1
|
Lin Q, Lin X. Cyclic mechanical stretch pre-stimulated bone marrow mesenchymal stem cells promote the healing of infected bone defect in a mouse model. Biotechnol J 2023; 18:e2300070. [PMID: 37365639 DOI: 10.1002/biot.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Cyclic mechanical stretch (CMS) is an effective method to accelerate mesenchymal stem cells (MSCs) differentiation. Here, CMS pre-stimulated bone marrow MSCs (CMS-BMSCs) was investigated, characterized and evaluated the therapeutic potential of CMS-BMSCs on the treatment of infected bone defect in mouse model. BMSCs were obtained from C57BL/6J mice and then subjected to CMS. The osteogenic differentiation capacity of BMSCs was evaluated by alkaline phosphatase (ALP) assay, Alizarin Red staining, qRT-PCR, and Western blot. The pre-stimulated BMSCs were transplanted into infected bone defect mice, osteogenesis, antibacterial effects, and inflammatory responses were examined. CMS significantly increased ALP activity and the expression of osteoblastic genes (col1a1, runx2, and bmp7) and enhanced osteogenic differentiation and nrf2 expression of BMSCs. Transplantation of CMS pre-stimulated BMSCs promoted the healing of infected bone defect in mice, enhanced antibacterial effects, and reduced inflammatory responses in the mid-sagittal section of the fracture callus. CMS pre-stimulated BMSCs enhance the healing of infected bone defects in a mouse model, suggesting a potential therapeutic strategy for treating infected bone defects.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Rivera KO, Cuylear DL, Duke VR, O’Hara KM, Zhong JX, Elghazali NA, Finbloom JA, Kharbikar BN, Kryger AN, Miclau T, Marcucio RS, Bahney CS, Desai TA. Encapsulation of β-NGF in injectable microrods for localized delivery accelerates endochondral fracture repair. Front Bioeng Biotechnol 2023; 11:1190371. [PMID: 37284244 PMCID: PMC10241161 DOI: 10.3389/fbioe.2023.1190371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Currently, there are no non-surgical FDA-approved biological approaches to accelerate fracture repair. Injectable therapies designed to stimulate bone healing represent an exciting alternative to surgically implanted biologics, however, the translation of effective osteoinductive therapies remains challenging due to the need for safe and effective drug delivery. Hydrogel-based microparticle platforms may be a clinically relevant solution to create controlled and localized drug delivery to treat bone fractures. Here, we describe poly (ethylene glycol) dimethacrylate (PEGDMA)-based microparticles, in the shape of microrods, loaded with beta nerve growth factor (β-NGF) for the purpose of promoting fracture repair. Methods: Herein, PEGDMA microrods were fabricated through photolithography. PEGDMA microrods were loaded with β-NGF and in vitro release was examined. Subsequently, bioactivity assays were evaluated in vitro using the TF-1 tyrosine receptor kinase A (Trk-A) expressing cell line. Finally, in vivo studies using our well-established murine tibia fracture model were performed and a single injection of the β-NGF loaded PEGDMA microrods, non-loaded PEGDMA microrods, or soluble β-NGF was administered to assess the extent of fracture healing using Micro-computed tomography (µCT) and histomorphometry. Results: In vitro release studies showed there is significant retention of protein within the polymer matrix over 168 hours through physiochemical interactions. Bioactivity of protein post-loading was confirmed with the TF-1 cell line. In vivo studies using our murine tibia fracture model show that PEGDMA microrods injected at the site of fracture remained adjacent to the callus for over 7 days. Importantly, a single injection of β-NGF loaded PEGDMA microrods resulted in improved fracture healing as indicated by a significant increase in the percent bone in the fracture callus, trabecular connective density, and bone mineral density relative to soluble β-NGF control indicating improved drug retention within the tissue. The concomitant decrease in cartilage fraction supports our prior work showing that β-NGF promotes endochondral conversion of cartilage to bone to accelerate healing. Discussion: We demonstrate a novel and translational method wherein β-NGF can be encapsulated within PEGDMA microrods for local delivery and that β-NGF bioactivity is maintained resulting in improved bone fracture repair.
