1
|
Chen J, Liu N, Qi H, Neuenkirchen N, Huang Y, Lin H. Piwi regulates the usage of alternative transcription start sites in the Drosophila ovary. Nucleic Acids Res 2025; 53:gkae1160. [PMID: 39657757 PMCID: PMC11724274 DOI: 10.1093/nar/gkae1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Alternative transcription initiation, which refers to the transcription of a gene from different transcription start sites (TSSs), is prevalent across metazoans and has important biological functions. Although transcriptional regulation has been extensively studied, the mechanism that selects one TSS over others within a gene remains elusive. Using the Cap Analysis of Gene Expression sequencing (CAGE-seq) method, we discovered that Piwi, an RNA-binding protein, regulates TSS usage in at least 87 genes. In piwi-deficient Drosophila ovaries, these genes displayed significantly altered TSS usage (ATU). The regulation of TSS usage occurred in both germline and somatic cells in ovaries, as well as in cultured ovarian somatic cells (OSCs). Correspondingly, RNA Polymerase II (Pol II) initiation and elongation at the TSSs of ATU genes were affected in germline-piwi-knockdown ovaries and piwi-knockdown OSCs. Furthermore, we identified a Facilitates Chromatin Transcription (FACT) complex component, Ssrp, that is essential for mRNA elongation, as a novel interactor of Piwi in the nucleus. Temporally controlled knockdown of ssrp affected TSS usage in ATU genes, whereas overexpression of ssrp partially rescued the TSS usage of ATU genes in piwi mutant ovaries. Thus, Piwi may interact with Ssrp to regulate TSS usage in Drosophila ovaries by affecting Pol II initiation and elongation.
Collapse
Affiliation(s)
- Jiaying Chen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Genetics, 333 Cedar St., New Haven, CT 06511, USA
| | - Na Liu
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Hongying Qi
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Yuedong Huang
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center, 10 Amistad St., Room 237E, New Haven, CT 06511, USA
- Department of Cell Biology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06511, USA
| |
Collapse
|
2
|
Tong W, Han Y, Wang T, Wan J, Ma F, Zhang CY. Bidirectional Polymerization-Transcription Amplification-Encoded Dual-Color Fluorescent Biosensor for Label-Free and Primer-Free Detection of Multiple piRNAs. Anal Chem 2024. [PMID: 39250656 DOI: 10.1021/acs.analchem.4c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a type of endogenous noncoding RNAs with a length of 24-31 nucleotides, and they can specifically bind with PIWI proteins to form the piRNA/PIWI complexes for regulating multiple physiological and pathological processes. Herein, we develop a bidirectional polymerization-transcription amplification-encoded dual-color fluorescent biosensor for label-free and primer-free measurements of multiple piRNAs. The designed hairpin probe contains a palindromic tail, and it can serve as the target recognition unit, polymerization primer, and transcription template. In the presence of target piRNAs, the hairpin probes are opened to expose a palindromic sequence that can trigger bidirectional polymerization and transcription reaction with the assistance of KF polymerase and T7 RNA polymerase for the production of numerous RNA aptamers. The aptamers subsequently bind with the corresponding fluorophores (DFHBI-1T/MG) to form the RNA aptamer-fluorophore complexes for the generation of enhanced fluorescence signals. This biosensor can sensitively detect piR-36026 with a limit of detection (LOD) of 82.08 aM and piR-36743 with a LOD of 44.44 aM. Moreover, it can quantify cellular piRNAs with single-cell sensitivity and distinguish cancer cells from normal cells. Furthermore, it has the capability of distinguishing the expression of piRNAs in the tissues of breast cancer patients and healthy individuals. By simply altering the target recognition site of the hairpin probe, this biosensor can be extended to detect various piRNAs, offering a powerful platform for piRNA-related clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Weijie Tong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Jiayi Wan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Li Y, Wang K, Liu W, Zhang Y. The potential emerging role of piRNA/PIWI complex in virus infection. Virus Genes 2024; 60:333-346. [PMID: 38833149 DOI: 10.1007/s11262-024-02078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
P-element-induced wimpy testis-interacting RNAs (piRNAs), a class of small noncoding RNAs with about 24-32 nucleotides, often interact with PIWI proteins to form a piRNA/PIWI complex that could influence spermiogenesis, transposon silencing, epigenetic regulation, etc. PIWI proteins have a highly conserved function in a variety of species and are usually expressed in germ cells. However, increasing evidence has revealed the important role of the piRNA/PIWI complex in the occurrence and prognosis of various human diseases and suggests its potential application in the diagnosis and treatment of related diseases, becoming a prominent marker for these human diseases. Recent studies have confirmed that piRNA/PIWI complexes or piRNAs are abnormally expressed in some viral infections, effecting disease progression and viral replication. In this study, we reviewed the association between the piRNA/PIWI complex and several human disease-associated viruses, including human papillomavirus, human immunodeficiency virus, human rhinovirus, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Kai Wang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Yan Zhang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
4
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Oomen ME, Torres-Padilla ME. Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo. EMBO Rep 2024; 25:1721-1733. [PMID: 38528171 PMCID: PMC11015026 DOI: 10.1038/s44319-024-00118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.
Collapse
Affiliation(s)
- Marlies E Oomen
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
6
|
Ghorbani A, Hosseinie F, Khorshid Sokhangouy S, Islampanah M, Khojasteh-Leylakoohi F, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Nazari E, Avan A. The prognostic, diagnostic, and therapeutic impact of Long noncoding RNAs in gastric cancer. Cancer Genet 2024; 282-283:14-26. [PMID: 38157692 DOI: 10.1016/j.cancergen.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gastric cancer (GC), ranking as the third deadliest cancer globally, faces challenges of late diagnosis and limited treatment efficacy. Long non-coding RNAs (lncRNAs) emerge as valuable treasured targets for cancer prognosis, diagnosis, and therapy, given their high specificity, convenient non-invasive detection in body fluids, and crucial roles in diverse physiological and pathological processes. Research indicates the significant involvement of lncRNAs in various aspects of GC pathogenesis, including initiation, metastasis, and recurrence, underscoring their potential as novel diagnostic and prognostic biomarkers, as well as therapeutic targets for GC. Despite existing challenges in the clinical application of lncRNAs in GC, the evolving landscape of lncRNA molecular biology holds promise for advancing the survival and treatment outcomes of gastric cancer patients. This review provides insights into recent studies on lncRNAs in gastric cancer, elucidating their molecular mechanisms and exploring the potential clinical applications in GC.
Collapse
Affiliation(s)
- Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinie
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Saeideh Khorshid Sokhangouy
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Balan T, Lerner LK, Holoch D, Duharcourt S. Small-RNA-guided histone modifications and somatic genome elimination in ciliates. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1848. [PMID: 38605483 DOI: 10.1002/wrna.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Thomas Balan
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Daniel Holoch
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | | |
Collapse
|
8
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
9
|
Yousefi B, Sadoughi F, Asemi Z, Mansournia MA, Hallajzadeh J. Novel Perspectives for the Diagnosis and Treatment of Gynecological Cancers using Dysregulation of PIWI Protein and PiRNAs as Biomarkers. Curr Med Chem 2024; 31:453-463. [PMID: 36786140 DOI: 10.2174/0929867330666230214101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/15/2023]
Abstract
The term "gynecological cancer" is used for a group of cancers occurring in the female reproductive system. Some of these cancers are ranked as the leading causes of death in developed and developing countries. The lack of proper diagnostic strategies is one of the most important reasons that make them lethal. PIWI-interacting RNAs or piRNAs are a class of small non-coding RNAs, which contain 24-32 nucleotides. These RNAs take part in some cellular mechanisms, and their role in diverse kinds of cancer is confirmed by accumulative evidence. In this review, we gather some information on the roles of these RNAs and members of the PIWI protein family to provide new insight into accurate diagnostic biomarkers and more effective anti-cancer drugs with fewer side effects.
