1
|
Wang JP, Hung CH, Liou YH, Liu CC, Yeh KH, Wang KY, Lai ZS, Chatterjee B, Hsu TC, Lee TL, Shyu YC, Hsiao PW, Chen LY, Chuang TJ, Yu CHA, Liao NS, Shen CKJ. Long-term hematopoietic transfer of the anti-cancer and lifespan-extending capabilities of a genetically engineered blood system by transplantation of bone marrow mononuclear cells. eLife 2024; 12:RP88275. [PMID: 38752723 PMCID: PMC11098557 DOI: 10.7554/elife.88275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
A causal relationship exists among the aging process, organ decay and disfunction, and the occurrence of various diseases including cancer. A genetically engineered mouse model, termed Klf1K74R/K74R or Klf1(K74R), carrying mutation on the well-conserved sumoylation site of the hematopoietic transcription factor KLF1/EKLF has been generated that possesses extended lifespan and healthy characteristics, including cancer resistance. We show that the healthy longevity characteristics of the Klf1(K74R) mice, as exemplified by their higher anti-cancer capability, are likely gender-, age-, and genetic background-independent. Significantly, the anti-cancer capability, in particular that against melanoma as well as hepatocellular carcinoma, and lifespan-extending property of Klf1(K74R) mice, could be transferred to wild-type mice via transplantation of their bone marrow mononuclear cells at a young age of the latter. Furthermore, NK(K74R) cells carry higher in vitro cancer cell-killing ability than wild-type NK cells. Targeted/global gene expression profiling analysis has identified changes in the expression of specific proteins, including the immune checkpoint factors PDCD and CD274, and cellular pathways in the leukocytes of the Klf1(K74R) that are in the directions of anti-cancer and/or anti-aging. This study demonstrates the feasibility of developing a transferable hematopoietic/blood system for long-term anti-cancer and, potentially, for anti-aging.
Collapse
Affiliation(s)
- Jing-Ping Wang
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Chun-Hao Hung
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ching-Chen Liu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Keh-Yang Wang
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | - Biswanath Chatterjee
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tzu-Chi Hsu
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Chang Gung Memorial HospitalKeelungTaiwan
- Pro-Clintech Co. LtdKeelungTaiwan
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Nursing, Chang Gung University of Science and TechnologyTaoyuanTaiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung BranchKeelungTaiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia SinicaTaipeiTaiwan
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | | | | | - Nan-Shih Liao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - C-K James Shen
- The Ph.D. Program in Medicine Neuroscience, Taipei Medical UniversityTaipeiTaiwan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| |
Collapse
|
2
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Shyu Y, Liao P, Huang T, Yang C, Lu M, Huang S, Lin X, Liou C, Kao Y, Lu C, Peng H, Chen J, Cherng W, Yang N, Chen Y, Pan H, Jiang S, Hsu C, Lin G, Yuan S, Hsu PW, Wu K, Lee T, Shen CJ. Genetic Disruption of KLF1 K74 SUMOylation in Hematopoietic System Promotes Healthy Longevity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201409. [PMID: 35822667 PMCID: PMC9443461 DOI: 10.1002/advs.202201409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Indexed: 05/22/2023]
Abstract
The quest for rejuvenation and prolonged lifespan through transfusion of young blood has been studied for decades with the hope of unlocking the mystery of the key substance(s) that exists in the circulating blood of juvenile organisms. However, a pivotal mediator has yet been identified. Here, atypical findings are presented that are observed in a knockin mouse model carrying a lysine to arginine substitution at residue 74 of Krüppel-like factor 1 (KLF1/EKLF), the SUMOylation-deficient Klf1K74R/K74R mouse, that displayed significant improvement in geriatric disorders and lifespan extension. Klf1K74R/K74R mice exhibit a marked delay in age-related physical performance decline and disease progression as evidenced by physiological and pathological examinations. Furthermore, the KLF1(K74R) knockin affects a subset of lymphoid lineage cells; the abundance of tumor infiltrating effector CD8+ T cells and NKT cells is increased resulting in antitumor immune enhancement in response to tumor cell administration. Significantly, infusion of hematopoietic stem cells (HSCs) from Klf1K74R/K74R mice extends the lifespan of the wild-type mice. The Klf1K74R/K74R mice appear to be an ideal animal model system for further understanding of the molecular/cellular basis of aging and development of new strategies for antiaging and prevention/treatment of age-related diseases thus extending the healthspan as well as lifespan.