Collapse
Affiliation(s)
- Kevin O. Rivera
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Darnell L. Cuylear
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Victoria R. Duke
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Kelsey M. O’Hara
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Justin X. Zhong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Nafisa A. Elghazali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Joel A. Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Alex N. Kryger
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Chelsea S. Bahney
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A. Desai
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, CA, United States
- School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
3
|
The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Rep 2022; 17:101616. [PMID: 36105852 PMCID: PMC9465425 DOI: 10.1016/j.bonr.2022.101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Endochondral bone formation is an important pathway in fracture healing, involving the formation of a cartilaginous soft callus and the process of cartilage-to-bone transition. Failure or delay in the cartilage-to-bone transition causes an impaired bony union such as nonunion or delayed union. During the healing process, multiple types of cells including chondrocytes, osteoprogenitors, osteoblasts, and endothelial cells coexist in the callus, and inevitably crosstalk with each other. Hypertrophic chondrocytes located between soft cartilaginous callus and bony hard callus mediate the crosstalk regulating cell-matrix degradation, vascularization, osteoclast recruitment, and osteoblast differentiation in autocrine and paracrine manners. Furthermore, hypertrophic chondrocytes can become osteoprogenitors and osteoblasts, and directly contribute to woven bone formation. In this review, we focus on the roles of hypertrophic chondrocytes in fracture healing and dissect the intermingled crosstalk in fracture callus during the cartilage-to-bone transition.
Collapse
|
4
|
Serowoky MA, Kuwahara ST, Liu S, Vakhshori V, Lieberman JR, Mariani FV. A murine model of large-scale bone regeneration reveals a selective requirement for Sonic Hedgehog. NPJ Regen Med 2022; 7:30. [PMID: 35581202 PMCID: PMC9114339 DOI: 10.1038/s41536-022-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Building and maintaining skeletal tissue requires the activity of skeletal stem and progenitor cells (SSPCs). Following injury, local pools of these SSPCs become active and coordinate to build new cartilage and bone tissues. While recent studies have identified specific markers for these SSPCs, how they become activated in different injury contexts is not well-understood. Here, using a model of large-scale rib bone regeneration in mice, we demonstrate that the growth factor, Sonic Hedgehog (SHH), is an early and essential driver of large-scale bone healing. Shh expression is broadly upregulated in the first few days following rib bone resection, and conditional knockout of Shh at early but not late post-injury stages severely inhibits cartilage callus formation and later bone regeneration. Whereas Smoothened (Smo), a key transmembrane component of the Hh pathway, is required in Sox9+ lineage cells for rib regeneration, we find that Shh is required in a Prrx1-expressing, Sox9-negative mesenchymal population. Intriguingly, upregulation of Shh expression and requirements for Shh and Smo may be unique to large-scale injuries, as they are dispensable for both complete rib and femur fracture repair. In addition, single-cell RNA sequencing of callus tissue from animals with deficient Hedgehog signaling reveals a depletion of Cxcl12-expressing cells, which may indicate failed recruitment of Cxcl12-expressing SSPCs during the regenerative response. These results reveal a mechanism by which Shh expression in the local injury environment unleashes large-scale regenerative abilities in the murine rib.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Stephanie T Kuwahara
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Shuwan Liu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Klosterhoff BS, Vantucci CE, Kaiser J, Ong KG, Wood LB, Weiss JA, Guldberg RE, Willett NJ. Effects of osteogenic ambulatory mechanical stimulation on early stages of BMP-2 mediated bone repair. Connect Tissue Res 2022; 63:16-27. [PMID: 33820456 PMCID: PMC8490484 DOI: 10.1080/03008207.2021.1897582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Mechanical loading of bone defects through rehabilitation is a promising approach to stimulate repair and reduce nonunion risk; however, little is known about how therapeutic mechanical stimuli modulate early-stage repair before mineralized bone formation. The objective of this study was to investigate the early effects of osteogenic loading on cytokine expression and angiogenesis during the first 3 weeks of BMP-2 mediated segmental bone defect repair.Materials and Methods: A rat model of BMP-2 mediated bone defect repair was subjected to an osteogenic mechanical loading protocol using ambulatory rehabilitation and a compliant, load-sharing fixator with an integrated implantable strain sensor. The effect of fixator load-sharing on local tissue strain, angiogenesis, and cytokine expression was evaluated.Results: Using sensor readings for local measurements of boundary conditions, finite element simulations showed strain became amplified in remaining soft tissue regions between 1 and 3 weeks (Week 3: load-sharing: -1.89 ± 0.35% and load-shielded: -1.38 ± 0.35% vs. Week 1: load-sharing: -1.54 ± 0.17%; load-shielded: -0.76 ± 0.06%). Multivariate analysis of cytokine arrays revealed that load-sharing significantly altered expression profiles in the defect tissue at 2 weeks compared to load-shielded defects. Specifically, loading reduced VEGF (p = 0.052) and increased CXCL5 (LIX) levels. Subsequently, vascular volume in loaded defects was reduced relative to load-shielded defects but similar to intact bone at 3 weeks. Endochondral bone repair was also observed histologically in loaded defects at 3 weeks.Conclusions: Together, these results demonstrate that moderate ambulatory strains previously shown to stimulate bone regeneration significantly alter early angiogenic and cytokine signaling and may promote endochondral ossification.
