1
|
Yang Y, Li S, Luo L. Responses of organ precursors to correct and incorrect inductive signals. Trends Cell Biol 2024; 34:484-495. [PMID: 37739814 DOI: 10.1016/j.tcb.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
During embryonic development, the inductive molecules produced by local origins normally arrive at their target tissues in a nondirectional, diffusion manner. The target organ precursor cells must correctly interpret these inductive signals to ensure proper specification/differentiation, which is dependent on two prerequisites: (i) obtaining cell-intrinsic competence; and (ii) receiving correct inductive signals while resisting incorrect ones. Gain of intrinsic competence could avoid a large number of misinductions because the incompetent cells are nonresponsive to inductive signals. However, in cases of different precursor cells with similar competence and located in close proximity, resistance to incorrect inductive signals is essential for accurate determination of cell fate. Here we outline the mechanisms of how organ precursors respond to correct and incorrect inductive signals.
Collapse
Affiliation(s)
- Yun Yang
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Shuang Li
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Development Biology and Regenerative Medicine, Southwest University, Chongqing, China; School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Li XC, Gandara L, Ekelöf M, Richter K, Alexandrov T, Crocker J. Rapid response of fly populations to gene dosage across development and generations. Nat Commun 2024; 15:4551. [PMID: 38811562 PMCID: PMC11137061 DOI: 10.1038/s41467-024-48960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Although the effects of genetic and environmental perturbations on multicellular organisms are rarely restricted to single phenotypic layers, our current understanding of how developmental programs react to these challenges remains limited. Here, we have examined the phenotypic consequences of disturbing the bicoid regulatory network in early Drosophila embryos. We generated flies with two extra copies of bicoid, which causes a posterior shift of the network's regulatory outputs and a decrease in fitness. We subjected these flies to EMS mutagenesis, followed by experimental evolution. After only 8-15 generations, experimental populations have normalized patterns of gene expression and increased survival. Using a phenomics approach, we find that populations were normalized through rapid increases in embryo size driven by maternal changes in metabolism and ovariole development. We extend our results to additional populations of flies, demonstrating predictability. Together, our results necessitate a broader view of regulatory network evolution at the systems level.
Collapse
Affiliation(s)
- Xueying C Li
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Lautaro Gandara
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Måns Ekelöf
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kerstin Richter
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Theodore Alexandrov
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit between EMBL and Heidelberg University, Heidelberg, Germany
- BioInnovation Institute, Copenhagen, Denmark
| | - Justin Crocker
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
3
|
Xu R, Dai F, Wu H, Jiao R, He F, Ma J. Shaping the scaling characteristics of gap gene expression patterns in Drosophila. Heliyon 2023; 9:e13623. [PMID: 36879745 PMCID: PMC9984453 DOI: 10.1016/j.heliyon.2023.e13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
How patterns are formed to scale with tissue size remains an unresolved problem. Here we investigate embryonic patterns of gap gene expression along the anterior-posterior (AP) axis in Drosophila. We use embryos that greatly differ in length and, importantly, possess distinct length-scaling characteristics of the Bicoid (Bcd) gradient. We systematically analyze the dynamic movements of gap gene expression boundaries in relation to both embryo length and Bcd input as a function of time. We document the process through which such dynamic movements drive both an emergence of a global scaling landscape and evolution of boundary-specific scaling characteristics. We show that, despite initial differences in pattern scaling characteristics that mimic those of Bcd in the anterior, such characteristics of final patterns converge. Our study thus partitions the contributions of Bcd input and regulatory dynamics inherent to the AP patterning network in shaping embryonic pattern's scaling characteristics.
Collapse
Affiliation(s)
- Ruoqing Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fei Dai
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 510182, China
- Key Laboratory of Interdisciplinary Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng He
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Jun Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
- Corresponding author. Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Shen J, Liu F, Tang C. Scaling dictates the decoder structure. Sci Bull (Beijing) 2022; 67:1486-1495. [PMID: 36546192 DOI: 10.1016/j.scib.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 01/07/2023]
Abstract
Despite fluctuations in embryo size within a species, the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size. This is known as the scaling phenomenon. For morphogen-induced patterning of gene expression, the positional information encoded in the local morphogen concentrations is decoded by the downstream genetic network (the decoder). In this paper, we show that the requirement of scaling sets severe constraints on the geometric structure of such a local decoder, which in turn enables deduction of mutants' behavior and extraction of regulation information without going into any molecular details. We demonstrate that the Drosophila gap gene system achieves scaling in the way consistent with our theory-the decoder geometry required by scaling correctly accounts for the observed gap gene expression pattern in nearly all maternal morphogen mutants. Furthermore, the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry. Our work provides a general theoretical framework for a large class of problems where scaling output is achieved by non-scaling inputs and a local decoder, as well as a unified understanding of scaling, mutants' behavior, and gene regulation for the Drosophila gap gene system.
Collapse
Affiliation(s)
- Jingxiang Shen
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Feng Liu
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Physics, Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Physics, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Iber D, Vetter R. Relationship between epithelial organization and morphogen interpretation. Curr Opin Genet Dev 2022; 75:101916. [PMID: 35605527 DOI: 10.1016/j.gde.2022.101916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Despite molecular noise and genetic differences between individuals, developmental outcomes are remarkably constant. Decades of research has focused on the underlying mechanisms that ensure this precision and robustness. Recent quantifications of chemical gradients and epithelial cell shapes provide novel insights into the basis of precise development. In this review, we argue that these two aspects may be linked in epithelial morphogenesis.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Martin E, Theis S, Gay G, Monier B, Rouvière C, Suzanne M. Arp2/3-dependent mechanical control of morphogenetic robustness in an inherently challenging environment. Dev Cell 2021; 56:687-701.e7. [PMID: 33535069 PMCID: PMC7955168 DOI: 10.1016/j.devcel.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/23/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Epithelial sheets undergo highly reproducible remodeling to shape organs. This stereotyped morphogenesis depends on a well-defined sequence of events leading to the regionalized expression of developmental patterning genes that finally triggers downstream mechanical forces to drive tissue remodeling at a pre-defined position. However, how tissue mechanics controls morphogenetic robustness when challenged by intrinsic perturbations in close proximity has never been addressed. Using Drosophila developing leg, we show that a bias in force propagation ensures stereotyped morphogenesis despite the presence of mechanical noise in the environment. We found that knockdown of the Arp2/3 complex member Arpc5 specifically affects fold directionality while altering neither the developmental nor the force generation patterns. By combining in silico modeling, biophysical tools, and ad hoc genetic tools, our data reveal that junctional myosin II planar polarity favors long-range force channeling and ensures folding robustness, avoiding force scattering and thus isolating the fold domain from surrounding mechanical perturbations. Drosophila developing leg folding is extremely robust Fold orientation becomes variable in Arp2/3 knockdown condition Arp2/3 controls junctional myosin II planar polarity Myosin II planar polarity ensures fold robustness through force channeling
Collapse
Affiliation(s)
- Emmanuel Martin
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Sophie Theis
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France; Morphogénie Logiciels, 32110 St Martin d'Armagnac, France
| | - Guillaume Gay
- Morphogénie Logiciels, 32110 St Martin d'Armagnac, France; Turing Center For Living Systems, Aix-MarseilleUniversity, 13009, Marseille, France.
