1
|
Buglak DB, Holmes KHM, Galletta BJ, Rusan NM. The proximal centriole-like structure maintains nucleus-centriole architecture in sperm. J Cell Sci 2024; 137:jcs262311. [PMID: 39166297 PMCID: PMC11423811 DOI: 10.1242/jcs.262311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Proper connection between the sperm head and tail is critical for sperm motility and fertilization. Head-tail linkage is mediated by the head-tail coupling apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is poorly understood. Here, we use Drosophila to investigate formation and remodeling of the HTCA throughout spermiogenesis by visualizing key components of this complex. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'centriole cap' that surrounds the centriole (or basal body) as it invaginates into the surface of the nucleus. As development progresses, the centriole is laterally displaced to the side of the nucleus while the HTCA expands under the nucleus, forming what we term the 'nuclear shelf'. We next show that the proximal centriole-like (PCL) structure is positioned under the nuclear shelf, functioning as a crucial stabilizer of centriole-nucleus attachment. Together, our data indicate that the HTCA is a complex, multi-point attachment site that simultaneously engages the PCL, the centriole and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.
Collapse
Affiliation(s)
- Danielle B. Buglak
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathleen H. M. Holmes
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Galletta BJ, Konstantinidou P, Haase AD, Rusan NM. A deficiency screen identifies genomic regions critical for sperm head-tail connection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608819. [PMID: 39372731 PMCID: PMC11452195 DOI: 10.1101/2024.08.20.608819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A stable connection between the sperm head and tail is critical for fertility in species with flagellated sperm. The head-tail coupling apparatus (HTCA) serves as the critical link between the nucleus (head) and the axoneme (tail) via the centriole. To identify regions of the Drosophila melanogaster genome that contain genetic elements that influence HTCA formation, we undertook a two part screen using the Drosophila deficiency (Df) kit. For this screen, we utilized a sensitized genetic background that overexpresses the pericentriolar material regulatory protein Pericentrin-Like Protein (PLP). We had previously shown that PLP overexpression (PLPOE) disrupts the head-tail connection in some spermatids, but not to a degree sufficient to reduce fertility. In the first step of the screen we tested for Dfs that in combination with PLPOE cause a reduction in fertility. We ultimately identified 11 regions of the genome that showed an enhanced fertility defect when combined with PLP overexpression. In the second step of the screen we tested these Dfs for their ability to enhance the HTCA defect caused by PLPOE, finding six. We then tested smaller Dfs to narrow the region of the genome that contained these enhancers. To further analyze the regions of the genome removed by these Dfs, we examined the expression patterns of the genes within these Dfs in publicly available datasets of RNAseq of Drosophila tissues and snRNAseq of Drosophila testes. In total, our analysis suggests that some of these Dfs may contain a single gene that might influence HTCA formation and / or fertility, while others appear to be regions of the genome especially rich in testis-expressed genes that might affect the HTCA because of complex, multi-gene interactions.
Collapse
Affiliation(s)
- Brian J. Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Parthena Konstantinidou
- RNA Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Astrid D. Haase
- RNA Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Zhang Y, Liu G, Huang L, He X, Su Y, Nie X, Mao Z, Xing X. SUN5 interacts with nuclear membrane LaminB1 and cytoskeletal GTPase Septin12 mediating the sperm head-and-tail junction. Mol Hum Reprod 2024; 30:gaae022. [PMID: 38870534 DOI: 10.1093/molehr/gaae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiyi He
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Buglak DB, Holmes KHM, Galletta BJ, Rusan NM. The Proximal Centriole-Like Structure Anchors the Centriole to the Sperm Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589606. [PMID: 38712096 PMCID: PMC11071290 DOI: 10.1101/2024.04.15.589606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Proper connection between the sperm head and tail is critical for sperm motility and fertilization. The link between the head and tail is mediated by the Head-Tail Coupling Apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is not well understood. Here, we use Drosophila to create a high-resolution map of proteins and structures at the HTCA throughout spermiogenesis. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'Centriole Cap' that surrounds the centriole (or Basal Body) as it is inserted, or embedded into the surface of the nucleus. As development progresses, the centriole is laterally displaces to the side of the nucleus, during which time the HTCA expands under the nucleus, forming what we term the 'Nuclear Shelf.' We next show that the proximal centriole-like (PCL) structure is positioned under the Nuclear Shelf and functions as a critical stabilizer of the centriole-nuclear attachment. Together, our data indicate that the HTCA is complex, multi-point attachment site that simultaneously engages the PCL, the centriole, and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.