Collapse
Affiliation(s)
- Brett S. Klosterhoff
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Casey E. Vantucci
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Jarred Kaiser
- Research Service, Atlanta VA Medical Center, Decatur, GA,Department of Orthopaedics, Emory University, Atlanta, GA
| | | | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT,Department of Orthopedics, University of Utah, Salt Lake City, UT
| | | | - Nick J. Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,Research Service, Atlanta VA Medical Center, Decatur, GA,Department of Orthopaedics, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Bornstein B, Konstantin N, Alessandro C, Tresch MC, Zelzer E. More than movement: the proprioceptive system as a new regulator of musculoskeletal biology. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22:22-38. [PMID: 33188273 DOI: 10.1038/s41580-020-00306-w] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell-ECM and cell-cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | | | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
8
|
Kegelman CD, Nijsure MP, Moharrer Y, Pearson HB, Dawahare JH, Jordan KM, Qin L, Boerckel JD. YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair. J Bone Miner Res 2021; 36:143-157. [PMID: 32835424 PMCID: PMC7988482 DOI: 10.1002/jbmr.4166] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
In response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing in mice. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture or by developmental deficiencies in the progenitor cell pool before fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx-CretetOff ) in which YAP and TAZ were deleted before fracture but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf before the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Christopher D Kegelman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Kelsey M Jordan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Huang S, Jin M, Su N, Chen L. New insights on the reparative cells in bone regeneration and repair. Biol Rev Camb Philos Soc 2020; 96:357-375. [PMID: 33051970 DOI: 10.1111/brv.12659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| |
Collapse
|
10
|
Klosterhoff BS, Kaiser J, Nelson BD, Karipott SS, Ruehle MA, Hollister SJ, Weiss JA, Ong KG, Willett NJ, Guldberg RE. Wireless sensor enables longitudinal monitoring of regenerative niche mechanics during rehabilitation that enhance bone repair. Bone 2020; 135:115311. [PMID: 32156664 PMCID: PMC7585453 DOI: 10.1016/j.bone.2020.115311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Mechanical loads exerted on the skeleton during activities such as walking are important regulators of bone repair, but dynamic biomechanical signals are difficult to measure inside the body. The inability to measure the mechanical environment in injured tissues is a significant barrier to developing integrative regenerative and rehabilitative strategies that can accelerate recovery from fracture, segmental bone loss, and spinal fusion. Here we engineered an implantable strain sensor platform and longitudinally measured strain across a bone defect in real-time throughout rehabilitation. The results showed that load-sharing permitted by a load-sharing fixator initially delivered a two-fold increase in deformation magnitude, subsequently increased mineralized bridging by nearly three-fold, and increased bone formation by over 60%. These data implicate a critical role for early mechanical cues on the long term healing response as strain cycle magnitude at 1 week (before appreciable healing occurred) had a significant positive correlation with the long-term bone regeneration outcomes. Furthermore, we found that sensor readings correlated with the status of healing, suggesting a role for strain sensing as an X-ray-free healing assessment platform. Therefore, non-invasive strain measurements may possess diagnostic potential to evaluate bone repair and reduce clinical reliance on current radiation-emitting imaging methods. Together, this study demonstrates a promising framework to quantitatively develop and exploit mechanical rehabilitation strategies that enhance bone repair.