Collapse
Affiliation(s)
- Yu‐Chiau Shyu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of NursingChang Gung University of Science and TechnologyTaoyuan333Taiwan
| | - Po‐Cheng Liao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Ting‐Shou Huang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- School of Traditional Chinese MedicineCollege of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Chun‐Ju Yang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Mu‐Jie Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Shih‐Ming Huang
- Department of Radiation OncologyChung‐Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Xin‐Yu Lin
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Cai‐Cin Liou
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yu‐Hsiang Kao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Chi‐Huan Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Hui‐Ling Peng
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Jim‐Ray Chen
- Department of PathologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Wen‐Jin Cherng
- Department of CardiologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Ning‐I Yang
- Department of CardiologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yung‐Chang Chen
- Department of NephrologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Heng‐Chih Pan
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Si‐Tse Jiang
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of Research and DevelopmentNational Laboratory Animal CenterTainan741Taiwan
| | - Chih‐Chin Hsu
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
- Department of Physical Medicine and RehabilitationChang Gung Memorial Hospital Keelung branchKeelung204Taiwan
| | - Gigin Lin
- Department of Medical Imaging and InterventionChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Clinical Metabolomics Core LabChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuan333Taiwan
| | - Shin‐Sheng Yuan
- Institute of Statistical ScienceAcademia SinicaTaipei115Taiwan
| | - Paul Wei‐Che Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstituteZhunan350Taiwan
| | - Kou‐Juey Wu
- Cancer Genome Research CenterChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Tung‐Liang Lee
- Pro‐Clintech Co. Ltd.Keelung204Taiwan
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
| | - Che‐Kun James Shen
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
- Ph.D. Program in Medical NeuroscienceTaipei Medical UniversityTaipei110Taiwan
| |
Collapse
|
6
|
A Positive Regulatory Feedback Loop between EKLF/KLF1 and TAL1/SCL Sustaining the Erythropoiesis. Int J Mol Sci 2021; 22:ijms22158024. [PMID: 34360789 PMCID: PMC8347936 DOI: 10.3390/ijms22158024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf−/−) mouse embryos, we identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.
Collapse
|
7
|
Hung CH, Wang KY, Liou YH, Wang JP, Huang AYS, Lee TL, Jiang ST, Liao NS, Shyu YC, Shen CKJ. Negative Regulation of the Differentiation of Flk2 - CD34 - LSK Hematopoietic Stem Cells by EKLF/KLF1. Int J Mol Sci 2020; 21:E8448. [PMID: 33182781 PMCID: PMC7697791 DOI: 10.3390/ijms21228448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor β subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.
Collapse
Affiliation(s)
- Chun-Hao Hung
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Jing-Ping Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Anna Yu-Szu Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Si-Tse Jiang
- Department of Research and Development, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 74147, Taiwan;
| | - Nah-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 115, Taiwan
| |
Collapse
|
8
|
Ulyanova T, Georgolopoulos G, Papayannopoulou T. Reappraising the role of α5 integrin and the microenvironmental support in stress erythropoiesis. Exp Hematol 2019; 81:16-31.e4. [PMID: 31887343 DOI: 10.1016/j.exphem.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
We previously studied the role of β1 integrin and some of its different α partners relevant to erythropoiesis. Although clear and consistent answers regarding the role of α4β1 (VLA-4) were evident, the role of its companion integrin α5β1 (VLA-5) was clouded by inconsistent outcomes in all prior publications. Furthermore, the functional consequences of integrin deficiencies only in microenvironmental (ME) cells supporting erythroid cell expansion and maturation post stress have never been explored. In the study described here, we created several additional mouse models in the aim of addressing unanswered questions regarding functional consequences of single or combined integrin deficiencies in erythroid cells or only in ME supporting cells. Our novel and expansive data solidified the intrinsic requirement of both α4 and α5 integrins in erythroid cells for their proliferative expansion and maturation in response to stress; α5 integrin alone, deleted either early in all hematopoietic cells or only in erythroid cell, has only a redundant role in proliferative expansion and is dispensable for erythroid maturation. By contrast, α4 integrin, on its own, exerts a dominant effect on timely and optimal erythroid maturation. Deficiency of both α4 and α5 integrins in ME cells, including macrophages, does not negatively influence stress response by normal erythroid cells, in great contrast to the effect of ME cells deficient in all β1 integrins. Collectively the present data offer deeper insight into the coordination of different β1 integrin functional activities in erythroid cells or in ME cells for optimal erythroid stress response.