Collapse
|
5
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Fang J, Tian W, Quintanilla MA, Beach JR, Lerit DA. The PCM scaffold enables RNA localization to centrosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575509. [PMID: 38469150 PMCID: PMC10926663 DOI: 10.1101/2024.01.13.575509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
As microtubule-organizing centers, centrosomes direct assembly of the bipolar mitotic spindle required for chromosome segregation and genome stability. Centrosome activity requires the dynamic assembly of pericentriolar material (PCM), the composition and organization of which changes throughout the cell cycle. Recent studies highlight the conserved localization of several mRNAs encoded from centrosome-associated genes enriched at centrosomes, including Pericentrin-like protein (Plp) mRNA. However, relatively little is known about how RNAs localize to centrosomes and influence centrosome function. Here, we examine mechanisms underlying the subcellular localization of Plp mRNA. We find that Plp mRNA localization is puromycin-sensitive, and the Plp coding sequence is both necessary and sufficient for RNA localization, consistent with a co-translational transport mechanism. We identify regions within the Plp coding sequence that regulate Plp mRNA localization. Finally, we show that protein-protein interactions critical for elaboration of the PCM scaffold permit RNA localization to centrosomes. Taken together, these findings inform the mechanistic basis of Plp mRNA localization and lend insight into the oscillatory enrichment of RNA at centrosomes.
Collapse
Affiliation(s)
- Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Equal contributions
| | - Weiyi Tian
- Equal contributions
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322
| | - Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
7
|
Galletta BJ, Varadarajan R, Fagerstrom CJ, Yang B, Haase KP, McJunkin K, Rusan NM. The E3 ligase Poe promotes Pericentrin degradation. Mol Biol Cell 2023; 34:br15. [PMID: 37342879 PMCID: PMC10398894 DOI: 10.1091/mbc.e22-11-0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Centrosomes are essential parts of diverse cellular processes, and precise regulation of the levels of their constituent proteins is critical for their function. One such protein is Pericentrin (PCNT) in humans and Pericentrin-like protein (PLP) in Drosophila. Increased PCNT expression and its protein accumulation are linked to clinical conditions including cancer, mental disorders, and ciliopathies. However, the mechanisms by which PCNT levels are regulated remain underexplored. Our previous study demonstrated that PLP levels are sharply down-regulated during early spermatogenesis and this regulation is essential to spatially position PLP on the proximal end of centrioles. We hypothesized that the sharp drop in PLP protein was a result of rapid protein degradation during the male germ line premeiotic G2 phase. Here, we show that PLP is subject to ubiquitin-mediated degradation and identify multiple proteins that promote the reduction of PLP levels in spermatocytes, including the UBR box containing E3 ligase Poe (UBR4), which we show binds to PLP. Although protein sequences governing posttranslational regulation of PLP are not restricted to a single region of the protein, we identify a region that is required for Poe-mediated degradation. Experimentally stabilizing PLP, via internal PLP deletions or loss of Poe, leads to PLP accumulation in spermatocytes, its mispositioning along centrioles, and defects in centriole docking in spermatids.