Collapse
Affiliation(s)
- Brett S Klosterhoff
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Jarred Kaiser
- Research Service, Atlanta VA Medical Center, Decatur, GA, United States of America; Department of Orthopaedics, Emory University, Atlanta, GA, United States of America
| | - Bradley D Nelson
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - Salil S Karipott
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - Marissa A Ruehle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Scott J Hollister
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States of America; Department of Orthopedics, University of Utah, Salt Lake City, UT, United States of America
| | - Keat Ghee Ong
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - Nick J Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Research Service, Atlanta VA Medical Center, Decatur, GA, United States of America; Department of Orthopaedics, Emory University, Atlanta, GA, United States of America; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Robert E Guldberg
- Knight Campus, University of Oregon, Eugene, OR, United States of America.
| |
Collapse
|
11
|
Serowoky MA, Arata CE, Crump JG, Mariani FV. Skeletal stem cells: insights into maintaining and regenerating the skeleton. Development 2020; 147:147/5/dev179325. [PMID: 32161063 DOI: 10.1242/dev.179325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal stem cells (SSCs) generate the progenitors needed for growth, maintenance and repair of the skeleton. Historically, SSCs have been defined as bone marrow-derived cells with inconsistent characteristics. However, recent in vivo tracking experiments have revealed the presence of SSCs not only within the bone marrow but also within the periosteum and growth plate reserve zone. These studies show that SSCs are highly heterogeneous with regard to lineage potential. It has also been revealed that, during digit tip regeneration and in some non-mammalian vertebrates, the dedifferentiation of osteoblasts may contribute to skeletal regeneration. Here, we examine how these research findings have furthered our understanding of the diversity and plasticity of SSCs that mediate skeletal maintenance and repair.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claire E Arata
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Normal trabecular vertebral bone is formed via rapid transformation of mineralized spicules: A high-resolution 3D ex-vivo murine study. Acta Biomater 2019; 86:429-440. [PMID: 30605771 DOI: 10.1016/j.actbio.2018.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/01/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
At birth, mouse vertebrae have a reticular fine spongy morphology, yet in the adult animal they exhibit elaborate trabecular architectures. Here, we characterize the physiological microstructural transformations in growing young female mice of the widely used C57BL/6 strain. Extensive architectural changes lead to the establishment of mature cancellous bone in the spine. Vertebrae were mapped in 3D by high resolution microcomputed tomography (µCT), backed by conventional histology. Three different phases are observed in the natural bony biomaterial: In a prenatal templating phase, early vertebrae are composed of foamy, loosely-packed mineralized spicules. During a consolidation phase in the first 7 days after birth, bone material condenses into struts and forms primitive trabeculae accompanied by a significant (>50%) reduction in bone volume/tissue volume ratio (BV/TV). After day 7, the trabeculae expand, reorient and increase in mineral density. Swift growth ensues such that by day 14 the young lumbar spine exhibits all morphological features observed in the mature animal. The greatly varied micro-morphologies of normal trabecular bone observed in 3D within a short timespan are typical for rodent and presumably for other mammalian forming spines. This suggests that fully structured cancellous bone emerges through rapid post-natal restructuring of a foamy mineralized scaffold. STATEMENT OF SIGNIFICANCE: Cancellous bone develops in stages that are not well documented. Using a mouse model, we provide an observer-independent quantification of normal bone formation in the spine. We find that within 14 days, the cancellous bone transforms in 3 phases from a scaffold of spicules into well organized, fully mineralized trabeculae in a functional spine. Detailed knowledge of the physiological restructuring of mineralized material may help to better understand bone formation and may serve as a blueprint for studies of pharmaceuticals effects, tissue healing and regeneration.