| | - Bruno Monier
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Christian Rouvière
- Image Processing Facility, Center of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, France
| | - Magali Suzanne
- Molecular, Cellular & Developmental Biology (MCD), Center of Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
7
|
Waymack R, Fletcher A, Enciso G, Wunderlich Z. Shadow enhancers can suppress input transcription factor noise through distinct regulatory logic. eLife 2020; 9:e59351. [PMID: 32804082 PMCID: PMC7556877 DOI: 10.7554/elife.59351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022] Open
Abstract
Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of organisms and are critical for robust developmental patterning. However, their mechanism of action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by buffering upstream noise through a separation of transcription factor (TF) inputs at the individual enhancers. By measuring the transcriptional dynamics of several Kruppel shadow enhancer configurations in live Drosophila embryos, we showed that individual member enhancers act largely independently. We found that TF fluctuations are an appreciable source of noise that the shadow enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is also uniquely able to maintain low levels of expression noise across a wide range of temperatures. A stochastic model demonstrated the separation of TF inputs is sufficient to explain these findings. Our results suggest the widespread use of shadow enhancers is partially due to their noise suppressing ability.
Collapse
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| | - Alvaro Fletcher
- Mathematical, Computational, and Systems Biology Graduate Program, University of California, IrvineIrvineUnited States
| | - German Enciso
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
8
|
Yang Z, Zhu H, Kong K, Wu X, Chen J, Li P, Jiang J, Zhao J, Cui B, Liu F. The dynamic transmission of positional information in stau- mutants during Drosophila embryogenesis. eLife 2020; 9:e54276. [PMID: 32511091 PMCID: PMC7332292 DOI: 10.7554/elife.54276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/06/2020] [Indexed: 01/04/2023] Open
Abstract
It has been suggested that Staufen (Stau) is key in controlling the variability of the posterior boundary of the Hb anterior domain (xHb). However, the mechanism that underlies this control is elusive. Here, we quantified the dynamic 3D expression of segmentation genes in Drosophila embryos. With improved control of measurement errors, we show that the xHb of stau- mutants reproducibly moves posteriorly by 10% of the embryo length (EL) to the wild type (WT) position in the nuclear cycle (nc) 14, and that its variability over short time windows is comparable to that of the WT. Moreover, for stau- mutants, the upstream Bicoid (Bcd) gradients show equivalent relative intensity noise to that of the WT in nc12-nc14, and the downstream Even-skipped (Eve) and cephalic furrow (CF) show the same positional errors as these factors in WT. Our results indicate that threshold-dependent activation and self-organized filtering are not mutually exclusive and could both be implemented in early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
- China National Center for Biotechnology DevelopmentBeijingChina
| | - Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Kakit Kong
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Xiaoxuan Wu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jiayi Chen
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Peiyao Li
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jialong Jiang
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jinchao Zhao
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Bofei Cui
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| |
Collapse
|
9
|
Čapek D, Müller P. Positional information and tissue scaling during development and regeneration. Development 2019; 146:146/24/dev177709. [PMID: 31862792 DOI: 10.1242/dev.177709] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to contribute to the appropriate tissues during development, cells need to know their position within the embryo. This positional information is conveyed by gradients of signaling molecules, termed morphogens, that are produced in specific regions of the embryo and induce concentration-dependent responses in target tissues. Positional information is remarkably robust, and embryos often develop with the correct proportions even if large parts of the embryo are removed. In this Review, we discuss classical embryological experiments and modern quantitative analyses that have led to mechanistic insights into how morphogen gradients adapt, scale and properly pattern differently sized domains. We analyze these experimental findings in the context of mathematical models and synthesize general principles that apply to multiple systems across species and developmental stages.
Collapse
Affiliation(s)
- Daniel Čapek
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen Germany .,Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen Germany
| |
Collapse
|
10
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
He F, Wu H, Cheung D, Ma J. Detection and Quantification of the Bicoid Concentration Gradient in Drosophila Embryos. Methods Mol Biol 2019; 1863:19-27. [PMID: 30324590 DOI: 10.1007/978-1-4939-8772-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We describe methods for detecting and quantifying the concentration gradient of the morphogenetic protein Bicoid through fluorescent immunostaining in fixed Drosophila embryos. We introduce image-processing steps using MATLAB functions, and discuss how the measured signal intensities can be analyzed to extract quantitative information. The described procedures permit robust detection of the endogenous Bicoid concentration gradient at a cellular resolution.
Collapse
Affiliation(s)
- Feng He
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honggang Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David Cheung
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jun Ma
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Laboratory of Systems Developmental Biology, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
|
13
|
|
14
|
Abstract
Morphogen gradients provide positional information to underlying cells that translate the information into differential gene expression and eventually different cell fates. Scale invariance is the property where the gradients of the morphogen adjust proportionately to the size of the domain. Scale invariance of morphogen gradients or patterns of differentiation is a common phenomenon observed between individuals within the same species and between homologous tissues or structures in different species. To determine whether or not a pattern is scale invariant, others and we have developed definitions and measurements of gradient scaling. These include point-wise and global scaling errors as well as global scaling power. Furthermore, there are a number of mathematical conditions for scale invariance of advection-diffusion-reaction models that inform mechanisms of scaling. Herein we provide a deeper perspective on modeling and measurement of scale invariance of morphogen gradients.
