity BS, Jenkins LM, Johansson HE, Zhu YJ, Diederichs S, Bagchi A, Kim TH, Janga SC, Lal A, Prasanth SG, Prasanth KV. The S-phase-induced lncRNA SUNO1 promotes cell proliferation by controlling YAP1/Hippo signaling pathway. eLife 2020; 9:55102. [PMID: 33108271 PMCID: PMC7591261 DOI: 10.7554/elife.55102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1, facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP, a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation.
Collapse
Affiliation(s)
- Qinyu Hao
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xinying Zong
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Qinyu Sun
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - You Jin Song
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Seyedsasan Hashemikhabir
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUI, Indianapolis, United States
| | - Rosaline Yc Hsu
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Mohammad Kamran
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Deepak Kumar Singh
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Arindam Chakraborty
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Yoon Jung Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, United States
| | | | | | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, United States
| | - Lisa M Jenkins
- Center for Cancer Research National Cancer Institute, Bethesda, United States
| | | | - Yuelin J Zhu
- Molecular Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Cancer University of Freiburg, German Cancer Consortium (DKTK), Freiburg, Germany
| | - Anindya Bagchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, United States
| | - Sarath C Janga
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUI, Indianapolis, United States
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
44
|
Kamada S, Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Long Non-coding RNAs Involved in Metabolic Alterations in Breast and Prostate Cancers. Front Oncol 2020; 10:593200. [PMID: 33123488 PMCID: PMC7573247 DOI: 10.3389/fonc.2020.593200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast and prostate cancers are the most prevalent cancers in females and males, respectively. These cancers exhibit sex hormone dependence and thus, hormonal therapies are used to treat these cancers. However, acquired resistance to hormone therapies is a major clinical problem. In addition, certain portions of these cancers initially exhibit hormone-independence due to the absence of sex hormone receptors. Therefore, precise and profound understanding of the cancer pathophysiology is required to develop novel clinical strategies against breast and prostate cancers. Metabolic reprogramming is currently recognized as one of the hallmarks of cancer, as exemplified by the alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Dysregulation of metabolic enzymes and their regulators such as kinases, transcription factors, and other signaling molecules contributes to metabolic alteration in cancer. Moreover, accumulating lines of evidence reveal that long non-coding RNAs (lncRNAs) regulate cancer development and progression by modulating metabolism. Understanding the mechanism and function of lncRNAs associated with cancer-specific metabolic alteration will therefore provide new knowledge for cancer diagnosis and treatment. This review provides an overview of recent studies regarding the role of lncRNAs in metabolism in breast and prostate cancers, with a focus on both sex hormone-dependent and -independent pathways.
Collapse
Affiliation(s)
- Shuhei Kamada
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Takeiwa
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
45
|
Spencer HL, Sanders R, Boulberdaa M, Meloni M, Cochrane A, Spiroski AM, Mountford J, Emanueli C, Caporali A, Brittan M, Rodor J, Baker AH. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc Res 2020; 116:1981-1994. [PMID: 31990292 PMCID: PMC8216332 DOI: 10.1093/cvr/cvaa008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/10/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Long non-coding RNAs (lncRNAs) play functional roles in physiology and disease, yet understanding of their contribution to endothelial cell (EC) function is incomplete. We identified lncRNAs regulated during EC differentiation and investigated the role of LINC00961 and its encoded micropeptide, small regulatory polypeptide of amino acid response (SPAAR), in EC function. METHODS AND RESULTS Deep sequencing of human embryonic stem cell differentiation to ECs was combined with Encyclopedia of DNA Elements (ENCODE) RNA-seq data from vascular cells, identifying 278 endothelial enriched genes, including 6 lncRNAs. Expression of LINC00961, first annotated as an lncRNA but reassigned as a protein-coding gene for the SPAAR micropeptide, was increased during the differentiation and was EC enriched. LINC00961 transcript depletion significantly reduced EC adhesion, tube formation, migration, proliferation, and barrier integrity in primary ECs. Overexpression of the SPAAR open reading frame increased tubule formation; however, overexpression of the full-length transcript did not, despite production of SPAAR. Furthermore, overexpression of an ATG mutant of the full-length transcript reduced network formation, suggesting a bona fide non-coding RNA function of the transcript with opposing effects to SPAAR. As the LINC00961 locus is conserved in mouse, we generated an LINC00961 locus knockout (KO) mouse that underwent hind limb ischaemia (HLI) to investigate the angiogenic role of this locus in vivo. In agreement with in vitro data, KO animals had a reduced capillary density in the ischaemic adductor muscle after 7 days. Finally, to characterize LINC00961 and SPAAR independent functions in ECs, we performed pull-downs of both molecules and identified protein-binding partners. LINC00961 RNA binds the G-actin sequestering protein thymosin beta-4x (Tβ4) and Tβ4 depletion phenocopied the overexpression of the ATG mutant. SPAAR binding partners included the actin-binding protein, SYNE1. CONCLUSION The LINC00961 locus regulates EC function in vitro and in vivo. The gene produces two molecules with opposing effects on angiogenesis: SPAAR and LINC00961.