Collapse
|
13
|
Abstract
Tendons connect muscle to bone and play an integral role in bone and joint alignment and loading. Tendons act as pulleys that provide anchorage of muscle forces for joint motion and stability, as well as for fracture reduction and realignment. Patients that experience complex fractures also have concomitant soft tissue injuries, such as tendon damage or rupture. Tendon injuries that occur at the time of bone fracture have long-term ramifications on musculoskeletal health, yet these injuries are often disregarded in clinical treatment and diagnosis for patients with bone fractures as well as in basic science approaches for understanding bone repair processes. Delayed assessment of soft tissue injuries during evaluation of trauma can lead to chronic pain, dysfunction, and delayed bone healing even following successful fracture repair, highlighting the importance of identifying and treating damaged tendons early. Treatment strategies for bone repair, such as mechanical stabilization and biological therapeutics, can impact tendon healing and function. Because poor tendon healing following complex fracture can significantly impact the function of tendon during bone fracture healing, a need exists to understand the healing process of complex fractures more broadly, beyond the healing of bone. In this review, we explored the mechanical and biological interaction of bone and tendon in the context of complex fracture, as well as the relevance and potential ramifications of tendon damage following bone fracture, which has particular impact on patients that experience complex fractures, such as from combat, automobile accidents, and other trauma.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
14
|
|
15
|
Blecher R, Heinemann-Yerushalmi L, Assaraf E, Konstantin N, Chapman JR, Cope TC, Bewick GS, Banks RW, Zelzer E. New functions for the proprioceptive system in skeletal biology. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170327. [PMID: 30249776 PMCID: PMC6158198 DOI: 10.1098/rstb.2017.0327] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 01/13/2023] Open
Abstract
Muscle spindles and Golgi tendon organs (GTOs) are two types of sensory receptors that respond to changes in length or tension of skeletal muscles. These mechanosensors have long been known to participate in both proprioception and stretch reflex. Here, we present recent findings implicating these organs in maintenance of spine alignment as well as in realignment of fractured bones. These discoveries have been made in several mouse lines lacking functional mechanosensors in part or completely. In both studies, the absence of functional spindles and GTOs produced a more severe phenotype than that of spindles alone. Interestingly, the spinal curve phenotype, which appeared during peripubertal development, bears resemblance to the human condition adolescent idiopathic scoliosis. This similarity may contribute to the study of the disease by offering both an animal model and a clue as to its aetiology. Moreover, it raises the possibility that impaired proprioceptive signalling may be involved in the aetiology of other conditions. Overall, these new findings expand considerably the scope of involvement of proprioception in musculoskeletal development and function.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Ronen Blecher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Orthopedic Surgery, Assaf HaRofeh Medical Center, Zerrifin 70300, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Eran Assaraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Orthopedic Surgery, Assaf HaRofeh Medical Center, Zerrifin 70300, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Konstantin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Timothy C Cope
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Guy S Bewick
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Robert W Banks
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord St, Evans 243, Boston, MA, 02118, USA.
| | - Chelsea S Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
17
|
Lind T, Lugano R, Gustafson AM, Norgård M, van Haeringen A, Dimberg A, Melhus H, Robertson SP, Andersson G. Bones in human CYP26B1 deficiency and rats with hypervitaminosis A phenocopy Vegfa overexpression. Bone Rep 2018; 9:27-36. [PMID: 30003121 PMCID: PMC6039751 DOI: 10.1016/j.bonr.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/05/2018] [Accepted: 06/16/2018] [Indexed: 01/03/2023] Open
Abstract
Angulated femurs are present prenatally both in CYP26B1 deficient humans with a reduced capacity to degrade retinoic acid (RA, the active metabolite of vitamin A), and mice overexpressing vascular endothelial growth factor a (Vegfa). Since excessive ingestion of vitamin A is known to induce spontaneous fractures and as the Vegfa-induced femur angulation in mice appears to be caused by intrauterine fractures, we analyzed bones from a CYP26B1 deficient human and rats with hypervitaminosis A to further explore Vegfa as a mechanistic link for the effect of vitamin A on bone. We show that bone from a human with CYP26B1 mutations displayed periosteal osteoclasts in piles within deep resorption pits, a pathognomonic sign of hypervitaminosis A. Analysis of the human angulated fetal femur revealed excessive bone formation in the marrow cavity and abundant blood vessels. Normal human endothelial cells showed disturbed cell-cell junctions and increased CYP26B1 and VEGFA expression upon RA exposure. Studies in rats showed increased plasma and tissue Vegfa concentrations and signs of bone marrow microhemorrhage on the first day of excess dietary vitamin A intake. Subsequently hypervitaminosis A rats displayed excess bone formation, fibrosis and an increased number of megakaryocytes in the bone marrow, which are known characteristics of Vegfa overexpression. This study supports the notion that the skeletal phenotype in CYP26B1 deficient human bone is caused by excess RA. Our findings suggest that an initial part of the vitamin A mechanism causing bone alterations is mediated by excess Vegfa and disturbed bone marrow microvessel integrity. Human CYP26B1 deficit and rat hypervitaminosis A phenocopy Vegf bone overexpression Hypervitaminosis A cause rapid microhemorrhage in rat bone marrow. Retinoic acid treatment disrupt cell-cell junction integrity between endothelial cells. Hypervitaminosis A have a persistent negative effect on rat bone marrow perfusion. Hypervitaminosis A rat bones resemble bones of patients with myelofibrotic disorders.