Collapse
Affiliation(s)
- Yan Huang
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - David Umulis
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
15
|
Ma J, He F, Xie G, Deng WM. Maternal AP determinants in the Drosophila oocyte and embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:562-81. [PMID: 27253156 DOI: 10.1002/wdev.235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 12/12/2022]
Abstract
An animal embryo cannot initiate its journey of forming a new life on its own. It must rely on maternally provided resources and inputs to kick-start its developmental process. In Drosophila, the initial polarities of the embryo along both the anterior-posterior (AP) and dorsal-ventral (DV) axes are also specified by maternal determinants. Over the past several decades, genetic and molecular studies have identified and characterized such determinants, as well as the zygotic genetic regulatory networks that control patterning in the early embryo. Extensive studies of oogenesis have also led to a detailed knowledge of the cellular and molecular interactions that control the formation of a mature egg. Despite these efforts, oogenesis and embryogenesis have been studied largely as separate problems, except for qualitative aspects with regard to maternal regulation of the asymmetric localization of maternal determinants. Can oogenesis and embryogenesis be viewed from a unified perspective at a quantitative level, and can that improve our understanding of how robust embryonic patterning is achieved? Here, we discuss the basic knowledge of the regulatory mechanisms controlling oogenesis and embryonic patterning along the AP axis. We explore properties of the maternal Bicoid gradient in relation to embryo size in search for a unified framework for robust AP patterning. WIREs Dev Biol 2016, 5:562-581. doi: 10.1002/wdev.235 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
16
|
Liu J, Xiao Y, Zhang T, Ma J. Time to move on: Modeling transcription dynamics during an embryonic transition away from maternal control. Fly (Austin) 2016; 10:101-7. [PMID: 27172244 DOI: 10.1080/19336934.2016.1188231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In a recent study, we investigated the regulation of hunchback (hb) transcription dynamics in Drosophila embryos. Our results suggest that shutdown of hb transcription at early nuclear cycle (nc) 14 is an event associated with the global changes taking place during the mid-blastula transition (MBT). Here we have developed a simple model of hb transcription dynamics during this transition time. With kinetic parameters estimated from our published experimental data, the model describes the dynamical processes of hb gene transcription and hb mRNA accumulation. With two steps, transcription onset upon exiting the previous mitosis followed by a sudden impact that blocks gene activation, the model recapitulates the observed dynamics of hb transcription during the nc14 interphase. The timing of gene inactivation is essential, as its alterations lead to changes in both hb transcription dynamics and hb mRNA levels. Our model provides a clear dynamical picture of hb transcription regulation as one of the many, actively regulated events concurrently taking place during the MBT.
Collapse
Affiliation(s)
- Junbo Liu
- a Division of Biomedical Informatics, Cincinnati Children's Research Foundation , Cincinnati , OH
| | - Yanyu Xiao
- b Department of Mathematical Sciences , University of Cincinnati , Cincinnati , OH
| | - Tongli Zhang
- c Department of Molecular and Cellular Physiology , University of Cincinnati College of Medicine , Cincinnati , OH
| | - Jun Ma
- a Division of Biomedical Informatics, Cincinnati Children's Research Foundation , Cincinnati , OH.,d Division of Developmental Biology, Cincinnati Children's Research Foundation , Cincinnati , OH
| |
Collapse
|
17
|
Ferraro T, Lucas T, Clémot M, De Las Heras Chanes J, Desponds J, Coppey M, Walczak AM, Dostatni N. New methods to image transcription in living fly embryos: the insights so far, and the prospects. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:296-310. [PMID: 26894441 PMCID: PMC5021148 DOI: 10.1002/wdev.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022]
Abstract
The regulation of transcription is a fundamental process underlying the determination of cell identity and its maintenance during development. In the last decades, most of the transcription factors, which have to be expressed at the right place and at the right time for the proper development of the fly embryo, have been identified. However, mostly because of the lack of methods to visualize transcription as the embryo develops, their coordinated spatiotemporal dynamics remains largely unexplored. Efforts have been made to decipher the transcription process with single molecule resolution at the single cell level. Recently, the fluorescent labeling of nascent RNA in developing fly embryos allowed the direct visualization of ongoing transcription at single loci within each nucleus. Together with powerful imaging and quantitative data analysis, these new methods provide unprecedented insights into the temporal dynamics of the transcription process and its intrinsic noise. Focusing on the Drosophila embryo, we discuss how the detection of single RNA molecules enhanced our comprehension of the transcription process and we outline the potential next steps made possible by these new imaging tools. In combination with genetics and theoretical analysis, these new imaging methods will aid the search for the mechanisms responsible for the robustness of development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Teresa Ferraro
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Tanguy Lucas
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Marie Clémot
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Jose De Las Heras Chanes
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Jonathan Desponds
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| | - Aleksandra M Walczak
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France.,Ecole Normale Superieure, PSL Research University, Paris, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,UMR3664/UMR168/UMR8549, CNRS, Paris, France
| |
Collapse
|
18
|
Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in Drosophila. Nat Commun 2015; 6:10031. [PMID: 26644070 PMCID: PMC4686680 DOI: 10.1038/ncomms10031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/28/2015] [Indexed: 01/19/2023] Open
Abstract
A widely appreciated aspect of developmental robustness is pattern formation in proportion to size. But how such scaling features emerge dynamically remains poorly understood. Here we generate a data set of the expression profiles of six gap genes in Drosophila melanogaster embryos that differ significantly in size. Expression patterns exhibit size-dependent dynamics both spatially and temporally. We uncover a dynamic emergence of under-scaling in the posterior, accompanied by reduced expression levels of gap genes near the middle of large embryos. Simulation results show that a size-dependent Bicoid gradient input can lead to reduced Krüppel expression that can have long-range and dynamic effects on gap gene expression in the posterior. Thus, for emergence of scaled patterns, the entire embryo may be viewed as a single unified dynamic system where maternally derived size-dependent information interpreted locally can be propagated in space and time as governed by the dynamics of a gene regulatory network. How pattern formation is regulated relative to the size of an organism is unclear. Here, Wu et al. take data from gap gene expression in flies of different sizes together with simulations, identifying how scaling emerges dynamically and that local patterning influences global gene regulatory networks.
Collapse
|
19
|
Abstract
The Drosophila blastoderm and the vertebrate neural tube are archetypal examples of morphogen-patterned tissues that create precise spatial patterns of different cell types. In both tissues, pattern formation is dependent on molecular gradients that emanate from opposite poles. Despite distinct evolutionary origins and differences in time scales, cell biology and molecular players, both tissues exhibit striking similarities in the regulatory systems that establish gene expression patterns that foreshadow the arrangement of cell types. First, signaling gradients establish initial conditions that polarize the tissue, but there is no strict correspondence between specific morphogen thresholds and boundary positions. Second, gradients initiate transcriptional networks that integrate broadly distributed activators and localized repressors to generate patterns of gene expression. Third, the correct positioning of boundaries depends on the temporal and spatial dynamics of the transcriptional networks. These similarities reveal design principles that are likely to be broadly applicable to morphogen-patterned tissues.
Collapse
Affiliation(s)
- James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Stephen Small
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
20
|
Shaped 3D singular spectrum analysis for quantifying gene expression, with application to the early zebrafish embryo. BIOMED RESEARCH INTERNATIONAL 2015; 2015:986436. [PMID: 26495320 PMCID: PMC4606214 DOI: 10.1155/2015/986436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field.