Collapse
Affiliation(s)
- Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
10
|
Dabi Y, Suisse S, Marie Y, Delbos L, Poilblanc M, Descamps P, Golfier F, Jornea L, Forlani S, Bouteiller D, Touboul C, Puchar A, Bendifallah S, Daraï E. New class of RNA biomarker for endometriosis diagnosis: The potential of salivary piRNA expression. Eur J Obstet Gynecol Reprod Biol 2023; 291:88-95. [PMID: 37857147 DOI: 10.1016/j.ejogrb.2023.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES In contrast to miRNA expression, little attention has been given to piwiRNA (piRNA) expression among endometriosis patients. The aim of the present study was to explore the human piRNAome and to investigate a potential piRNA saliva-based diagnostic signature for endometriosis. METHODS Data from the prospective "ENDOmiRNA" study (ClinicalTrials.gov Identifier: NCT04728152) were used. Saliva samples from 200 patients were analyzed in order to evaluate human piRNA expression using the piRNA bank. Next Generation Sequencing (NGS), barcoding of unique molecular identifiers and both Artificial Intelligence (AI) and machine learning (ML) were used. For each piRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. RESULTS 201 piRNAs were identified, none had an AUC ≥ 0.70, and only three piRNAs (piR-004153, piR001918, piR-020401) had an AUC between ≥ 0.6 and < 0.70. Seven were differentially expressed: piR-004153, piR-001918, piR-020401, piR-012864, piR-017716, piR-020326 and piR-016904. The respective correlation and accuracy to diagnose endometriosis according to the F1-score, sensitivity, specificity, and AUC ranged from 0 to 0.862 %, 0-0.961 %, 0.085-1, and 0.425-0.618. A correlation was observed between the patients' age (≥35 years) and piR-004153 (p = 0.002) and piR-017716 (p = 0.030). Among the 201 piRNAs, four were differentially expressed in patients with and without hormonal treatment: piR-004153 (p = 0.015), piR-020401 (p = 0.001), piR-012864 (p = 0.036) and piR-017716 (p = 0.009). CONCLUSION Our results support the link between piRNAs and endometriosis physiopathology and establish its utility as a potential diagnostic biomarker using saliva samples. Per se, piRNA expression should be analyzed along with the clinical status of a patient.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France.
| | | | - Yannick Marie
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France
| | - Léa Delbos
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Mathieu Poilblanc
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Philippe Descamps
- Department of Obstetrics and Reproductive Medicine - CHU d'Angers, France; Endometriosis Expert Center - Pays de la Loire, France
| | - Francois Golfier
- Department of Obstetrics and Reproductive Medicine, Lyon South University Hospital, Lyon Civil Hospices, France; Endometriosis Expert Center - Steering Center of the EndAURA Network, France
| | - Ludmila Jornea
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvie Forlani
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75013 Paris, France
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris, France; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), France
| |
Collapse
|
11
|
Barnes M, Price DC. Endogenous Viral Elements in Ixodid Tick Genomes. Viruses 2023; 15:2201. [PMID: 38005880 PMCID: PMC10675110 DOI: 10.3390/v15112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The documentation of endogenous viral elements (EVEs; virus-derived genetic material integrated into the genome of a nonviral host) has offered insights into how arthropods respond to viral infection via RNA interference pathways. Small non-coding RNAs derived from EVE loci serve to direct RNAi pathways in limiting replication and infection from cognate viruses, thus benefiting the host's fitness and, potentially, vectorial capacity. Here we use informatic approaches to analyze nine available genome sequences of hard ticks (Acari: Ixodidae; Rhipicephalus sanguineus, R. microplus, R. annulatus, Ixodes ricinus, I. persulcatus, I. scapularis, Hyalomma asiaticum, Haemaphysalis longicornis, and Dermacentor silvarum) to identify endogenous viral elements and to illustrate the shared ancestry of all elements identified. Our results highlight a broad diversity of viral taxa as having given rise to 1234 identified EVEs in ticks, with Mononegavirales (specifically Rhabdoviridae) well-represented in this subset of hard ticks. Further investigation revealed extensive adintovirus integrations in several Ixodes species, the prevalence of Bunyavirales EVEs (notably not observed in mosquitoes), and the presence of several elements similar to known emerging human and veterinary pathogens. These results will inform subsequent work on current and past associations with tick species with regard to the viruses from which their "viral fossils" are derived and may serve as a reference for quality control of various tick-omics data that may suffer from misidentification of EVEs as viral genetic material.
Collapse
Affiliation(s)
| | - Dana C. Price
- Center for Vector Biology, Department of Entomology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| |
Collapse
|
12
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Ren R, Tan H, Huang Z, Wang Y, Yang B. Differential expression and correlation of immunoregulation related piRNA in rheumatoid arthritis. Front Immunol 2023; 14:1175924. [PMID: 37325646 PMCID: PMC10266269 DOI: 10.3389/fimmu.2023.1175924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background Although PIWI-interacting RNAs (piRNAs) have recently been associated with germline development and many human diseases, their expression pattern and relationship in autoimmune diseases remain indistinct. This study aimed to investigate the presence and correlation of piRNAs in rheumatoid arthritis (RA). Methods We first analyzed the expression profile of piRNAs using small RNA sequencing in peripheral leukocytes of three new-onset untreated RA patients and three healthy controls (HCs). We then selected piRNAs related to immunoregulation by bioinformatics analysis and verified them in 42 new-onset RA patients and 81 HCs by RT-qPCR. Furthermore, a receiver operating characteristic curve was generated to quantify the diagnostic performance of these piRNAs. A correlation analysis was conducted to observe the link between piRNA expression and RA clinical characteristics. Results A total of 15 upregulated and 9 downregulated piRNAs among 1,565 known piRNAs were identified in peripheral leukocytes of RA patients. Dysregulated piRNAs were enriched in numerous pathways related to immunity. After selection and validation, two immunoregulation piRNAs (piR-hsa-27620 and piR-hsa-27124) were significantly elevated in RA patients and have good abilities to distinguish patients from controls, which have the potential to serve as biomarkers. PIWI and other proteins implicated in the piRNA pathway were also associated with RA.
Collapse
Affiliation(s)
- Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huiling Tan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Örkenby L, Skog S, Ekman H, Gozzo A, Kugelberg U, Ramesh R, Magadi S, Zambanini G, Nordin A, Cantú C, Nätt D, Öst A. Stress-sensitive dynamics of miRNAs and Elba1 in Drosophila embryogenesis. Mol Syst Biol 2023; 19:e11148. [PMID: 36938679 PMCID: PMC10167479 DOI: 10.15252/msb.202211148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Early-life stress can result in life-long effects that impact adult health and disease risk, but little is known about how such programming is established and maintained. Here, we show that such epigenetic memories can be initiated in the Drosophila embryo before the major wave of zygotic transcription, and higher-order chromatin structures are established. An early short heat shock results in elevated levels of maternal miRNA and reduced levels of a subgroup of zygotic genes in stage 5 embryos. Using a Dicer-1 mutant, we show that the stress-induced decrease in one of these genes, the insulator-binding factor Elba1, is dependent on functional miRNA biogenesis. Reduction in Elba1 correlates with the upregulation of early developmental genes and promotes a sustained weakening of heterochromatin in the adult fly as indicated by an increased expression of the PEV wm4h reporter. We propose that maternal miRNAs, retained in response to an early embryonic heat shock, shape the subsequent de novo heterochromatin establishment that occurs during early development via direct or indirect regulation of some of the earliest expressed genes, including Elba1.