Collapse
Affiliation(s)
- Thomas Lind
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-14152 Huddinge, Sweden
| | - Arie van Haeringen
- Department of Human and Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Håkan Melhus
- Department of Medical Sciences, Section of Clinical Pharmacogenomics and Osteoporosis, Uppsala University, University Hospital, SE-75185 Uppsala, Sweden
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine University of Otago, 9054 Dunedin, New Zealand
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, SE-14152 Huddinge, Sweden
| |
Collapse
|
18
|
Klosterhoff BS, Ghee Ong K, Krishnan L, Hetzendorfer KM, Chang YH, Allen MG, Guldberg RE, Willett NJ. Wireless Implantable Sensor for Noninvasive, Longitudinal Quantification of Axial Strain Across Rodent Long Bone Defects. J Biomech Eng 2018; 139:2654844. [PMID: 28975256 DOI: 10.1115/1.4037937] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/08/2022]
Abstract
Bone development, maintenance, and regeneration are remarkably sensitive to mechanical cues. Consequently, mechanical stimulation has long been sought as a putative target to promote endogenous healing after fracture. Given the transient nature of bone repair, tissue-level mechanical cues evolve rapidly over time after injury and are challenging to measure noninvasively. The objective of this work was to develop and characterize an implantable strain sensor for noninvasive monitoring of axial strain across a rodent femoral defect during functional activity. Herein, we present the design, characterization, and in vivo demonstration of the device's capabilities for quantitatively interrogating physiological dynamic strains during bone regeneration. Ex vivo experimental characterization of the device showed that it possessed promising sensitivity, signal resolution, and electromechanical stability for in vivo applications. The digital telemetry minimized power consumption, enabling extended intermittent data collection. Devices were implanted in a rat 6 mm femoral segmental defect model, and after three days, data were acquired wirelessly during ambulation and synchronized to corresponding radiographic videos, validating the ability of the sensor to noninvasively measure strain in real-time. Together, these data indicate the sensor is a promising technology to quantify tissue mechanics in a specimen specific manner, facilitating more detailed investigations into the role of the mechanical environment in dynamic bone healing and remodeling processes.
Collapse
Affiliation(s)
- Brett S Klosterhoff
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Keat Ghee Ong
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Laxminarayanan Krishnan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kevin M Hetzendorfer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Young-Hui Chang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Mark G Allen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nick J Willett
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332.,Department of Orthopaedics, Emory University, Atlanta, GA 30303.,Atlanta Veteran's Affairs Medical Center, Department of Orthopaedics, Decatur, GA 30033.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| |
Collapse
|
19
|
Abstract
During embryogenesis, the musculoskeletal system develops while containing within itself a force generator in the form of the musculature. This generator becomes functional relatively early in development, exerting an increasing mechanical load on neighboring tissues as development proceeds. A growing body of evidence indicates that such mechanical forces can be translated into signals that combine with the genetic program of organogenesis. This unique situation presents both a major challenge and an opportunity to the other tissues of the musculoskeletal system, namely bones, joints, tendons, ligaments and the tissues connecting them. Here, we summarize the involvement of muscle-induced mechanical forces in the development of various vertebrate musculoskeletal components and their integration into one functional unit.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Blecher R, Krief S, Galili T, Assaraf E, Stern T, Anekstein Y, Agar G, Zelzer E. The Proprioceptive System Regulates Morphologic Restoration of Fractured Bones. Cell Rep 2017; 20:1775-1783. [PMID: 28834742 PMCID: PMC5575358 DOI: 10.1016/j.celrep.2017.07.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
Successful fracture repair requires restoration of bone morphology and mechanical integrity. Recent evidence shows that fractured bones of neonatal mice undergo spontaneous realignment, dubbed "natural reduction." Here, we show that natural reduction is regulated by the proprioceptive system and improves with age. Comparison among mice of different ages revealed, surprisingly, that 3-month-old mice exhibited more rapid and effective natural reduction than newborns. Fractured bones of null mutants for transcription factor Runx3, lacking functional proprioceptors, failed to realign properly. Blocking Runx3 expression in the peripheral nervous system, but not in limb mesenchyme, recapitulated the null phenotype, as did inactivation of muscles flanking the fracture site. Egr3 knockout mice, which lack muscle spindles but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types, as well as muscle contraction, are required for this regulatory mechanism. These findings uncover a physiological role for proprioception in non-autonomous regulation of skeletal integrity.