Collapse
|
21
|
Liu J, Ma J. Modulation of temporal dynamics of gene transcription by activator potency in the Drosophila embryo. Development 2015; 142:3781-90. [PMID: 26395487 DOI: 10.1242/dev.126946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 12/24/2022]
Abstract
The Drosophila embryo at the mid-blastula transition (MBT) concurrently experiences a receding first wave of zygotic transcription and the surge of a massive second wave. It is not well understood how genes in the first wave become turned off transcriptionally and how their precise timing may impact embryonic development. Here we perturb the timing of the shutdown of Bicoid (Bcd)-dependent hunchback (hb) transcription in the embryo through the use of a Bcd mutant that has heightened activating potency. A delayed shutdown specifically increases Bcd-activated hb levels, and this alters spatial characteristics of the patterning outcome and causes developmental defects. Our study thus documents a specific participation of maternal activator input strength in the timing of molecular events in precise accordance with MBT morphological progression.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
22
|
Probing the impact of temperature on molecular events in a developmental system. Sci Rep 2015; 5:13124. [PMID: 26286011 PMCID: PMC4541335 DOI: 10.1038/srep13124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/16/2015] [Indexed: 01/19/2023] Open
Abstract
A well-appreciated general feature of development is the ability to achieve a normal outcome despite the inevitable variability at molecular, genetic, or environmental levels. But it is not well understood how changes in a global factor such as temperature bring about specific challenges to a developmental system in molecular terms. Here we address this question using early Drosophila embryos where the maternal gradient Bicoid (Bcd) instructs anterior-patterning (AP) patterning. We show that temperature can impact the amplitude of the Bcd gradient in the embryo. To evaluate how molecular decisions are made at different temperatures, we quantify Bcd concentrations and the expression of its target gene hunchback (hb) in individual embryos. Our results suggest a relatively robust Bcd concentration threshold in inducing hb transcription within a temperature range. Our results also reveal a complex nature of the effects of temperature on the progressions of developmental and molecular events of the embryo. Our study thus advances the concept of developmental robustness by quantitatively elaborating specific features and challenges—imposed by changes in temperature—that an embryo must resolve.
Collapse
|
23
|
Abstract
Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centrosomes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size-control mechanisms.
Collapse
Affiliation(s)
- Simone Reber
- Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, WC2A 3LY London, United Kingdom MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| |
Collapse
|
24
|
Lo WC, Zhou S, Wan FYM, Lander AD, Nie Q. Robust and precise morphogen-mediated patterning: trade-offs, constraints and mechanisms. J R Soc Interface 2015; 12:20141041. [PMID: 25551154 DOI: 10.1098/rsif.2014.1041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The patterning of many developing tissues is organized by morphogens. Genetic and environmental perturbations of gene expression, protein synthesis and ligand binding are among the sources of unreliability that limit the accuracy and precision of morphogen-mediated patterning. While it has been found that the robustness of morphogen gradients to the perturbation of morphogen synthesis can be enhanced by particular mechanisms, how such mechanisms affect robustness to other perturbations, such as to receptor synthesis for the same morphogen, has been little explored. Here, we investigate the interplay between the robustness of patterning to the changes in receptor synthesis and morphogen synthesis and to the effects of cell-to-cell variability. Our analysis elucidates the trade-offs and constraints that arise as a result of achieving these three performance objectives simultaneously in the context of simple, steady-state morphogen gradients formed by diffusion and receptor-mediated uptake. Analysis of the interdependence between length scales of patterning and these performance objectives reveals several potential mechanisms for mitigating such trade-offs and constraints. One involves downregulation of receptor synthesis in the morphogen source, while another involves the presence of non-signalling cell-surface morphogen-binding molecules. Both of these mechanisms occur in Drosophila wing discs during their patterning. We computationally elucidate how these mechanisms improve the robustness and precision of morphogen-mediated patterning.
Collapse
|
25
|
Fundamental origins and limits for scaling a maternal morphogen gradient. Nat Commun 2015; 6:6679. [PMID: 25809405 PMCID: PMC4375784 DOI: 10.1038/ncomms7679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/18/2015] [Indexed: 01/04/2023] Open
Abstract
Tissue expansion and patterning are integral to development, but it is unknown quantitatively how a mother accumulates molecular resources to invest in the future of instructing robust embryonic patterning. Here we develop a model, Tissue Expansion-Modulated Maternal Morphogen Scaling (TEM3S), to study scaled anterior-posterior patterning in Drosophila embryos. Using both ovaries and embryos, we measure a core quantity of the model, the scaling power of the Bicoid (Bcd) morphogen gradient’s amplitude nA. We also evaluate directly model-derived predictions about Bcd gradient and patterning properties. Our results show that scaling of the Bcd gradient in the embryo originates from, and is constrained fundamentally by, a dynamic relationship between maternal tissue expansion and bcd gene copy number expansion in the ovary. This delicate connection between the two transitioning stages of a life cycle, stemming from a finite value of nA ~ 3, underscores a key feature of developmental systems depicted by TEM3S.
Collapse
|
26
|
Holloway DM, Spirov AV. Mid-embryo patterning and precision in Drosophila segmentation: Krüppel dual regulation of hunchback. PLoS One 2015; 10:e0118450. [PMID: 25793381 PMCID: PMC4368514 DOI: 10.1371/journal.pone.0118450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 12/26/2022] Open
Abstract
In early development, genes are expressed in spatial patterns which later define cellular identities and tissue locations. The mechanisms of such pattern formation have been studied extensively in early Drosophila (fruit fly) embryos. The gap gene hunchback (hb) is one of the earliest genes to be expressed in anterior-posterior (AP) body segmentation. As a transcriptional regulator for a number of downstream genes, the spatial precision of hb expression can have significant effects in the development of the body plan. To investigate the factors contributing to hb precision, we used fine spatial and temporal resolution data to develop a quantitative model for the regulation of hb expression in the mid-embryo. In particular, modelling hb pattern refinement in mid nuclear cleavage cycle 14 (NC14) reveals some of the regulatory contributions of simultaneously-expressed gap genes. Matching the model to recent data from wild-type (WT) embryos and mutants of the gap gene Krüppel (Kr) indicates that a mid-embryo Hb concentration peak important in thoracic development (at parasegment 4, PS4) is regulated in a dual manner by Kr, with low Kr concentration activating hb and high Kr concentration repressing hb. The processes of gene expression (transcription, translation, transport) are intrinsically random. We used stochastic simulations to characterize the noise generated in hb expression. We find that Kr regulation can limit the positional variability of the Hb mid-embryo border. This has been recently corroborated in experimental comparisons of WT and Kr- mutant embryos. Further, Kr regulation can decrease uncertainty in mid-embryo hb expression (i.e. contribute to a smooth Hb boundary) and decrease between-copy transcriptional variability within nuclei. Since many tissue boundaries are first established by interactions between neighbouring gene expression domains, these properties of Hb-Kr dynamics to diminish the effects of intrinsic expression noise may represent a general mechanism contributing to robustness in early development.