Collapse
Affiliation(s)
- Lovisa Örkenby
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Signe Skog
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helen Ekman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Alessandro Gozzo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Unn Kugelberg
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rashmi Ramesh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Srivathsa Magadi
- Division of Neurobiology (NEURO), Linköping University, Linköping, Sweden
| | - Gianluca Zambanini
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Anna Nordin
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Claudio Cantú
- Division of Molecular Medicine and Virology (MMV), Linköping University, Linköping, Sweden
| | - Daniel Nätt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anita Öst
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
15
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Edirithilake T, Nanayakkara N, Lin XX, Biggs PJ, Chandrajith R, Lokugalappatti S, Wickramasinghe S. Urinary MicroRNA Analysis Indicates an Epigenetic Regulation of Chronic Kidney Disease of Unknown Etiology in Sri Lanka. Microrna 2023; 12:156-163. [PMID: 36733246 DOI: 10.2174/2211536612666230202152932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic kidney disease of unknown etiology (CKDu) is reported among male paddy farmers in the dry zone of Sri Lanka. The exact cause of this disease remains undetermined. Genetic susceptibility is identified as a major risk factor for CKDu Objectives: In this study, small urinary RNAs were characterized in CKDu patients, healthy endemic and non-endemic controls. Differently expressed urinary miRNAs and their associated pathways were identified in the study population. METHODS Healthy and diseased male volunteers (n = 9) were recruited from Girandurukotte (endemic) and Mawanella (non-endemic) districts. Urinary small RNAs were purified and sequenced using Illumina MiSeqTM. The sequence trace files were assembled and analyzed. Differentially ex-pressed miRNAs among these three groups were identified and pathway analysis was conducted. RESULTS The urine samples contained 130,623 sequence reads identified as non-coding RNAs, PIWI-interacting RNAs (piRNA), and miRNAs. Approximately four percent of the total small RNA reads represented miRNA, and 29% represented piRNA. A total of 409 miRNA species were ex-pressed in urine. Interestingly, both diseased and endemic controls population showed significantly low expression of miRNA and piRNA. Regardless of the health status, the endemic population ex-pressed significantly low levels of miR-10a, miR-21, miR-148a, and miR-30a which have been linked with several environmental toxins Conclusion: Significant downregulation of miRNA and piRNA expression in both diseased and healthy endemic samples indicates an epigenetic regulation of CKDu involving genetic and environmental interaction. Further studies of specific miRNA species are required to develop a miRNA panel to identify individuals susceptible to CKDu.
Collapse
Affiliation(s)
- Thanuri Edirithilake
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | - Xiao Xiao Lin
- Massey Genome Service, School of Natural Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Patrick J Biggs
- Molecular Epidemiology & Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Rohana Chandrajith
- Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Sampath Lokugalappatti
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Saumya Wickramasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Food Science and Technology, University of California, Davis, 95616, USA
| |
Collapse
|
17
|
Xiong Q, Zhang Y, Li J, Zhu Q. Small Non-Coding RNAs in Human Cancer. Genes (Basel) 2022; 13:genes13112072. [PMID: 36360311 PMCID: PMC9690286 DOI: 10.3390/genes13112072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
18
|
Pathania AS, Prathipati P, Pandey MK, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Semin Cancer Biol 2022; 83:227-241. [PMID: 33910063 DOI: 10.1016/j.semcancer.2021.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Siddappa N Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Children's Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
19
|
Zinshteyn D, Barbash DA. Stonewall prevents expression of ectopic genes in the ovary and accumulates at insulator elements in D. melanogaster. PLoS Genet 2022; 18:e1010110. [PMID: 35324887 PMCID: PMC8982855 DOI: 10.1371/journal.pgen.1010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 04/05/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
Germline stem cells (GSCs) are the progenitor cells of the germline for the lifetime of an animal. In Drosophila, these cells reside in a cellular niche that is required for both their maintenance (self-renewal) and differentiation (asymmetric division resulting in a daughter cell that differs from the GSC). The stem cell—daughter cell transition is tightly regulated by a number of processes, including an array of proteins required for genome stability. The germline stem-cell maintenance factor Stonewall (Stwl) associates with heterochromatin, but its molecular function is poorly understood. We performed RNA-Seq on stwl mutant ovaries and found significant derepression of many transposon families but not heterochromatic genes. We also discovered inappropriate expression of multiple classes of genes. Most prominent are testis-enriched genes, including the male germline sex-determination switch Phf7, the differentiation factor bgcn, and a large testis-specific gene cluster on chromosome 2, all of which are upregulated or ectopically expressed in stwl mutant ovaries. Surprisingly, we also found that RNAi knockdown of stwl in somatic S2 cells results in ectopic expression of these testis genes. Using parallel ChIP-Seq and RNA-Seq experiments in S2 cells, we discovered that Stwl localizes upstream of transcription start sites and at heterochromatic sequences including repetitive sequences associated with telomeres. Stwl is also enriched at bgcn, suggesting that it directly regulates this essential differentiation factor. Finally, we identify Stwl binding motifs that are shared with known insulator binding proteins. We propose that Stwl affects gene regulation, including repression of male transcripts in the female germline, by binding insulators and establishing chromatin boundaries. Stem cells are defined by their ability to divide asymmetrically, resulting in a differentiated cell and a stem cell daughter. In fruit flies, sperm and egg production begins with germline stem cells (GSCs). The ability of a GSC to differentiate or self-renew is tightly regulated by a myriad of factors. Some of these are transcription factors, which are responsible for activating or suppressing other genes to promote one state in favor of another. Stonewall is an ovarian nuclear protein required for GSC self-renewal, whose molecular function is poorly understood. Here we show that Stonewall is responsible for preventing the activation of “male” molecular programming in the fruit fly ovary. When Stonewall is absent from the ovary, egg production is terminated and testis-specific genes become highly expressed, including the male transcript of Phf7, which induces male sexual identity in female germ cells. We also show that Stonewall is likely localizing to genomic insulators, which are regions of the genome that shield genes from nearby regulators. Our findings suggest that Stonewall helps to organize the genome in ovarian germ cells and prevent expression of male genes.
Collapse
Affiliation(s)
- Daniel Zinshteyn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Xiao L, Wang J, Ju S, Cui M, Jing R. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet 2022; 59:623-631. [PMID: 35145038 DOI: 10.1136/jmedgenet-2021-108327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Most small non-coding RNAs (sncRNAs) with regulatory functions are encoded by majority sequences in the human genome, and the emergence of high-throughput sequencing technology has greatly expanded our understanding of sncRNAs. sncRNAs are composed of a variety of RNAs, including tRNA-derived small RNA (tsRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), PIWI-interacting RNA (piRNA), etc. While for some, sncRNAs' implication in several pathologies is now well established, the potential involvement of tsRNA, snoRNA, snRNA and piRNA in human diseases is only beginning to emerge. Recently, accumulating pieces of evidence demonstrate that tsRNA, snoRNA, snRNA and piRNA play an important role in many biological processes, and their dysregulation is closely related to the progression of cancer. Abnormal expression of tsRNA, snoRNA, snRNA and piRNA participates in the occurrence and development of tumours through different mechanisms, such as transcriptional inhibition and post-transcriptional regulation. In this review, we describe the research progress in the classification, biogenesis and biological function of tsRNA, snoRNA, snRNA and piRNA. Moreover, we emphasised their dysregulation and mechanism of action in cancer and discussed their potential as diagnostic and prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Jie Wang
- Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Department of Medical School of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. piRNAs Interact with Cold-Shock Domain-Containing RNA Binding Proteins and Regulate Neuronal Gene Expression During Differentiation. Mol Neurobiol 2022; 59:1285-1300. [PMID: 34982407 DOI: 10.1007/s12035-021-02678-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
piRNAs (PIWI-interacting RNAs) are a class of small non-coding RNAs (ncRNAs) abundantly expressed in germline cells and involved in suppressing the transposon activity. Interestingly, recent studies have found piRNA expression in the central nervous system (CNS), yet the underlying biological significance remains largely unknown. In this study, we investigated the expression and function of piRNAs during the retinoic acid (RA)-mediated neuronal differentiation in NT2 cells, a human embryonal carcinoma cell line. We identified a cohort of differentially expressed piRNAs by microarray. Two piRNAs, DQ582359 and DQ596268, were increasingly upregulated during the RA-induced differentiation and involved in regulating the expression of neuronal markers, MAP2 and TUBB3. Furthermore, these piRNAs were found to associate with cold-shock domain (CSD)-containing RNA binding proteins, DIS3, DIS3L2, and YB-1. Markedly, overexpression of these piRNAs further enhanced the protein levels of MAP2 and TUBB3, potentially by downregulating DIS3, DIS3L2, and YB-1. Hence, our study has identified a novel somatic function of piRNAs in regulating neuronal gene expression. The interaction of piRNA with some CSD-containing proteins can be further explored to enhance neuronal differentiation to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Zealyn Shi-Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore.