Collapse
Affiliation(s)
- Ronen Blecher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Orthopedic Surgery, Assaf Harofeh Medical Center, Zerrifin 70300, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Assaraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Orthopedic Surgery, Assaf Harofeh Medical Center, Zerrifin 70300, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoram Anekstein
- Department of Orthopedic Surgery, Assaf Harofeh Medical Center, Zerrifin 70300, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriel Agar
- Department of Orthopedic Surgery, Assaf Harofeh Medical Center, Zerrifin 70300, Israel, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
21
|
Blecher R, Krief S, Galili T, Biton IE, Stern T, Assaraf E, Levanon D, Appel E, Anekstein Y, Agar G, Groner Y, Zelzer E. The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis. Dev Cell 2017; 42:388-399.e3. [DOI: 10.1016/j.devcel.2017.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/10/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|
22
|
Pantinople J, McCabe K, Henderson K, Richards HL, Milne N. The development of curvature in the porcine radioulna. PeerJ 2017; 5:e3386. [PMID: 28584714 PMCID: PMC5457666 DOI: 10.7717/peerj.3386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/07/2017] [Indexed: 11/20/2022] Open
Abstract
Long bone curvature in animal limbs has long been a subject of interest and much work has explored why long bones should be curved. However, the ‘when’ and ‘how’ of curvature development is poorly understood. It has been shown that the rat tibia fails to attain its normal curvature if the action of muscles is removed early in life, but it is not clear if this is because the curvature fails to develop or if the bone becomes straighter without the action of muscles. No studies have examined the development of bone curvature in a normally developing quadruped, so this study tracks the course of curvature formation in the radioulna in a series of growing pigs. We also histologically examined the epiphyseal growth plates of these bones to determine if they contribute to the formation of curvature. In all three epiphyseal plates examined, the proliferative zone is thicker and more densely populated with chondrocytes on the cranial (convex) side than the caudal (concave) side. Frost’s chondral modelling theory would suggest that the cranial side of the bone is under more compression than the caudal side, and we conclude that this is due to the action of triceps extending the elbow by pulling on the olecranon process. These results support the idea that bone curvature is an adaptation to habitual loading, where longitudinal loads acting on the curved bone cause bending strains that counter the bending resulting from the habitual muscle action.
Collapse
|
23
|
McKenzie JA, Buettmann E, Abraham AC, Gardner MJ, Silva MJ, Killian ML. Loss of scleraxis in mice leads to geometric and structural changes in cortical bone, as well as asymmetry in fracture healing. FASEB J 2016; 31:882-892. [PMID: 27864378 DOI: 10.1096/fj.201600969r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Scleraxis (Scx) is a known regulator of tendon development, and recent work has identified the role of Scx in bone modeling. However, the role of Scx in fracture healing has not yet been explored. This study was conducted to identify the role of Scx in cortical bone development and fracture healing. Scx green fluorescent protein-labeled (ScxGFP) reporter and Scx-knockout (Scx-mutant) mice were used to assess bone morphometry and the effects of fracture healing on Scx localization and gene expression, as well as callus healing response. Botulinum toxin (BTX) was used to investigate muscle unloading effects on callus shape. Scx-mutant long bones had structural and mechanical defects. Scx gene expression was elevated and bmp4 was decreased at 24 h after fracture. ScxGFP+ cells were localized throughout the healing callus after fracture. Scx-mutant mice demonstrated disrupted callus healing and asymmetry. Asymmetry of Scx-mutant callus was not due to muscle unloading. Wild-type littermates (age matched) served as controls. This is the first study to explore the role of Scx in cortical bone mechanics and fracture healing. Deletion of Scx during development led to altered long bone properties and callus healing. This study also demonstrated that Scx may play a role in the periosteal response during fracture healing.-McKenzie, J. A., Buettmann, E., Abraham, A. C., Gardner, M. J., Silva, M. J., Killian, M. L. Loss of scleraxis in mice leads to geometric and structural changes in cortical bone, as well as asymmetry in fracture healing.