Collapse
Affiliation(s)
- Helen L Spencer
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Rachel Sanders
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Mounia Boulberdaa
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Marco Meloni
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Amy Cochrane
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Ana-Mishel Spiroski
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Joanne Mountford
- Institute of Cardiovascular and Medical Sciences, University of
Glasgow, 126 University Pl, Glasgow G12 8TA, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Vascular Sciences and Cardiac Function,
Imperial Centre for Translational and Experimental Medicine, Imperial College
London, London W12 0NN, UK
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Julie Rodor
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Andrew H Baker
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
- Institute of Cardiovascular and Medical Sciences, University of
Glasgow, 126 University Pl, Glasgow G12 8TA, UK
| |
Collapse
|
46
|
Comprehensive Analysis of Long Non-coding RNA-Associated Competing Endogenous RNA Network in Duchenne Muscular Dystrophy. Interdiscip Sci 2020; 12:447-460. [PMID: 32876881 DOI: 10.1007/s12539-020-00388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most severe neuromuscular disorders. Long non-coding RNAs (lncRNAs) are a group of non-coding transcripts, which could regulate messenger RNA (mRNA) by binding the mutual miRNAs, thus acting as competing endogenous RNAs (ceRNAs). So far, the role of lncRNA in DMD pathogenesis remains unclear. In the current study, expression profile from a total of 33 DMD patients and 12 healthy people were downloaded from Gene Expression Omnibus (GEO) database (GSE38417 and GSE109178). Differentially expressed (DE) lncRNAs were discovered and targeted mRNAs were predicted. The ceRNA network of lncRNAs-miRNAs-mRNAs was then constructed. Genome Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the putative mRNAs in the ceRNA network were performed through Database for Annotation, Visualization and Integration Discovery (DAVID) website. Topological property of the network was analyzed using Cytoscape to disclose the hub lncRNAs. According to our assessments, 19 common DElncRNAs and 846 common DEmRNAs were identified in DMD compared to controls. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. In conclusion, our latest bioinformatic analysis demonstrated that lncRNA is likely involved in DMD. This work highlights the importance of lncRNA and provides new insights for exploring the molecular mechanism of DMD. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. Remarkably, KEGG analysis indicated that targeted mRNAs in the network were mainly enriched in "microRNAs in cancer" and "proteoglycans in cancer". Our study may offer novel perspectives on the pathogenesis of DMD from the point of lncRNAs. This work might be also conducive for exploring the molecular mechanism of increased incidence of tumorigenesis reported in DMD patients and experimental models.