| |
Collapse
|
22
|
Zhang J, Zhang W, Liu Y, Pi M, Jiang Y, Ainiwaer A, Mao S, Chen H, Ran Y, Sun S, Li W, Yao X, Chang Z, Yan Y. Emerging roles and potential application of PIWI-interacting RNA in urological tumors. Front Endocrinol (Lausanne) 2022; 13:1054216. [PMID: 36733811 PMCID: PMC9887041 DOI: 10.3389/fendo.2022.1054216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The piRNA (PIWI-interacting RNA) is P-Element induced wimpy testis (PIWI)-interacting RNA which is a small molecule, non-coding RNA with a length of 24-32nt. It was originally found in germ cells and is considered a regulator of germ cell function. It can interact with PIWI protein, a member of the Argonaute family, and play a role in the regulation of gene transcription and epigenetic silencing of transposable factors in the nucleus. More and more studies have shown that piRNAs are abnormally expressed in a variety of cancer tissues and patient fluids, and may become diagnostic tools, therapeutic targets, staging markers, and prognostic evaluation tools for cancer. This article reviews the recent research on piRNA and summarizes the structural characteristics, production mechanism, applications, and its role in urological tumors, to provide a reference value for piRNA to regulate urological tumors.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Man Pi
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuefei Ran
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shuwen Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yang Yan, ; Zhengyan Chang, ; Xudong Yao,
| |
Collapse
|
23
|
Li D, Taylor DH, van Wolfswinkel JC. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep 2021; 37:109776. [PMID: 34610311 PMCID: PMC8532177 DOI: 10.1016/j.celrep.2021.109776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.
Collapse
Affiliation(s)
- Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - David H Taylor
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Su JF, Concilla A, Zhang DZ, Zhao F, Shen FF, Zhang H, Zhou FY. PIWI-interacting RNAs: Mitochondria-based biogenesis and functions in cancer. Genes Dis 2021; 8:603-622. [PMID: 34291132 PMCID: PMC8278532 DOI: 10.1016/j.gendis.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022] Open
Abstract
PIWI-interacting RNA (piRNAs), once thought to be mainly functioning in germlines, are now known to play an essential role in somatic and cancerous tissues. Ping-pong cycle initiation and mitochondria-based phased production constitute the core of the piRNA biogenesis and these two processes are well conserved in mammals, including humans. By being involved in DNA methylation, histone marker deposition, mRNA degradation, and protein modification, piRNAs also contribute to carcinogenesis partly due to oncogenic stress-induced piRNA dysregulation. Also, piRNAs play important roles in cancer stemness, drug resistance, and tumor immunology. Results from liquid biopsy analysis of piRNA can be used in both cancer diagnoses and cancer prognoses. A combination of targeting piRNA with other therapeutic strategies could be groundbreaking cancer treatment.
Collapse
Affiliation(s)
- Jing-Fen Su
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| | - Anthony Concilla
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dian-zheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Fang Zhao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| | - Fang-Fang Shen
- Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan Province, 453000, PR China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong Province, 510630, PR China
| | - Fu-You Zhou
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, The Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan Province, 455000, PR China
| |
Collapse
|
25
|
Onishi R, Yamanaka S, Siomi MC. piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep 2021; 22:e53062. [PMID: 34347367 PMCID: PMC8490990 DOI: 10.15252/embr.202153062] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The PIWI‐interacting RNA (piRNA) pathway acts as a self‐defense mechanism against transposons to maintain germline genome integrity. Failures in the piRNA pathway cause DNA damage in the germline genome, disturbing inheritance of “correct” genetic information by the next generations and leading to infertility. piRNAs execute transposon repression in two ways: degrading their RNA transcripts and compacting the genomic loci via heterochromatinization. The former event is mechanistically similar to siRNA‐mediated RNA cleavage that occurs in the cytoplasm and has been investigated in many species including nematodes, fruit flies, and mammals. The latter event seems to be mechanistically parallel to siRNA‐centered kinetochore assembly and subsequent chromosome segregation, which has so far been studied particularly in fission yeast. Despite the interspecies conservations, the overall schemes of the nuclear events show clear biodiversity across species. In this review, we summarize the recent progress regarding piRNA‐mediated transcriptional silencing in Drosophila and discuss the biodiversity by comparing it with the equivalent piRNA‐mediated system in mice and the siRNA‐mediated system in fission yeast.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
He J, Chen M, Xu J, Fang J, Liu Z, Qi H. Identification and characterization of Piwi-interacting RNAs in human placentas of preeclampsia. Sci Rep 2021; 11:15766. [PMID: 34344990 PMCID: PMC8333249 DOI: 10.1038/s41598-021-95307-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia is a common disease of pregnancy that poses a serious threat to the safety of pregnant women and the fetus; however, the etiology of preeclampsia is inconclusive. Piwi-interacting RNAs (piRNAs) are novel non-coding RNAs that are present at high levels in germ cells and are associated with spermatogenesis. Emerging evidence demonstrated that piRNA is expressed in a variety of human tissues and is closely associated with tumorigenesis. However, changes in the piRNA expression profile in the placenta have not been investigated. In this study, we used small RNA sequencing to evaluate the differences in piRNA expression profiles between preeclampsia and control patients and potential functions. Differential expression analysis found 41 up-regulated and 36 down-regulated piRNAs in preeclamptic samples. In addition, the functional enrichment analysis of piRNAs target genes indicated that they were related to the extracellular matrix (ECM) formation and tissue-specific. Finally, we examined the expression pattern of the PIWL family proteins in the placenta, and PIWL3 and PIWIL4 were the primary subtypes in the human placenta. In summary, this study first summarized the changes in the expression pattern of piRNA in preeclampsia and provided new clues for the regulatory role of piRNA in the human placenta.
Collapse
Affiliation(s)
- Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.,Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Hongshan District, Wuhan City, 430070, Hubei Province, China
| | - Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Fang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China. .,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
27
|
Ohtani H, Iwasaki YW. Rewiring of chromatin state and gene expression by transposable elements. Dev Growth Differ 2021; 63:262-273. [DOI: 10.1111/dgd.12735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Affiliation(s)
- Hitoshi Ohtani
- Laboratory of Genome and Epigenome Dynamics Department of Animal Sciences Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology Keio University School of Medicine Tokyo Japan
- Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) Saitama Japan
| |
Collapse
|
28
|
Li J, Zhu L, Cheng J, Peng Y. Transfer RNA-derived small RNA: A rising star in oncology. Semin Cancer Biol 2021; 75:29-37. [PMID: 34029740 DOI: 10.1016/j.semcancer.2021.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
Transfer RNAs (tRNAs) participate in protein synthesis through delivering amino acids to the ribosome. Nevertheless, recent studies revealed that tRNAs can undergo cleavage by endoribonucleases to generate a heterogeneous class of small RNAs, designated as tRNA-derived small RNAs (tsRNAs). Accumulating evidence demonstrates that tsRNAs play an important role in many biological processes, and their dysregulation is associated with the progression of diseases including cancer. Abnormally expressed tsRNAs contribute to tumor initiation and development through distinct mechanisms, such as transcriptional regulation and RNA interference. In this review, we briefly summarize the current knowledge regarding classification, biogenesis and biological function of tsRNAs. Moreover, we highlight the dysregulation and critical roles of tsRNAs in cancer and discuss their potentials as diagnostic and prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Lei Zhu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Jian Cheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
29
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
30
|
Larocca D, Lee J, West MD, Labat I, Sternberg H. No Time to Age: Uncoupling Aging from Chronological Time. Genes (Basel) 2021; 12:611. [PMID: 33919082 PMCID: PMC8143125 DOI: 10.3390/genes12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Multicellular life evolved from simple unicellular organisms that could replicate indefinitely, being essentially ageless. At this point, life split into two fundamentally different cell types: the immortal germline representing an unbroken lineage of cell division with no intrinsic endpoint and the mortal soma, which ages and dies. In this review, we describe the germline as clock-free and the soma as clock-bound and discuss aging with respect to three DNA-based cellular clocks (telomeric, DNA methylation, and transposable element). The ticking of these clocks corresponds to the stepwise progressive limitation of growth and regeneration of somatic cells that we term somatic restriction. Somatic restriction acts in opposition to strategies that ensure continued germline replication and regeneration. We thus consider the plasticity of aging as a process not fixed to the pace of chronological time but one that can speed up or slow down depending on the rate of intrinsic cellular clocks. We further describe how germline factor reprogramming might be used to slow the rate of aging and potentially reverse it by causing the clocks to tick backward. Therefore, reprogramming may eventually lead to therapeutic strategies to treat degenerative diseases by altering aging itself, the one condition common to us all.