Collapse
Affiliation(s)
- Jennifer A McKenzie
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evan Buettmann
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam C Abraham
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Gardner
- Department of Orthopedic Surgery, Stanford University, Redwood City, California, USA; and
| | - Matthew J Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan L Killian
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
24
|
Milne N. Curved bones: An adaptation to habitual loading. J Theor Biol 2016; 407:18-24. [PMID: 27444401 DOI: 10.1016/j.jtbi.2016.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
Why are long bones curved? It has long been considered a paradox that many long bones supporting mammalian bodies are curved, since this curvature results in the bone undergoing greater bending, with higher strains and so greater fracture risk under load. This study develops a theoretical model wherein the curvature is a response to bending strains imposed by the requirements of locomotion. In particular the radioulna of obligate quadrupeds is a lever operated by the triceps muscle, and the bending strains induced by the triceps muscle counter the bending resulting from longitudinal loads acting on the curved bone. Indeed the theoretical model reverses this logic and suggests that the curvature is itself a response to the predictable bending strains induced by the triceps muscle. This, in turn, results in anatomical arrangements of bone, muscle and tendon that create a simple physiological mechanism whereby the bone can resist the bending due to the action of triceps in supporting and moving the body. The model is illustrated by contrasting the behaviour of a finite element model of a llama radioulna to that of a straightened version of the same bone. The results show that longitudinal and flexor muscle forces produce bending strains that effectively counter strains due to the pull of the triceps muscle in the curved but not in the straightened model. It is concluded that the curvature of these and other curved bones adds resilience to the skeleton by acting as pre-stressed beams or strainable pre-buckled struts. It is also proposed that the cranial bending strains that result from triceps, acting on the lever that is the radioulna, can explain the development of the curvature of such bones.
Collapse
Affiliation(s)
- Nick Milne
- School of Anatomy, Physiology and Human Biology, University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia.
| |
Collapse
|
25
|
Ono N, Kronenberg HM. Bone repair and stem cells. Curr Opin Genet Dev 2016; 40:103-107. [PMID: 27399886 DOI: 10.1016/j.gde.2016.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/18/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.
Collapse
Affiliation(s)
- Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Regan JN, Waning DL, Guise TA. Skeletal muscle Ca(2+) mishandling: Another effect of bone-to-muscle signaling. Semin Cell Dev Biol 2015; 49:24-9. [PMID: 26593325 DOI: 10.1016/j.semcdb.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 01/06/2023]
Abstract
Our appreciation of crosstalk between muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. While the recent identification of new 'myokines' has shifted some focus to the role of muscle in this partnership, bone-derived factors and their effects on skeletal muscle should not be overlooked. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGF-β as a cause of skeletal muscle weakness in the setting of cancer-induced bone destruction. Oxidation of the ryanodine receptor/calcium release channel (RyR1) in skeletal muscle occurs via a TGF-β-Nox4-RyR1 axis and leads to calcium mishandling and decreased muscle function. Multiple points of potential therapeutic intervention were identified, from preventing the bone destruction to stabilizing the RYR1 calcium channel. This new data reinforces the concept that bone can be an important source of signaling factors in pathphysiological settings.
Collapse
Affiliation(s)
- Jenna N Regan
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David L Waning
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theresa A Guise
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
27
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
28
|
How baby bones self-repair. Nature 2014. [DOI: 10.1038/515010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Nguyen J, Alliston T. Calluses flex their muscles to align bone fragments during fracture repair. Dev Cell 2014; 31:137-8. [PMID: 25373771 PMCID: PMC4492116 DOI: 10.1016/j.devcel.2014.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neonatal animals spontaneously reduce fractures, yet the mechanical forces influencing this process are poorly understood. In this issue of Developmental Cell, Rot et al. (2014) show that muscle and the fracture callus actively position fractured neonatal bone fragments to restore their alignment, highlighting the multifaceted roles of mechanical cues in skeletal regeneration.
Collapse
Affiliation(s)
- Jacqueline Nguyen
- Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Tamara Alliston
- Graduate Program in Oral and Craniofacial Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|