Collapse
Affiliation(s)
- Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Ramya Varadarajan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Plevock Haase
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, and
| |
Collapse
|
8
|
Li P, Messina G, Lehner CF. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023; 19:e1010837. [PMID: 37428798 PMCID: PMC10359004 DOI: 10.1371/journal.pgen.1010837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Spermatozoa in animal species are usually highly elongated cells with a long motile tail attached to a head that contains the haploid genome in a compact and often elongated nucleus. In Drosophila melanogaster, the nucleus is compacted two hundred-fold in volume during spermiogenesis and re-modeled into a needle that is thirty-fold longer than its diameter. Nuclear elongation is preceded by a striking relocalization of nuclear pore complexes (NPCs). While NPCs are initially located throughout the nuclear envelope (NE) around the spherical nucleus of early round spermatids, they are later confined to one hemisphere. In the cytoplasm adjacent to this NPC-containing NE, the so-called dense complex with a strong bundle of microtubules is assembled. While this conspicuous proximity argued for functional significance of NPC-NE and microtubule bundle, experimental confirmation of their contributions to nuclear elongation has not yet been reported. Our functional characterization of the spermatid specific Mst27D protein now resolves this deficit. We demonstrate that Mst27D establishes physical linkage between NPC-NE and dense complex. The C-terminal region of Mst27D binds to the nuclear pore protein Nup358. The N-terminal CH domain of Mst27D, which is similar to that of EB1 family proteins, binds to microtubules. At high expression levels, Mst27D promotes bundling of microtubules in cultured cells. Microscopic analyses indicated co-localization of Mst27D with Nup358 and with the microtubule bundles of the dense complex. Time-lapse imaging revealed that nuclear elongation is accompanied by a progressive bundling of microtubules into a single elongated bundle. In Mst27D null mutants, this bundling process does not occur and nuclear elongation is abnormal. Thus, we propose that Mst27D permits normal nuclear elongation by promoting the attachment of the NPC-NE to the microtubules of the dense complex, as well as the progressive bundling of these microtubules.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Giovanni Messina
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Moretti E, Noto D, Corsaro R, Collodel G. Focus on centrin in normal and altered human spermatozoa. Syst Biol Reprod Med 2023; 69:175-187. [PMID: 36892570 DOI: 10.1080/19396368.2023.2181115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
This review provides details on the role of centrin in human spermatozoa and in various forms of male infertility. Centrin is a calcium (Ca2+)-binding phosphoprotein that is located in the centrioles - which are typical structures of the sperm connecting piece and play a key role in centrosome dynamics during sperm morphogenesis - as well as in zygotes and early embryos during spindle assembly. In humans, three different centrin genes encoding three isoforms have been discovered. Centrin 1, the only one expressed in spermatozoa, seems to be lost inside the oocyte after fertilization. The sperm connecting piece is characterized by the presence of numerous proteins including centrin, that deserves particular attention because, in humans, it is enriched during maturation of the centrioles. In normal sperm, centrin 1 is visible as two distinct spots in the head-tail junction; however, in some defective spermatozoa, centrin 1 distribution is altered. Centrin has been studied in humans and animal models. Its mutations may lead to several structural alterations, such as serious defects in the connective piece and, subsequently, fertilization failure or incomplete embryonic development. However, the effects of these abnormalities on male fertility have not been fully studied. Because the presence and the function of centrin in the sperm connecting piece appears important for reproductive success, additional studies are needed to bring medical benefits in resolving some cases of idiopathic infertility.
Collapse
Affiliation(s)
- Elena Moretti
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberta Corsaro
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giulia Collodel
- Department Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Jewett CE, McCurdy BL, O'Toole ET, Stemm-Wolf AJ, Given KS, Lin CH, Olsen V, Martin W, Reinholdt L, Espinosa JM, Sullivan KD, Macklin WB, Prekeris R, Pearson CG. Trisomy 21 induces pericentrosomal crowding delaying primary ciliogenesis and mouse cerebellar development. eLife 2023; 12:e78202. [PMID: 36656118 PMCID: PMC9851619 DOI: 10.7554/elife.78202] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 12/06/2022] [Indexed: 01/20/2023] Open
Abstract
Trisomy 21, the genetic cause of Down syndrome, disrupts primary cilia formation and function, in part through elevated Pericentrin, a centrosome protein encoded on chromosome 21. Yet how trisomy 21 and elevated Pericentrin disrupt cilia-related molecules and pathways, and the in vivo phenotypic relevance remain unclear. Utilizing ciliogenesis time course experiments combined with light microscopy and electron tomography, we reveal that chromosome 21 polyploidy elevates Pericentrin and microtubules away from the centrosome that corral MyosinVA and EHD1, delaying ciliary membrane delivery and mother centriole uncapping essential for ciliogenesis. If given enough time, trisomy 21 cells eventually ciliate, but these ciliated cells demonstrate persistent trafficking defects that reduce transition zone protein localization and decrease sonic hedgehog signaling in direct anticorrelation with Pericentrin levels. Consistent with cultured trisomy 21 cells, a mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers at P4. Our work reveals that elevated Pericentrin from trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding mechanism results in signaling deficiencies consistent with the neurological phenotypes found in individuals with Down syndrome.