Collapse
Affiliation(s)
| | - Jieun Lee
- AgeX Therapeutics Inc., Alameda, CA 94501, USA; (J.L.); (M.D.W.); (I.L.); (H.S.)
| | - Michael D. West
- AgeX Therapeutics Inc., Alameda, CA 94501, USA; (J.L.); (M.D.W.); (I.L.); (H.S.)
| | - Ivan Labat
- AgeX Therapeutics Inc., Alameda, CA 94501, USA; (J.L.); (M.D.W.); (I.L.); (H.S.)
| | - Hal Sternberg
- AgeX Therapeutics Inc., Alameda, CA 94501, USA; (J.L.); (M.D.W.); (I.L.); (H.S.)
| |
Collapse
|
31
|
Huang X, Wong G. An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener 2021; 10:9. [PMID: 33685517 PMCID: PMC7938595 DOI: 10.1186/s40035-021-00233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding transcripts that are highly conserved across species and regulate gene expression through pre- and post-transcriptional processes. piRNAs were originally discovered in germline cells and protect against transposable element expression to promote and maintain genome stability. In the recent decade, emerging roles of piRNAs have been revealed, including the roles in sterility, tumorigenesis, metabolic homeostasis, neurodevelopment, and neurodegenerative diseases. In this review, we summarize piRNA biogenesis in C. elegans, Drosophila, and mice, and further elaborate upon how piRNAs mitigate the harmful effects of transposons. Lastly, the most recent findings on piRNA participation in neurological diseases are highlighted. We speculate on the mechanisms of piRNA action in the development and progression of neurodegenerative diseases. Understanding the roles of piRNAs in neurological diseases may facilitate their applications in diagnostic and therapeutic practice.
Collapse
Affiliation(s)
- Xiaobing Huang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, 999078, S.A.R., China.
| |
Collapse
|
32
|
piRNAs as Modulators of Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052373. [PMID: 33673453 PMCID: PMC7956838 DOI: 10.3390/ijms22052373] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade. A set of key regulators whose function still needs to be fully elucidated are small non-coding RNAs (sncRNAs). Due to their broad range of unfolding functions in the regulation of gene expression during transcription and translation, sncRNAs are becoming vital to many cellular processes. Within the past decade, a novel class of sncRNAs called PIWI-interacting RNAs (piRNAs) have been implicated in various diseases, and understanding their complete function is of vital importance. Historically, piRNAs have been shown to be indispensable in germline integrity and stem cell development. Accumulating research evidence continue to reveal the many arms of piRNA function. Although piRNA function and biogenesis has been extensively studied in Drosophila, it is thought that they play similar roles in vertebrate species, including humans. Compounding evidence suggests that piRNAs encompass a wider functional range than small interfering RNAs (siRNAs) and microRNAs (miRNAs), which have been studied more in terms of cellular homeostasis and disease. This review aims to summarize contemporary knowledge regarding biogenesis, and homeostatic function of piRNAs and their emerging roles in the development of pathologies related to cardiomyopathies, cancer, and infectious diseases.
Collapse
|
33
|
HRV16 Infection Induces Changes in the Expression of Multiple piRNAs. Virol Sin 2021; 36:736-745. [PMID: 33616891 DOI: 10.1007/s12250-021-00344-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/30/2020] [Indexed: 10/22/2022] Open
Abstract
Human rhinovirus (HRV) is one of the most important cold-causing pathogens in humans. Piwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. However, the profile of human/host piRNA during HRV infection is largely unknown. Here we performed high-throughput sequencing of piRNAs from H1-HeLa cells infected with HRV16 at 12 h, 24 h, and 36 h. The results showed that 22,151,664, 24,362,486 and 22,726,546 piRNAs displayed differential expression after HRV16 infection for three time points. A significant differential expression of 21 piRNAs was found in all time points and further verified by RT-qPCR, including 7 known piRNAs and 14 newly found piRNAs. In addition, piRNA prediction was performed on Piano using the SVM algorithm and transposon information. It found that novel_pir78110, novel_pir78107, novel_pir78097, novel_pir78094 and novel_pir76584 are associated with the DNA/hobo of Drosophila, Ac of maize and Tam3 of snapdragon (hAT)-Charlie transposon. The novel_pir97924, novel_pir105705 and novel_pir105700 recognize long interspersed nuclear elements 1 (LINE-1). The novel_pir33182 and novel_pir46604 are related to the long terminal repeat (LTR)/(Endogenous Retrovirus1) ERV1 repetitive element. The novel_pir73855 is related to the LTR/ERVK repetitive element. Both novel_pir70108 and novel_pir70106 are associated with the LTR/ERVL-MaLR repetitive element. The novel_pir15900 is associated with the DNA/hAT-Tip100 repetitive element. Overall, our results indicated that rhinovirus infection could reduce the expression of some piRNAs to facilitate upregulation of LINE-1 transcription or retrotransposons' expression, which is helpful to further explore the mechanism of rhinovirus infection.
Collapse
|
34
|
Liu N, Neuenkirchen N, Zhong M, Lin H. Genome-wide mapping of Piwi association with specific loci in Drosophila ovaries. G3 (BETHESDA, MD.) 2021; 11:jkaa059. [PMID: 33609367 PMCID: PMC8022938 DOI: 10.1093/g3journal/jkaa059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022]
Abstract
Small noncoding RNA pathways have been implicated in diverse mechanisms of gene regulation. In Drosophila ovaries, Piwi binds to Piwi-interacting RNAs (piRNAs) of mostly 24-28 nucleotides (nt) and plays an important role in germline stem cell maintenance, transposon repression, and epigenetic regulation. To understand the mechanism underlying these functions, we report the application of the DamID-seq method to identify genome-wide binding sites of Piwi in Drosophila ovaries. Piwi localizes to at least 4535 euchromatic regions that are enriched with piRNA target sites. Surprisingly, the density of Piwi binding to euchromatin is much higher than in heterochromatin. Disrupting the piRNA binding of Piwi results in an overall change of the genomic binding profile, which indicates the role of piRNAs in directing Piwi to specific genomic sites. Most Piwi binding sites were either within or in the vicinity of protein-coding genes, particularly enriched near the transcriptional start and termination sites. The methylation signal near the transcriptional termination sites is significantly reduced when Piwi was mutated to become defective in piRNA binding. These observations indicate that Piwi might directly regulate the expression of many protein-coding genes, especially through regulating the 3' ends of targeted transcripts.
Collapse
Affiliation(s)
- Na Liu
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520-8073, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8073, USA
| | - Nils Neuenkirchen
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520-8073, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8073, USA
| | - Mei Zhong
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520-8073, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8073, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520-8073, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8073, USA
| |
Collapse
|
35
|
Wang C, Lin H. Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol 2021; 22:27. [PMID: 33419460 PMCID: PMC7792047 DOI: 10.1186/s13059-020-02221-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
PIWI proteins, a subfamily of PAZ/PIWI Domain family RNA-binding proteins, are best known for their function in silencing transposons and germline development by partnering with small noncoding RNAs called PIWI-interacting RNAs (piRNAs). However, recent studies have revealed multifaceted roles of the PIWI-piRNA pathway in regulating the expression of other major classes of RNAs in germ cells. In this review, we summarize how PIWI proteins and piRNAs regulate the expression of many disparate RNAs, describing a highly complex global genomic regulatory relationship at the RNA level through which piRNAs functionally connect all major constituents of the genome in the germline.