Collapse
Affiliation(s)
- David M. Holloway
- Mathematics Department, British Columbia Institute of Technology, Burnaby, B.C., V5G 3H2, Canada
- * E-mail:
| | - Alexander V. Spirov
- Computer Science, and Center of Excellence in Wireless and Information Technology, State University of New York, Stony Brook, Stony Brook, New York, United States of America
- The Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| |
Collapse
|
27
|
Reingruber J, Holcman D. Computational and mathematical methods for morphogenetic gradient analysis, boundary formation and axonal targeting. Semin Cell Dev Biol 2014; 35:189-202. [PMID: 25194659 DOI: 10.1016/j.semcdb.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Morphogenesis and axonal targeting are key processes during development that depend on complex interactions at molecular, cellular and tissue level. Mathematical modeling is essential to bridge this multi-scale gap in order to understand how the emergence of large structures is controlled at molecular level by interactions between various signaling pathways. We summarize mathematical modeling and computational methods for time evolution and precision of morphogenetic gradient formation. We discuss tissue patterning and the formation of borders between regions labeled by different morphogens. Finally, we review models and algorithms that reveal the interplay between morphogenetic gradients and patterned activity for axonal pathfinding and the generation of the retinotopic map in the visual system.
Collapse
Affiliation(s)
- Jürgen Reingruber
- Group of Computational Biology and Applied Mathematics, Institute of Biology (IBENS), CNRS INSERM 1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | - David Holcman
- Group of Computational Biology and Applied Mathematics, Institute of Biology (IBENS), CNRS INSERM 1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
28
|
Importance of crowding in signaling, genetic, and metabolic networks. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:419-42. [PMID: 24380601 DOI: 10.1016/b978-0-12-800046-5.00012-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is now well established that the cell is a highly crowded environment. Yet, the effects of crowding on the dynamics of signaling pathways, gene regulation networks, and metabolic networks are still largely unknown. Crowding can alter both molecular diffusion and the equilibria of biomolecular reactions. In this chapter, we first discuss how diffusion can affect biochemical networks. Diffusion of transcription factors can increase noise in gene expression, while diffusion of proteins between intracellular compartments or between cells can reduce concentration fluctuations. In push-pull networks diffusion can impede information transmission, while in multisite protein modification networks diffusion can qualitatively change the macroscopic response of the system, such as the loss or emergence of bistability. Moreover, diffusion can directly change the metabolic flux. We describe how crowding affects diffusion, and thus how all these phenomena are influenced by crowding. Yet, a potentially more important effect of crowding on biochemical networks is mediated via the shift in the equilibria of bimolecular reactions, and we provide computational evidence that supports this idea. Finally, we discuss how the effects of crowding can be incorporated in models of biochemical networks.
Collapse
|
29
|
Cheung D, Miles C, Kreitman M, Ma J. Adaptation of the length scale and amplitude of the Bicoid gradient profile to achieve robust patterning in abnormally large Drosophila melanogaster embryos. Development 2013; 141:124-35. [PMID: 24284208 DOI: 10.1242/dev.098640] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The formation of patterns that are proportional to the size of the embryo is an intriguing but poorly understood feature of development. Molecular mechanisms controlling such proportionality, or scaling, can be probed through quantitative interrogations of the properties of morphogen gradients that instruct patterning. Recent studies of the Drosophila morphogen gradient Bicoid (Bcd), which is required for anterior-posterior (AP) patterning in the early embryo, have uncovered two distinct ways of scaling. Whereas between-species scaling is achieved by adjusting the exponential shape characteristic of the Bcd gradient profile, namely, its length scale or length constant (λ), within-species scaling is achieved through adjusting the profile's amplitude, namely, the Bcd concentration at the anterior (B0). Here, we report a case in which Drosophila melanogaster embryos exhibit Bcd gradient properties uncharacteristic of their size. The embryos under investigation were from a pair of inbred lines that had been artificially selected for egg size extremes. We show that B0 in the large embryos is uncharacteristically low but λ is abnormally extended. Although the large embryos have more total bcd mRNA than their smaller counterparts, as expected, its distribution is unusually broad. We show that the large and small embryos develop gene expression patterns exhibiting boundaries that are proportional to their respective lengths. Our results suggest that the large-egg inbred line has acquired compensating properties that counteract the extreme length of the embryos to maintain Bcd gradient properties necessary for robust patterning. Our study documents, for the first time to our knowledge, a case of within-species Bcd scaling achieved through adjusting the gradient profile's exponential shape characteristic, illustrating at a molecular level how a developmental system can follow distinct operational paths towards the goal of robust and scaled patterning.
Collapse
Affiliation(s)
- David Cheung
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
30
|
Liu J, Ma J. Uncovering a dynamic feature of the transcriptional regulatory network for anterior-posterior patterning in the Drosophila embryo. PLoS One 2013; 8:e62641. [PMID: 23646132 PMCID: PMC3639989 DOI: 10.1371/journal.pone.0062641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Anterior-posterior (AP) patterning in the Drosophila embryo is dependent on the Bicoid (Bcd) morphogen gradient. However, most target genes of Bcd also require additional inputs to establish their expression domains, reflective of the operation of a cross-regulatory network and contributions of other maternal signals. This is in contrast to hunchback (hb), which has an anterior expression domain driven by an enhancer that appears to respond primarily to the Bcd input. To gain a better understanding of the regulatory logic of the AP patterning network, we perform quantitative studies that specifically investigate the dynamics of hb transcription during development. We show that Bcd-dependent hb transcription, monitored by the intron-containing nascent transcripts near the P2 promoter, is turned off quickly–on the order of a few minutes–upon entering the interphase of nuclear cycle 14A. This shutdown contrasts with earlier cycles during which active hb transcription can persist until the moment when the nucleus enters mitosis. The shutdown takes place at a time when the nuclear Bcd gradient profile in the embryo remains largely intact, suggesting that this is a process likely subject to control of a currently unknown regulatory mechanism. We suggest that this dynamic feature offers a window of opportunity for hb to faithfully interpret, and directly benefit from, Bcd gradient properties, including its scaling properties, to help craft a robust AP patterning outcome.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Webber JL, Rebay I. Chromatin occupancy patterns of the ETS repressor Yan: a mechanism for buffering gene expression against noise? Fly (Austin) 2013; 7:92-8. [PMID: 23575308 DOI: 10.4161/fly.24162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Developmental programs are driven by transcription factors that coordinate precise patterns of gene expression. While recent publications have described the importance of coordinated action of transcriptional activators at multiple cis-regulatory modules or enhancers, the contribution of sequence-specific repressors to overall regulation and robustness of gene expression has been difficult to ascertain. The Ets transcriptional repressor Yan functions as part of a conserved network downstream of receptor tyrosine kinase (RTK) signaling in Drosophila. This network displays switch-like responsiveness to RTK signaling, with the transition from a high-Yan to a low-Yan state induced by mitogen-activated protein kinase (MAPK)-mediated phosphorylation and inactivation of Yan. The ability of Yan to self-associate through a conserved sterile α motif (SAM) is essential for Yan's repressive ability, and has been suggested to allow spreading of Yan repressive complexes along chromatin. Such a mechanism has the potential to confer both signal responsiveness and robustness to the Yan network. To explore this spreading model, we compared the genome-wide chromatin binding profiles of wild-type vs. monomeric Yan. Consistent with the starting prediction, we found that wild type chromatin occupancy at genes encoding crucial developmental regulators and core signaling pathway components occurs as clusters of peaks that "spread" over multiple kilobases. However monomeric Yan, which fails to rescue a yan null mutation and displays significantly impaired repressive ability, exhibits a broadly similar occupancy profile to that of wild-type Yan, with multi-kilobase binding at developmentally important genes. This unexpected result suggests that SAM-mediated self-association does not mediate Yan recruitment to DNA or chromatin spreading, and raises the questions of why developmentally important genes require extensive Yan chromatin occupancy and how SAM-mediated polymerization might contribute to active repressive mechanisms in this context. In this Extra View article we discuss potential mechanisms by which Yan self-association and extended chromatin occupancy may contribute to robust regulation of gene expression.