Collapse
Affiliation(s)
- Tatyana Ulyanova
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
9
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
10
|
Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 2016; 127:1856-62. [PMID: 26903544 DOI: 10.1182/blood-2016-01-694331] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Until recently our approach to analyzing human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, in thalassemia, the globin loci are analyzed. Sequencing has become increasingly accessible, and thus a larger panel of genes can be analyzed and whole exome and/or whole genome sequencing can be used when no variants are found in the candidate genes. By using such approaches in patients with unexplained anemias, we have discovered that a broad range of hitherto unrelated human red cell disorders are caused by variants in KLF1, a master regulator of erythropoiesis, which were previously considered to be extremely rare causes of human genetic disease.
Collapse
|
11
|
Cantú I, Philipsen S. Flicking the switch: adult hemoglobin expression in erythroid cells derived from cord blood and human induced pluripotent stem cells. Haematologica 2015; 99:1647-9. [PMID: 25420279 DOI: 10.3324/haematol.2014.116483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ileana Cantú
- Erasmus MC Department of Cell Biology, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Erasmus MC Department of Cell Biology, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
12
|
Blobel GA, Bodine D, Brand M, Crispino J, de Bruijn MFTR, Nathan D, Papayannopoulou T, Porcher C, Strouboulis J, Zon L, Higgs DR, Stamatoyannopoulos G, Engel JD. An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference. Exp Hematol 2015; 43:821-37. [PMID: 26143582 DOI: 10.1016/j.exphem.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/24/2022]
Abstract
Every 2 years since 1978, an international group of scientists, physicians, and other researchers meet to discuss the latest developments in the underlying etiology, mechanisms of action, and developmental acquisition of cellular and systemic defects exhibited and elicited by the most common inherited human disorders, the hemoglobinopathies. The 19th Hemoglobin Switching Conference, held in September 2014 at St. John's College in Oxford, once again exceeded all expectations by describing cutting edge research in cellular, molecular, developmental, and genomic advances focused on these diseases. The conference comprised about 60 short talks over 3 days by leading investigators in the field. This meeting report describes the highlights of the conference.