Collapse
|
47
|
Sawaengdee W, Cui K, Zhao K, Hongeng S, Fucharoen S, Wongtrakoongate P. Genome-Wide Transcriptional Regulation of the Long Non-coding RNA Steroid Receptor RNA Activator in Human Erythroblasts. Front Genet 2020; 11:850. [PMID: 32849830 PMCID: PMC7431964 DOI: 10.3389/fgene.2020.00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023] Open
Abstract
Erythropoiesis of human hematopoietic stem cells (HSCs) maintains generation of red blood cells throughout life. However, little is known how human erythropoiesis is regulated by long non-coding RNAs (lncRNAs). By using ChIRP-seq, we report here that the lncRNA steroid receptor RNA activator (SRA) occupies chromatin, and co-localizes with CTCF, H3K4me3, and H3K27me3 genome-wide in human erythroblast cell line K562. CTCF binding sites that are also occupied by SRA are enriched for either H3K4me3 or H3K27me3. Transcriptome-wide analyses reveal that SRA facilitates expression of erythroid-associated genes, while repressing leukocyte-associated genes in both K562 and CD36-positive primary human proerythroblasts derived from HSCs. We find that SRA-regulated genes are enriched by both CTCF and SRA bindings. Further, silencing of SRA decreases expression of the erythroid-specific markers TFRC and GYPA, and down-regulates expression of globin genes in both K562 and human proerythroblast cells. Taken together, our findings establish that the lncRNA SRA occupies chromatin, and promotes transcription of erythroid genes, therefore facilitating human erythroid transcriptional program.
Collapse
Affiliation(s)
- Waritta Sawaengdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
48
|
lncRNA IGF2 AS Regulates Bovine Myogenesis through Different Pathways. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:874-884. [PMID: 32805490 PMCID: PMC7452115 DOI: 10.1016/j.omtn.2020.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The role of long non-coding RNA (lncRNA) in the regulation of bovine skeletal muscle development remains poorly understood. The present study investigated the function and regulatory mechanism of a novel lncRNA, insulin-like growth factor 2 antisense transcript (IGF2 AS), in bovine myoblast proliferation and differentiation. Gain or loss of IGF2 AS was performed using an expression plasmid or small interfering RNA (siRNA), respectively. Bovine myoblasts were used to investigate the biological function and mechanisms of IGF2 AS in vitro. Results were conjointly analyzed by celluar and molecular biology experiments as well as bioinformatics. Functionally, IGF2 AS could promote proliferation and differentiation of bovine myoblasts. The preliminary mechanism suggests, on the one hand, that IGF2 AS could complement the IGF2 gene intron region and affect the stability and expression of IGF2 mRNA. On the other hand, RNA pull-down and immunoprecipitation assays demonstrated that IGF2 AS could directly bind to the interleukin enhancer binding factor 3 (ILF3) protein and maybe partly though it to regulate myogenesis. In conclusion, the novel identified lncRNA IGF2 AS promoted proliferation and differentiation of bovine myoblasts through various pathways.
Collapse
|
49
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
50
|
Induction of DEAD Box helicase 5 in early adipogenesis is regulated by Ten-eleven translocation 2. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158684. [PMID: 32169654 DOI: 10.1016/j.bbalip.2020.158684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 11/20/2022]
Abstract
Dead box helicase 5 (DDX5) is an RNA helicase that is has cellular function on RNA splicing and transcriptional regulation. It has been reported to be involved in cell differentiation including adipogenesis. However, it is not clear how DDX5 is regulated during adipogenesis. Our previous report demonstrated that the Ten-eleven translocation methyl-cytosine dioxygenase 2 (TET2) is required for adipogenesis. This study was aimed to investigate DDX5 as a direct target of TET2 upon adipogenic induction of 3T3-L1 preadipocyte. Microarray-based screening of differentially expressed genes upon TET2 knockdown identified genes involved in cell cycle, DNA replication, and ribosome biology as major targets of TET2 in the initial step of adipogenic induction. The Ddx5 gene was identified and validated as the target. TET2-mediated epigenetic regulation of the Ddx5 gene was measured by two independent methods including immunoprecipitation against 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) as well as EpiMark 5hmC and 5mC analysis. Ddx5 expression was downregulated upon TET2 knockdown, coincided with a significant decrease of 5hmC at the Ddx5 locus. DDX5 knockdown significantly suppressed adipogenesis, while DDX5 overexpression promoted it. Importantly, DDX5 overexpression, when co-transfected, rescued the process of adipogenesis, which was hindered by TET2 siRNA treatment. The findings suggest TET2-mediated regulation of the Ddx5 gene is required for an initial step of adipogenesis.
Collapse
|