Collapse
Affiliation(s)
- Jemma L Webber
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
32
|
Surkova S, Golubkova E, Manu, Panok L, Mamon L, Reinitz J, Samsonova M. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev Biol 2013; 376:99-112. [PMID: 23333947 DOI: 10.1016/j.ydbio.2013.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/30/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Abstract
Here we characterize the response of the Drosophila segmentation system to mutations in two gap genes, Kr and kni, in the form of single or double homozygotes and single heterozygotes. Segmentation gene expression in these genotypes was quantitatively monitored with cellular resolution in space and 6.5 to 13min resolution in time. As is the case with wild type, we found that gene expression domains in the posterior portion of the embryo shift to the anterior over time. In certain cases, such as the gt posterior domain in Kr mutants, the shifts are significantly larger than is seen in wild type embryos. We also investigated the effects of Kr and kni on the variability of gene expression. Mutations often produce variable phenotypes, and it is well known that the cuticular phenotype of Kr mutants is variable. We sought to understand the molecular basis of this effect. We find that throughout cycle 14A the relative levels of eve and ftz expression in stripes 2 and 3 are variable among individual embryos. Moreover, in Kr and kni mutants, unlike wild type, the variability in positioning of the posterior Hb domain and eve stripe 7 is not decreased or filtered with time. The posterior Gt domain in Kr mutants is highly variable at early times, but this variability decreases when this domain shifts in the anterior direction to the position of the neighboring Kni domain. In contrast to these findings, positional variability throughout the embryo does not decrease over time in double Kr;kni mutants. In heterozygotes the early expression patterns of segmentation genes resemble patterns seen in homozygous mutants but by the onset of gastrulation they become similar to the wild type patterns. Finally, we note that gene expression levels are reduced in Kr and kni mutant embryos and have a tendency to decrease over time. This is a surprising result in view of the role that mutual repression is thought to play in the gap gene system.
Collapse
Affiliation(s)
- Svetlana Surkova
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnical University, 29 Polytehnicheskaya Street, St. Petersburg 195251, Russia
| | | | | | | | | | | | | |
Collapse
|
33
|
Dubuis JO, Samanta R, Gregor T. Accurate measurements of dynamics and reproducibility in small genetic networks. Mol Syst Biol 2013; 9:639. [PMID: 23340845 PMCID: PMC3564256 DOI: 10.1038/msb.2012.72] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022] Open
Abstract
Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos. Careful error analysis of hundreds of expression profiles reveals that less than ∼20% of the observed embryo-to-embryo fluctuations stem from experimental error. These measurements make it possible to extract not only very accurate mean gene expression profiles but also their naturally occurring fluctuations of biological origin and corresponding cross-correlations. We use this analysis to extract gap gene profile dynamics with ∼1 min accuracy. The combination of these new measurements and analysis techniques reveals a twofold increase in profile reproducibility owing to a collective network dynamics that relays positional accuracy from the maternal gradients to the pair-rule genes.
Collapse
Affiliation(s)
- Julien O Dubuis
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Reba Samanta
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
34
|
Liu J, Ma J. Dampened regulates the activating potency of Bicoid and the embryonic patterning outcome in Drosophila. Nat Commun 2013; 4:2968. [PMID: 24336107 PMCID: PMC3902774 DOI: 10.1038/ncomms3968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/18/2013] [Indexed: 01/26/2023] Open
Abstract
The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning; however, it is poorly understood how its ability to activate a target gene may have an impact on this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear cofactor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is because of a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP-patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fate-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| | - Jun Ma
- Division of Biomedical Informatics Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
- Division of Developmental Biology Cincinnati Children's Research Foundation 3333 Burnet Avenue Cincinnati, Ohio United States of America
| |
Collapse
|
35
|
Spirov AV, Holloway DM. Modeling the evolution of gene regulatory networks for spatial patterning in embryo development. PROCEDIA COMPUTER SCIENCE 2013; 18:10.1016/j.procs.2013.05.303. [PMID: 24319503 PMCID: PMC3849711 DOI: 10.1016/j.procs.2013.05.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A central question in evolutionary biology concerns the transition between discrete numbers of units (e.g. vertebrate digits, arthropod segments). How do particular numbers of units, robust and characteristic for one species, evolve into another number for another species? Intermediate phases with a diversity of forms have long been theorized, but these leave little fossil or genomic data. We use evolutionary computations (EC) of a gene regulatory network (GRN) model to investigate how embryonic development is altered to create new forms. The trajectories are epochal and non-smooth, in accord with both the observed stability of species and the evolvability between forms.
Collapse
Affiliation(s)
- Alexander V. Spirov
- Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, New York, USA; and The Sechenov Institute of Evolutionary Physiology & Biochemistry, St.-Petersburg, Russia
| | - David M. Holloway
- Mathematics Department, British Columbia Institute of Technology, Burnaby, B.C., Canada
| |
Collapse
|
36
|
Jaeger J, Manu, Reinitz J. Drosophila blastoderm patterning. Curr Opin Genet Dev 2012; 22:533-41. [DOI: 10.1016/j.gde.2012.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/16/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
|
37
|
Precision of hunchback expression in the Drosophila embryo. Curr Biol 2012; 22:2247-52. [PMID: 23122844 DOI: 10.1016/j.cub.2012.09.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/31/2012] [Accepted: 09/28/2012] [Indexed: 01/25/2023]
Abstract
Activation of the gap gene hunchback (hb) by the maternal Bicoid gradient is one of the most intensively studied gene regulatory interactions in animal development. Most efforts to understand this process have focused on the classical Bicoid target enhancer located immediately upstream of the P2 promoter. However, hb is also regulated by a recently identified distal shadow enhancer as well as a neglected "stripe" enhancer, which mediates expression in both central and posterior regions of cellularizing embryos. Here, we employ BAC transgenesis and quantitative imaging methods to investigate the individual contributions of these different enhancers to the dynamic hb expression pattern. These studies reveal that the stripe enhancer is crucial for establishing the definitive border of the anterior Hb expression pattern, just beyond the initial border delineated by Bicoid. Removal of this enhancer impairs dynamic expansion of hb expression and results in variable cuticular defects in the mesothorax (T2) due to abnormal patterns of segmentation gene expression. The stripe enhancer is subject to extensive regulation by gap repressors, including Kruppel, Knirps, and Hb itself. We propose that this repression helps ensure precision of the anterior Hb border in response to variations in the Bicoid gradient.