Collapse
Affiliation(s)
- Chen Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06519, USA.
| |
Collapse
|
36
|
Abstract
As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS UMR 3569, 75724 Paris CEDEX 15, France;
| |
Collapse
|
37
|
Onishi R, Sato K, Murano K, Negishi L, Siomi H, Siomi MC. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. SCIENCE ADVANCES 2020; 6:6/50/eaaz7420. [PMID: 33310860 PMCID: PMC7732180 DOI: 10.1126/sciadv.aaz7420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/19/2020] [Indexed: 05/05/2023]
Abstract
Drosophila Piwi associates with PIWI-interacting RNAs (piRNAs) and represses transposons transcriptionally through heterochromatinization; however, this process is poorly understood. Here, we identify Brahma (Brm), the core adenosine triphosphatase of the SWI/SNF chromatin remodeling complex, as a new Piwi interactor, and show Brm involvement in activating transcription of Piwi-targeted transposons before silencing. Bioinformatic analyses indicated that Piwi, once bound to target RNAs, reduced the occupancies of SWI/SNF and RNA polymerase II (Pol II) on target loci, abrogating transcription. Artificial piRNA-driven targeting of Piwi to RNA transcripts enhanced repression of Brm-dependent reporters compared with Brm-independent reporters. This was dependent on Piwi cofactors, Gtsf1/Asterix (Gtsf1), Panoramix/Silencio (Panx), and Maelstrom (Mael), but not Eggless/dSetdb (Egg)-mediated H3K9me3 deposition. The λN-box B-mediated tethering of Mael to reporters repressed Brm-dependent genes in the absence of Piwi, Panx, and Gtsf1. We propose that Piwi, via Mael, can rapidly suppress transcription of Brm-dependent genes to facilitate heterochromatin formation.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
38
|
Das PK, Asha SY, Abe I, Islam F, Lam AK. Roles of Non-Coding RNAs on Anaplastic Thyroid Carcinomas. Cancers (Basel) 2020; 12:E3159. [PMID: 33126409 PMCID: PMC7693255 DOI: 10.3390/cancers12113159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
| | - Ichiro Abe
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (P.K.D.); (S.Y.A.)
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Alfred K. Lam
- School of Medicine, Griffith University, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
39
|
Vinasco-Sandoval T, Moreira FC, F. Vidal A, Pinto P, Ribeiro-dos-Santos AM, Cruz RLS, Fonseca Cabral G, Anaissi AKM, Lopes KDP, Ribeiro-dos-Santos A, Demachki S, de Assumpção PP, Ribeiro-dos-Santos Â, Santos S. Global Analyses of Expressed Piwi-Interacting RNAs in Gastric Cancer. Int J Mol Sci 2020; 21:E7656. [PMID: 33081152 PMCID: PMC7593925 DOI: 10.3390/ijms21207656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) represents a notable amount of morbidity and mortality worldwide. Understanding the molecular basis of CG will offer insight into its pathogenesis in an attempt to identify new molecular biomarkers to early diagnose this disease. Therefore, studies involving small non-coding RNAs have been widely explored. Among these, PIWI-interacting RNAs (piRNAs) are an emergent class that can play important roles in carcinogenesis. In this study, small-RNA sequencing was used to identify the global piRNAs expression profile (piRNome) of gastric cancer patients. We found 698 piRNAs in gastric tissues, 14 of which were differentially expressed (DE) between gastric cancer (GC), adjacent to gastric cancer (ADJ), and non-cancer tissues (NC). Moreover, three of these DE piRNAs (piR-48966*, piR-49145, piR-31335*) were differently expressed in both GC and ADJ samples in comparison to NC samples, indicating that the tumor-adjacent tissue was molecularly altered and should not be considered as a normal control. These three piRNAs are potential risk biomarkers for GC, especially piR-48966* and piR-31335*. Furthermore, an in-silico search for mRNAs targeted by the differentially expressed piRNAs revealed that these piRNAs may regulate genes that participate in cancer-related pathways, suggesting that these small non-coding RNAs may be directly and indirectly involved in gastric carcinogenesis.
Collapse
Affiliation(s)
- Tatiana Vinasco-Sandoval
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Fabiano Cordeiro Moreira
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| | - Amanda F. Vidal
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Pablo Pinto
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| | - André M. Ribeiro-dos-Santos
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Rebecca L. S. Cruz
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Gleyce Fonseca Cabral
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Ana K. M. Anaissi
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| | - Katia de Paiva Lopes
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Arthur Ribeiro-dos-Santos
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
| | - Samia Demachki
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| | - Paulo Pimentel de Assumpção
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| | - Ândrea Ribeiro-dos-Santos
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| | - Sidney Santos
- Graduate Program in Genetics and Molecular Biology, Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará 66075-110, Brazil; (T.V.-S.); (F.C.M.); (A.F.V.); (P.P.); (A.M.R.-d.-S.); (R.L.S.C.); (G.F.C.); (K.d.P.L.); (A.R.-d.-S.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém, Pará 66063-023, Brazil; (A.K.M.A.); (S.D.); (P.P.d.A.)
| |
Collapse
|
40
|
Sukthaworn S, Panyim S, Udomkit A. Homologues of Piwi control transposable elements and development of male germline in Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110807. [PMID: 32971288 DOI: 10.1016/j.cbpa.2020.110807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
PIWI belongs to the Argonaute protein family, which is a major protein component in RNA silencing pathway. Piwi proteins play roles in the control of transposons and germline development. They have been widely studied in vertebrates and flies, while very little is known in crustacean so far. We have previously identified and characterized a cDNA encoding Piwi protein (PmPiwi1) in the black tiger shrimp Penaeus monodon. In this study, a cDNA encoding another Piwi protein namely PmPiwi2 was identified by rapid amplification of cDNA ends (RACEs). PmPiwi2 was expressed solely in shrimp testis and ovary, indicating its potential role in germ cell development. Similar to PmPiwi1, PmPiwi2 also plays a part in the control of transposons as PmPiwi2-knockdown shrimp showed a significant increase in the expression of gypsy2 retrotransposon and mariner element in the testis. In addition, a reduction of sperm numbers in the spermatophore of PmPiwi2-knockdown shrimp suggests that PmPiwi2 is required for spermatogenesis similar to PmPiwi1. This study further demonstrated that apoptotic cell death was strongly detected in spermatogonia and spermatocyte cells of both PmPiwi-knockdown shrimp and thus, could be the cause of reduced sperm count. Investigation of sperm morphology showed a remarkably high proportion of abnormal sperms in the spermatophore of the PmPiwi1-knockdown shrimp, while PmPiwi2-knockdown shrimp had comparable percentage of abnormal sperms to the control shrimp. Consistently, the expression of KIFC1, a gene that is necessary for spermiogenesis was significantly reduced upon PmPiwi1 silencing, but not in the PmPiwi2-knockdown shrimp. Our results suggested that while both PmPiwis are required for the development of spermatid, only PmPiwi1 is possibly involved in the final stage of sperm maturation.