Collapse
Affiliation(s)
- Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bodine
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John Crispino
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - David Nathan
- Division of Hematology and Oncology, Boston Children's Hospital, Departments of Pediatrics and Medicine, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Catherine Porcher
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Len Zon
- Boston Children's Hospital/HHMI, Boston, MA, USA
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Ulirsch JC, Lacy JN, An X, Mohandas N, Mikkelsen TS, Sankaran VG. Altered chromatin occupancy of master regulators underlies evolutionary divergence in the transcriptional landscape of erythroid differentiation. PLoS Genet 2014; 10:e1004890. [PMID: 25521328 PMCID: PMC4270484 DOI: 10.1371/journal.pgen.1004890] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is one of the best understood examples of cellular differentiation. Morphologically, erythroid differentiation proceeds in a nearly identical fashion between humans and mice, but recent evidence has shown that networks of gene expression governing this process are divergent between species. We undertook a systematic comparative analysis of six histone modifications and four transcriptional master regulators in primary proerythroblasts and erythroid cell lines to better understand the underlying basis of these transcriptional differences. Our analyses suggest that while chromatin structure across orthologous promoters is strongly conserved, subtle differences are associated with transcriptional divergence between species. Many transcription factor (TF) occupancy sites were poorly conserved across species (∼25% for GATA1, TAL1, and NFE2) but were more conserved between proerythroblasts and cell lines derived from the same species. We found that certain cis-regulatory modules co-occupied by GATA1, TAL1, and KLF1 are under strict evolutionary constraint and localize to genes necessary for erythroid cell identity. More generally, we show that conserved TF occupancy sites are indicative of active regulatory regions and strong gene expression that is sustained during maturation. Our results suggest that evolutionary turnover of TF binding sites associates with changes in the underlying chromatin structure, driving transcriptional divergence. We provide examples of how this framework can be applied to understand epigenomic variation in specific regulatory regions, such as the β-globin gene locus. Our findings have important implications for understanding epigenomic changes that mediate variation in cellular differentiation across species, while also providing a valuable resource for studies of hematopoiesis. The process whereby blood progenitor cells differentiate into red blood cells, known as erythropoiesis, is very similar between mice and humans. Yet, while studies of this process in mouse have substantially improved our knowledge of human erythropoiesis, recent work has shown a significant divergence in global gene expression across species, suggesting that extrapolation from mouse models to human is not always straightforward. In order to better understand these differences, we have performed a comparative epigenomic analysis of six histone modifications and four master transcription factors. By globally comparing chromatin structure across primary cells and model cell lines in both species, we discovered that while chromatin structure is well conserved at orthologous promoters, subtle changes are predictive of species-specific gene expression. Furthermore, we discovered that the genomic localizations of master transcription factors are poorly conserved, and species-specific losses or gains are associated with changes to the underlying chromatin structure and concomitant gene expression. By using our comparative epigenomics framework, we identified a putative human-specific cis-regulatory module that drives expression of human, but not mouse, GDF15, a gene implicated in iron homeostasis. Our results provide a resource to aid researchers in interpreting genetic and epigenetic differences between species.
Collapse
Affiliation(s)
- Jacob C. Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica N. Lacy
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Xiuli An
- New York Blood Center, New York, New York, United States of America
| | - Narla Mohandas
- New York Blood Center, New York, New York, United States of America
| | - Tarjei S. Mikkelsen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Trakarnsanga K, Wilson MC, Lau W, Singleton BK, Parsons SF, Sakuntanaga P, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Induction of adult levels of β-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica 2014; 99:1677-85. [PMID: 25107887 DOI: 10.3324/haematol.2014.110155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A major barrier to the clinical use of erythrocytes generated in vitro from pluripotent stem cells or cord blood progenitors is failure of these erythrocytes to express adult hemoglobin. The key regulators of globin switching KLF1 and BCL11A are absent or at a lower level than in adult cells in K562 and erythroid cells differentiated in vitro from induced pluripotent stem cells and cord blood progenitors. Transfection or transduction of K562 and cord blood erythroid cells with either KLF1 or BCL11A-XL had little effect on β-globin expression. In contrast, transduction with both transcription factors stimulated β-globin expression. Similarly, increasing the level of BCL11A-XL in the induced pluripotent stem cell-derived erythroid cell line HiDEP-1, which has levels of endogenous KLF1 similar to adult cells but lacks BCL11A, resulted in levels of β-globin equivalent to that of adult erythroid cells. Interestingly, this increase in β-globin was coincident with a decrease in ε- and ζ-, but not γ-globin, implicating BCL11A in repression of embryonic globin expression. The data show that KLF1 and BCL11A-XL together are required, but sufficient to induce adult levels of β-globin in induced pluripotent stem cell and cord blood-derived erythroid cells that intrinsically express embryonic or fetal globin.
Collapse
Affiliation(s)
- Kongtana Trakarnsanga
- School of Biochemistry, University of Bristol, Bristol, United Kingdom Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Winnie Lau
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Belinda K Singleton
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol, UK
| | - Steve F Parsons
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol, UK
| | | | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Filton, Bristol, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|