Collapse
|
38
|
Trisnadi N, Altinok A, Stathopoulos A, Reeves GT. Image analysis and empirical modeling of gene and protein expression. Methods 2012; 62:68-78. [PMID: 23104159 DOI: 10.1016/j.ymeth.2012.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 11/26/2022] Open
Abstract
Protein gradients and gene expression patterns are major determinants in the differentiation and fate map of the developing embryo. Here we discuss computational methods to quantitatively measure the positions of gene expression domains and the gradients of protein expression along the dorsal-ventral axis in the Drosophila embryo. Our methodology involves three layers of data. The first layer, or the primary data, consists of z-stack confocal images of embryos processed by in situ hybridization and/or antibody stainings. The secondary data are relationships between location, usually an x-axis coordinate, and fluorescent intensity of gene or protein detection. Tertiary data comprise the optimal parameters that arise from fits of the secondary data to empirical models. The tertiary data are useful to distill large datasets of imaged embryos down to a tractable number of conceptually useful parameters. This analysis allows us to detect subtle phenotypes and is adaptable to any set of genes or proteins with a canonical pattern. For example, we show how insights into the Dorsal transcription factor protein gradient and its target gene ventral-neuroblasts defective (vnd) were obtained using such quantitative approaches.
Collapse
Affiliation(s)
- Nathanie Trisnadi
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
39
|
Kicheva A, Cohen M, Briscoe J. Developmental pattern formation: insights from physics and biology. Science 2012; 338:210-2. [PMID: 23066071 DOI: 10.1126/science.1225182] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The spatial organization of cell fates during development involves the interpretation of morphogen gradients by cellular signaling cascades and transcriptional networks. Recent studies use biophysical models, genetics, and quantitative imaging to unravel how tissue-level morphogen behavior arises from subcellular events. Moreover, data from several systems show that morphogen gradients, downstream signaling, and the activity of cell-intrinsic transcriptional networks change dynamically during pattern formation. Studies from Drosophila and now also vertebrates suggest that transcriptional network dynamics are central to the generation of gene expression patterns. Together, this leads to the view that pattern formation is an emergent behavior that results from the coordination of events occurring across molecular, cellular, and tissue scales. The development of novel approaches to study this complex process remains a challenge.
Collapse
Affiliation(s)
- Anna Kicheva
- Medical Research Council-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
40
|
Sokolowski TR, Erdmann T, ten Wolde PR. Mutual repression enhances the steepness and precision of gene expression boundaries. PLoS Comput Biol 2012; 8:e1002654. [PMID: 22956897 PMCID: PMC3431325 DOI: 10.1371/journal.pcbi.1002654] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 07/07/2012] [Indexed: 11/18/2022] Open
Abstract
Embryonic development is driven by spatial patterns of gene expression that determine the fate of each cell in the embryo. While gene expression is often highly erratic, embryonic development is usually exceedingly precise. In particular, gene expression boundaries are robust not only against intra-embryonic fluctuations such as noise in gene expression and protein diffusion, but also against embryo-to-embryo variations in the morphogen gradients, which provide positional information to the differentiating cells. How development is robust against intra- and inter-embryonic variations is not understood. A common motif in the gene regulation networks that control embryonic development is mutual repression between pairs of genes. To assess the role of mutual repression in the robust formation of gene expression patterns, we have performed large-scale stochastic simulations of a minimal model of two mutually repressing gap genes in Drosophila, hunchback (hb) and knirps (kni). Our model includes not only mutual repression between hb and kni, but also the stochastic and cooperative activation of hb by the anterior morphogen Bicoid (Bcd) and of kni by the posterior morphogen Caudal (Cad), as well as the diffusion of Hb and Kni between neighboring nuclei. Our analysis reveals that mutual repression can markedly increase the steepness and precision of the gap gene expression boundaries. In contrast to other mechanisms such as spatial averaging and cooperative gene activation, mutual repression thus allows for gene-expression boundaries that are both steep and precise. Moreover, mutual repression dramatically enhances their robustness against embryo-to-embryo variations in the morphogen levels. Finally, our simulations reveal that diffusion of the gap proteins plays a critical role not only in reducing the width of the gap gene expression boundaries via the mechanism of spatial averaging, but also in repairing patterning errors that could arise because of the bistability induced by mutual repression.
Collapse
Affiliation(s)
| | - Thorsten Erdmann
- University of Heidelberg, Institute for Theoretical Physics, Heidelberg, Germany
| | | |
Collapse
|
41
|
Gursky VV, Surkova SY, Samsonova MG. Mechanisms of developmental robustness. Biosystems 2012; 109:329-35. [PMID: 22687821 DOI: 10.1016/j.biosystems.2012.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
We present a review of noise buffering mechanisms responsible for developmental robustness. We focus on functions of chaperone Hsp90, miRNA, and cross-regulation of gap genes in Drosophila. The noise buffering mechanisms associated with these functions represent specific examples of the developmental canalization, reducing the phenotypical variability in presence of either genetic or environmental perturbations. We demonstrate that robustness often appears as a function of a network of interacting elements and that the system level approach is needed to understand the mechanisms of noise filtering.
Collapse
Affiliation(s)
- Vitaly V Gursky
- Theoretical Department, Ioffe Physical-Technical Institute of the Russian Academy of Sciences, St. Petersburg, 194021, Russia.
| | | | | |
Collapse
|
42
|
Hardway H. Gene network models robust to spatial scaling and noisy input. Math Biosci 2012; 237:1-16. [DOI: 10.1016/j.mbs.2012.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/12/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|
43
|
Howard M. How to build a robust intracellular concentration gradient. Trends Cell Biol 2012; 22:311-7. [PMID: 22503534 DOI: 10.1016/j.tcb.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022]
Abstract
Concentration gradients of morphogens are critical regulators of patterning in developmental biology. Increasingly, intracellular concentration gradients have also been found to orchestrate spatial organization, but inside single cells, where they regulate processes such as cell division, polarity and mitotic spindle dynamics. Here, we discuss recent progress in understanding how such intracellular gradients can be built robustly. We focus particularly on the Pom1p gradient in fission yeast, elucidating how various buffering mechanisms operate to ensure precise gradient formation. In this case, a systems-level understanding of the entire mechanism of precise gradient construction is now within reach, with important implications for gradients in both intracellular and developmental contexts.