Collapse
Affiliation(s)
- Suchitraporn Sukthaworn
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Sciences, Mahidol University, Rama VI Road, Phayathai, Bangkok 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
41
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
42
|
Suzuki Y, Baidaliuk A, Miesen P, Frangeul L, Crist AB, Merkling SH, Fontaine A, Lequime S, Moltini-Conclois I, Blanc H, van Rij RP, Lambrechts L, Saleh MC. Non-retroviral Endogenous Viral Element Limits Cognate Virus Replication in Aedes aegypti Ovaries. Curr Biol 2020; 30:3495-3506.e6. [PMID: 32679098 PMCID: PMC7522710 DOI: 10.1016/j.cub.2020.06.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Endogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-retroviral EVEs was recently detected in Aedes mosquito genomes, leading to the hypothesis that mosquito EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific virus, cell-fusing agent virus (CFAV). Using CRISPR-Cas9 genome editing, we created an Ae. aegypti line lacking the CFAV EVE. Absence of the EVE resulted in increased CFAV replication in ovaries, possibly modulating vertical transmission of the virus. Viral replication was controlled by targeting of viral RNA by EVE-derived P-element-induced wimpy testis-interacting RNAs (piRNAs). Our results provide evidence that antiviral piRNAs are produced in the presence of a naturally occurring EVE and its cognate virus, demonstrating a functional link between non-retroviral EVEs and antiviral immunity in a natural insect-virus interaction. Aedes aegypti harbors EVEs with high sequence identity to a contemporary RNA virus EVE-derived piRNAs target genomic viral RNA in infected mosquitoes Ablation of EVE results in increased viral replication in Aedes aegypti ovaries piRNA pathway fulfills antiviral function in presence of EVE and cognate virus
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Artem Baidaliuk
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France; Collège Doctoral, Sorbonne Université, 75005 Paris, France
| | - Pascal Miesen
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France; Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lionel Frangeul
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Anna B Crist
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sarah H Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Albin Fontaine
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sebastian Lequime
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Hervé Blanc
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, UMR3569, CNRS, Paris, France.
| |
Collapse
|
43
|
Chang Z, Ji G, Huang R, Chen H, Gao Y, Wang W, Sun X, Zhang J, Zheng J, Wei Q. PIWI-interacting RNAs piR-13643 and piR-21238 are promising diagnostic biomarkers of papillary thyroid carcinoma. Aging (Albany NY) 2020; 12:9292-9310. [PMID: 32428871 PMCID: PMC7288952 DOI: 10.18632/aging.103206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 04/11/2023]
Abstract
Emerging studies demonstrate that PIWI-interacting RNAs (piRNAs) participate in the development of cancers. 75 pairs of papillary thyroid carcinoma (PTC) samples and 31 benign thyroid nodule samples were included in this three-phase biomarker identifying study. First, piRNA expression profiles of five pairs of PTC samples were acquired piRNA sequencing. The expression of all upregulated piRNAs were further validated by RT-qPCR. Paired t and nonparametric test were used to evaluate the association between all upregulated piRNAs and clinic stage. The expression levels of key piRNAs were corrected by demographic data to construct a multivariate model to distinguish malignant nodules from benign. Additionally, the intersection between target genes of key piRNAs and differentially expressed genes in The Cancer Genome Atlas (TCGA) PTC samples were used to perform enrichment analysis. Only piR-13643 and piR-21238 were significantly upregulated in PTC and associated with clinic stage. Moreover, both piR-13643 (Area Under Curve (AUC): 0.821) and piR-21238 (AUC: 0.823) showed better performance in distinguishing malignant nodules from benign than currently used biomarkers HBME1 (AUC: 0.590). Based on our findings, piR-13643 and piR-21238 were observed to be significantly upregulated in human PTC. PIWI-interacting RNAs could serve as promising novel biomarkers for accurate detection of PTC.
Collapse
Affiliation(s)
- Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Hong Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Weifeng Wang
- Central Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xuechen Sun
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Department of Prevention, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
- Human Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
44
|
Wei H, Xu Y, Liu B. iPiDi-PUL: identifying Piwi-interacting RNA-disease associations based on positive unlabeled learning. Brief Bioinform 2020; 22:5829704. [PMID: 32393982 DOI: 10.1093/bib/bbaa058] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulated researches have revealed that Piwi-interacting RNAs (piRNAs) are regulating the development of germ and stem cells, and they are closely associated with the progression of many diseases. As the number of the detected piRNAs is increasing rapidly, it is important to computationally identify new piRNA-disease associations with low cost and provide candidate piRNA targets for disease treatment. However, it is a challenging problem to learn effective association patterns from the positive piRNA-disease associations and the large amount of unknown piRNA-disease pairs. In this study, we proposed a computational predictor called iPiDi-PUL to identify the piRNA-disease associations. iPiDi-PUL extracted the features of piRNA-disease associations from three biological data sources, including piRNA sequence information, disease semantic terms and the available piRNA-disease association network. Principal component analysis (PCA) was then performed on these features to extract the key features. The training datasets were constructed based on known positive associations and the negative associations selected from the unknown pairs. Various random forest classifiers trained with these different training sets were merged to give the predictive results via an ensemble learning approach. Finally, the web server of iPiDi-PUL was established at http://bliulab.net/iPiDi-PUL to help the researchers to explore the associated diseases for newly discovered piRNAs.
Collapse
|
45
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. Role of PIWI-like 4 in modulating neuronal differentiation from human embryonal carcinoma cells. RNA Biol 2020; 17:1613-1624. [PMID: 32372724 DOI: 10.1080/15476286.2020.1757896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PIWI homologs constitute a subclass of the Argonaute family. Traditionally, they have been shown to associate with a specific class of small RNAs, piRNAs, to suppress transposable elements and protect genomic integrity in germ cells. Recent studies imply that PIWI proteins may also exert important biological functions in somatic contexts, including the brain. However, their exact role in neural development remains unknown. Hence we investigated whether PIWI proteins are involved in neuronal differentiation. By using an established cell model for studying neurogenesis, NTera2/D1 (NT2) cells, we found that a particular PIWI homolog, PIWIL4 was increasingly upregulated throughout the course of all-trans retinoic acid (RA)-mediated neuronal differentiation. During this process, PIWIL4 knockdown led to partial recovery of embryonic stem cell markers, while suppressing RA-induced expression of neuronal markers. Consistently, PIWIL4 overexpression further elevated their expression levels. Furthermore, co-immunoprecipitation revealed an RA-induced interaction between PIWIL4 and the H3K27me3 demethylase UTX. Chromatin immunoprecipitation showed that this interaction could be essential for the removal of H3K27me3 from the promoters of RA-inducible genes. By a similar mechanism, PIWIL4 knockdown also suppressed the expression of PTN and NLGN3, two important neuronal factors secreted to regulate glioma activity. We further noted that the conditioned medium collected from PIWIL4-silenced NT2 cells significantly reduced the proliferation of glioma cells. Thus, our data suggest a novel somatic role of PIWIL4 in modulating the expression of neuronal genes that can be further characterized to promote neuronal differentiation and to modulate the activity of glioma cells.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
46
|
Pammer J, Rossiter H, Bilban M, Eckhart L, Buchberger M, Monschein L, Mildner M. PIWIL-2 and piRNAs are regularly expressed in epithelia of the skin and their expression is related to differentiation. Arch Dermatol Res 2020; 312:705-714. [PMID: 32166374 PMCID: PMC7548280 DOI: 10.1007/s00403-020-02052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
PIWI proteins play multiple roles in germline stem cell maintenance and self-renewal. PIWI-interacting RNAs (piRNAs) associate with PIWI proteins, form effector complexes and maintain genome integrity and function in the regulation of gene expression by epigenetic modifications. Both are involved in cancer development. In this study, we investigated the expression of PIWIL-2 and piRNAs in normal human skin and epithelial tumors and its regulation during keratinocyte (KC) differentiation. Immunohistochemistry showed that PIWIL-2 was regularly expressed in the epidermis and adnexal tissue with strongest expression in sebaceous glands. Cell culture studies revealed an association of PIWIL-2 expression with the state of differentiated KC. In contrast, the PIWIL-2 expression pattern did not correlate with stem cell compartments or malignancy. piRNAs were consistently detected in KC in vitro by next-generation sequencing and the expression levels of numerous piRNAs were regulated during KC differentiation. Epidermal piRNAs were predominantly derived from processed snoRNAs (C/D-box snoRNAs), tRNAs and protein coding genes. Our data indicate that components of the PIWIL-2-piRNA pathway are present in epithelial cells of the skin and are regulated in the context of KC differentiation, suggesting a role of somatic gene regulation. However, putative roles in the maintenance of stem cell compartments or the development of malignancy in the skin were not supported by this study.
Collapse
Affiliation(s)
- Johannes Pammer
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Heidi Rossiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laura Monschein
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Wang Z, Yang H, Ma D, Mu Y, Tan X, Hao Q, Feng L, Liang J, Xin W, Chen Y, Wu Y, Jia Y, Zhao H. Serum PIWI-Interacting RNAs piR-020619 and piR-020450 Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:990-998. [PMID: 32066615 DOI: 10.1158/1055-9965.epi-19-1148] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/27/2019] [Accepted: 02/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Early diagnosis can significantly reduce colorectal cancer deaths. We sought to identify serum PIWI-interacting RNAs (piRNAs) that could serve as sensitive and specific noninvasive biomarkers for early colorectal cancer detection. METHODS We screened the piRNA expression profile in sera from 7 patients with colorectal cancer and 7 normal controls using small RNA sequencing. Differentially expressed piRNAs were measured in a training cohort of 140 patients with colorectal cancer and 140 normal controls using reverse transcription quantitative PCR. The identified piRNAs were evaluated in two independent validation cohorts of 180 patients with colorectal cancer and 180 normal controls. Finally, the diagnostic value of the identified piRNAs for colorectal adenoma (CRA) was assessed, and their expression was measured in 50 patients with lung cancer, 50 with breast cancer, and 50 with gastric cancer. RESULTS The piRNAs piR-020619 and piR-020450 were consistently elevated in sera of patients with colorectal cancer as compared with controls. A predicative panel based on the two piRNAs was established that displayed high diagnostic accuracy for colorectal cancer detection. The two-piRNA panel could detect small-size and early-stage colorectal cancer with an area under the ROC curve of 0.863 and 0.839, respectively. Combined use of the two piRNAs could effectively distinguish CRA from controls. Aberrant elevation of the two piRNAs was not observed in sera of patients with lung, breast, and gastric cancer. CONCLUSIONS Serum piR-020619 and piR-020450 show a strong potential as colorectal cancer-specific early detection biomarkers. IMPACT The field of circulating piRNAs could allow for novel tumor biomarker development.
Collapse
Affiliation(s)
- Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Hao Yang
- Department of Radiotherapy, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Daguang Ma
- Department of Thoracic Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongping Mu
- The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Xiaohui Tan
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, China
| | - Qin Hao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Li Feng
- Department of Abdominal Tumor Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Junqing Liang
- The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Wen Xin
- TransGen Biotech Co. Ltd., Beijing, China
| | - Yongxia Chen
- The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yingcai Wu
- The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongfeng Jia
- The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China. .,Basic Medicine College, Inner Mongolia Medical University, Huhhot, China
| | - Haiping Zhao
- Department of Abdominal Tumor Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Huhhot, China.
| |
Collapse
|
48
|
Zhang L, Meng X, Pan C, Qu F, Gan W, Xiang Z, Han X, Li D. piR-31470 epigenetically suppresses the expression of glutathione S-transferase pi 1 in prostate cancer via DNA methylation. Cell Signal 2019; 67:109501. [PMID: 31837464 DOI: 10.1016/j.cellsig.2019.109501] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023]
Abstract
Inactivation of glutathione S-transferase pi 1 (GSTP1) via hypermethylation is an early and common event in prostate carcinogenesis. Functional inactivation of GSTP1 increases the susceptibility to oxidative stress and enhance progression risk of the prostatic carcinoma. In this study, we hypothesized that the Piwi-interacting RNA (piRNA) could be a sequence-recognition and guidance molecule for induction of promoter methylation of GSTP1 facilitating prostate carcinogenesis. We found that piR-31470 was highly expressed in prostate cancer cells, and piR-31470 could bind to piwi-like RNA-mediated gene silencing 4 (PIWIL4) to form the PIWIL4/piR-31470 complex. This complex could bind to the nascent RNA transcripts of GSTP1, and recruit DNA methyltransferase 1, DNA methyltransferase 3 alpha and methyl-CpG binding domain protein 2 to initiate and maintain the hypermethylation and inactivation of GSTP1. Our data demonstrated that the overexpression of piR-31470 inhibited the levels of GSTP1 and increased vulnerability to oxidative stress and DNA damage in human prostate epithelial RWPE1 cells. In conclusion, this study characterized the roles of the PIWIL4/piR-31470 complex in the regulation of the transcription of GSTP1 by methylating the CpG island of GSTP1. This discovery may provide a novel therapeutic strategy by targeting piRNAs for the epigenetic treatment of prostate cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Feng Qu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu Province 210008, China.
| | - Weidong Gan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu Province 210008, China.
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
49
|
Jia R, He X, Ma W, Lei Y, Cheng H, Sun H, Huang J, Wang K. Aptamer-Functionalized Activatable DNA Tetrahedron Nanoprobe for PIWI-Interacting RNA Imaging and Regulating in Cancer Cells. Anal Chem 2019; 91:15107-15113. [PMID: 31691558 DOI: 10.1021/acs.analchem.9b03819] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been reported that PIWI-interacting RNAs (piRNAs) play critical roles in activating invasion and metastasis, evading growth suppressors, and sustaining proliferative signaling of cancer and can be regarded as a novel biomarker candidate. Thus, it is necessary to develop an effective method for imaging and regulating cancer-related piRNAs to diagnose and treat cancers. Herein, we designed aptamer-functionalized activatable DNA tetrahedron nanoprobes (apt-ADTNs) to image and regulate endogenous piRNAs in cancer cells. As proof of concept, overexpressed piRNA-36026 in MCF-7 cells was used for this study. In brief, aptamer AS1411 and piRNA-36026 antisequence with Cy5 fluorescent dye are appended from the DNA tetrahedron; then, a short oligonucleotide with black hole quencher 2 (Q-oligo) is complementary with piRNA-36026 antisequence to quench the fluorescence of Cy5. The apt-ADTNs can recognize the MCF-7 cells through aptamer AS1411, and then enter the cells. Q-oligo is detached from the apt-ADTNs because of the binding between apt-ADTNs and piRNA-36026, leading to the recovery of the Cy5 fluorescence signal. Meanwhile, the hybridization of apt-ADTNs and piRNA-36026 results in down-regulating of dissociative piRNA-36026 in cytoplasm and the subsequent apoptosis of MCF-7 cells. As the achievement of synchronously imaging and regulating piRNA-36026 in MCF-7 cells, we believe that this design holds great promise in application of diagnosis and therapy for cancer.
Collapse
Affiliation(s)
- Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
50
|
Cheng Y, Wang Q, Jiang W, Bian Y, zhou Y, Gou A, Zhang W, Fu K, Shi W. Emerging roles of piRNAs in cancer: challenges and prospects. Aging (Albany NY) 2019; 11:9932-9946. [PMID: 31727866 PMCID: PMC6874451 DOI: 10.18632/aging.102417] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 04/19/2023]
Abstract
PiRNAs are a small class of non-coding small RNAs newly discovered in recent years. Millions of piRNAs have been discovered to date, and more than 20,000 piRNA genes have been found in the human genome. Due to the relatively small number of studies related to piRNA, our understanding of piRNAs is very limited. Currently, the clear biological function of piRNAs is transposon mobilization inhibition by promoting transcript degradation and regulating chromatin formation. In addition, piRNAs can form piRNA-PIWI protein complexes with some members of the PIWI branch of the Argonaute protein. Based on these biological functions, piRNAs and PIWI proteins are important in maintaining the genomic integrity of germline cells. Because of this, the popularity of piRNAs research has been focused on its role in germline cells for a long time after the discovery of piRNAs. As the field of research expands, there is growing evidence that piRNAs and PIWI proteins are abnormally expressed in various types of cancers, which may be potential cancer biomarkers and cancer therapeutic targets. In this review, we will focus on the relationship between piRNAs and PIWI proteins and cancers based on previous research, as well as their significance in cancer detection, grading and treatment.
Collapse
Affiliation(s)
- Ye Cheng
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yonghua Bian
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yang zhou
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anxing Gou
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Wenling Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Shi
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|