Collapse
Affiliation(s)
- Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
44
|
BMP signaling in wing development: A critical perspective on quantitative image analysis. FEBS Lett 2012; 586:1942-52. [PMID: 22710168 DOI: 10.1016/j.febslet.2012.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 11/21/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are critical for pattern formation in many animals. In numerous tissues, BMPs become distributed in spatially non-uniform profiles. The gradients of signaling activity can be detected by a number of biological assays involving fluorescence microscopy. Quantitative analyses of BMP gradients are powerful tools to investigate the regulation of BMP signaling pathways during development. These approaches rely heavily on images as spatial representations of BMP activity levels, using them to infer signaling distributions that inform on regulatory mechanisms. In this perspective, we discuss current imaging assays and normalization methods used to quantify BMP activity profiles with a focus on the Drosophila wing primordium. We find that normalization tends to lower the number of samples required to establish statistical significance between profiles in controls and experiments, but the increased resolvability comes with a cost. Each normalization strategy makes implicit assumptions about the biology that impacts our interpretation of the data. We examine the tradeoffs for normalizing versus not normalizing, and discuss their impacts on experimental design and the interpretation of resultant data.
Collapse
|
45
|
He F, Ren J, Wang W, Ma J. Evaluating the Drosophila Bicoid morphogen gradient system through dissecting the noise in transcriptional bursts. ACTA ACUST UNITED AC 2012; 28:970-5. [PMID: 22302571 DOI: 10.1093/bioinformatics/bts068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MOTIVATION We describe a statistical model to dissect the noise in transcriptional bursts in a developmental system. RESULTS We assume that, at any given moment of time, each copy of a native gene inside a cell can exist in either a bursting (active) or non-bursting (inactive) state. The experimentally measured total noise in the transcriptional states of a gene in a population of cells can be mathematically dissected into two contributing components: internal and external. While internal noise quantifies the stochastic nature of transcriptional bursts, external noise is caused by cell-to-cell differences including fluctuations in activator concentration. We use our developed methods to analyze the Drosophila Bicoid (Bcd) morphogen gradient system. For its target gene hunchback (hb), the noise properties can be recapitulated by a simplified gene regulatory model in which Bcd acts as the only input, suggesting that the external noise in hb transcription is primarily derived from fluctuations in the Bcd activator input. However, such a simplified gene regulatory model is insufficient to predict the noise properties of another Bcd target gene, orthodenticle (otd), suggesting that otd transcription is sensitive to additional external fluctuations beyond those in Bcd. Our results show that analysis of the relationship between input and output noise can reveal important insights into how a morphogen gradient system works. Our study also advances the knowledge about transcription at a fundamental level. CONTACT jun.ma@cchmc.org SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
46
|
Inui M, Montagner M, Piccolo S. miRNAs and morphogen gradients. Curr Opin Cell Biol 2011; 24:194-201. [PMID: 22196932 DOI: 10.1016/j.ceb.2011.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/16/2011] [Accepted: 11/30/2011] [Indexed: 01/05/2023]
Abstract
Morphogens induce biological diversity by operating in a dose-dependent manner. Here we review recent evidences indicating that microRNAs (miRNAs) are ideally suited to serve the morphogen cause. miRNAs regulate the establishment of morphogen gradients, including TGFβ, Wnt and other growth factors by acting on their secretion, distribution and clearance. miRNA are also critical in receiving cells, establishing context-dependency and threshold responses. Moreover, miRNAs contributes to gene networks that transform the graded activity of a morphogen into robust cell fate decisions. Finally, we discuss in the perspective section the implication of the new ceRNA hypothesis for morphogen biology.
Collapse
Affiliation(s)
- Masafumi Inui
- Department of Biomedical Sciences, University of Padua, Italy
| | | | | |
Collapse
|
47
|
Transcriptional activators and activation mechanisms. Protein Cell 2011; 2:879-88. [PMID: 22180087 DOI: 10.1007/s13238-011-1101-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/22/2011] [Indexed: 10/14/2022] Open
Abstract
Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.
Collapse
|
48
|
Morishita Y, Iwasa Y. Coding design of positional information for robust morphogenesis. Biophys J 2011; 101:2324-35. [PMID: 22098730 DOI: 10.1016/j.bpj.2011.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/12/2011] [Accepted: 09/22/2011] [Indexed: 11/28/2022] Open
Abstract
Robust positioning of cells in a tissue against unavoidable noises is important for achieving normal and reproducible morphogenesis. The position in a tissue is represented by morphogen concentrations, and cells read them to recognize their spatial coordinates. From the engineering viewpoint, these positioning processes can be regarded as an information coding. Organisms are conjectured to adopt good coding designs with high reliability for a given number of available morphogen species and their chemical properties. To answer, quantitatively, the questions of how good coding is adopted, and subsequently when, where, and to what extent each morphogen contributes to positioning, we need a way to evaluate the goodness of coding. In this article, by introducing basic concepts of computer science, we mathematically formulate coding processes in morphogen-dependent positioning, and define some key concepts such as encoding, decoding, and positional information and its precision. We demonstrate the best designs for pairs of encoding and decoding rules, and show how those designs can be biologically implemented by using some examples. We also propose a possible procedure of data analysis to validate the coding optimality formulated here.
Collapse
Affiliation(s)
- Yoshihiro Morishita
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
49
|
Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains. Biophys J 2011; 101:287-96. [PMID: 21767480 DOI: 10.1016/j.bpj.2011.05.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/03/2011] [Accepted: 05/19/2011] [Indexed: 11/24/2022] Open
Abstract
Segmentation of the Drosophila melanogaster embryo results from the dynamic establishment of spatial mRNA and protein patterns. Here, we exploit recent temporal mRNA and protein expression measurements on the full surface of the blastoderm to calibrate a dynamical model of the gap gene network on the entire embryo cortex. We model the early mRNA and protein dynamics of the gap genes hunchback, Kruppel, giant, and knirps, taking as regulatory inputs the maternal Bicoid and Caudal gradients, plus the zygotic Tailless and Huckebein proteins. The model captures the expression patterns faithfully, and its predictions are assessed from gap gene mutants. The inferred network shows an architecture based on reciprocal repression between gap genes that can stably pattern the embryo on a realistic geometry but requires complex regulations such as those involving the Hunchback monomer and dimers. Sensitivity analysis identifies the posterior domain of giant as among the most fragile features of an otherwise robust network, and hints at redundant regulations by Bicoid and Hunchback, possibly reflecting recent evolutionary changes in the gap-gene network in insects.
Collapse
|
50
|
Kanodia JS, Kim Y, Tomer R, Khan Z, Chung K, Storey JD, Lu H, Keller PJ, Shvartsman SY. A computational statistics approach for estimating the spatial range of morphogen gradients. Development 2011; 138:4867-74. [PMID: 22007136 DOI: 10.1242/dev.071571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A crucial issue in studies of morphogen gradients relates to their range: the distance over which they can act as direct regulators of cell signaling, gene expression and cell differentiation. To address this, we present a straightforward statistical framework that can be used in multiple developmental systems. We illustrate the developed approach by providing a point estimate and confidence interval for the spatial range of the graded distribution of nuclear Dorsal, a transcription factor that controls the dorsoventral pattern of the Drosophila embryo.
Collapse
Affiliation(s)
- Jitendra S Kanodia
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|