Collapse
Affiliation(s)
- Cayla E Jewett
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Bailey L McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Eileen T O'Toole
- Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Alexander J Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Katherine S Given
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Carrie H Lin
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Valerie Olsen
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | | | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
11
|
Hannaford MR, Liu R, Billington N, Swider ZT, Galletta BJ, Fagerstrom CJ, Combs C, Sellers JR, Rusan NM. Pericentrin interacts with Kinesin-1 to drive centriole motility. J Cell Biol 2022; 221:e202112097. [PMID: 35929834 PMCID: PMC9361567 DOI: 10.1083/jcb.202112097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs. Here, we demonstrate that during interphase, inactive centrioles move directly along the interphase MT network as Kinesin-1 cargo. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. In vitro assays show that PLP directly interacts with the cargo binding domain of Kinesin-1, allowing PLP to migrate on MTs. Binding assays using purified proteins revealed that relief of Kinesin-1 autoinhibition is critical for its interaction with PLP. Finally, our studies of neural stem cell asymmetric divisions in the Drosophila brain show that the PLP-Kinesin-1 interaction is essential for the timely separation of centrioles, the asymmetry of centrosome activity, and the age-dependent centrosome inheritance.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rong Liu
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neil Billington
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zachary T. Swider
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J. Galletta
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Carey J. Fagerstrom
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Combs
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - James R. Sellers
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Fang J, Lerit DA. Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development 2022; 149:275606. [DOI: 10.1242/dev.200426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT
As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3′-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.
Collapse
Affiliation(s)
- Junnan Fang
- Emory University School of Medicine Department of Cell Biology , , Atlanta, GA 30322 , USA
| | - Dorothy A. Lerit
- Emory University School of Medicine Department of Cell Biology , , Atlanta, GA 30322 , USA
| |
Collapse
|
13
|
Alzyoud E, Vedelek V, Réthi-Nagy Z, Lipinszki Z, Sinka R. Microtubule Organizing Centers Contain Testis-Specific γ-TuRC Proteins in Spermatids of Drosophila. Front Cell Dev Biol 2021; 9:727264. [PMID: 34660584 PMCID: PMC8511327 DOI: 10.3389/fcell.2021.727264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubule nucleation in eukaryotes is primarily promoted by γ-tubulin and the evolutionary conserved protein complex, γ-Tubulin Ring Complex (γ-TuRC). γ-TuRC is part of the centrosome and basal body, which are the best-known microtubule-organizing centers. Centrosomes undergo intensive and dynamic changes during spermatogenesis, as they turn into basal bodies, a prerequisite for axoneme formation during spermatogenesis. Here we describe the existence of a novel, tissue-specific γ-TuRC in Drosophila. We characterize three genes encoding testis-specific components of γ-TuRC (t-γ-TuRC) and find that presence of t-γ-TuRC is essential to male fertility. We show the diverse subcellular distribution of the t-γ-TuRC proteins during post-meiotic development, at first at the centriole adjunct and then also on the anterior tip of the nucleus, and finally, they appear in the tail region, close to the mitochondria. We also prove the physical interactions between the t-γ-TuRC members, γ-tubulin and Mozart1. Our results further indicate heterogeneity in γ-TuRC composition during spermatogenesis and suggest that the different post-meiotic microtubule organizing centers are orchestrated by testis-specific gene products, including t-γ-TuRC.
Collapse
Affiliation(s)
- Elham Alzyoud
- Department of Genetics, University of Szeged, Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zsuzsánna Réthi-Nagy
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Zoltán Lipinszki
- Biological Research Centre, Institute of Biochemistry, MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|
15
|
Zhang Y, Yang L, Huang L, Liu G, Nie X, Zhang X, Xing X. SUN5 Interacting With Nesprin3 Plays an Essential Role in Sperm Head-to-Tail Linkage: Research on Sun5 Gene Knockout Mice. Front Cell Dev Biol 2021; 9:684826. [PMID: 34268309 PMCID: PMC8276135 DOI: 10.3389/fcell.2021.684826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Acephalic spermatozoa syndrome is a rare genetic and reproductive disease. Recent studies have shown that approximately 33–47% of patients with acephalic spermatozoa syndrome have SUN5 mutations, but the molecular mechanism underlying this phenomenon has not been elucidated. In this study, we generated Sun5 knockout mice and found that the head-to-tail linkage was broken in Sun5–/– mice, which was similar to human acephalic spermatozoa syndrome. Furthermore, ultrastructural imaging revealed that the head-tail coupling apparatus (HTCA) and the centrosome were distant from the nucleus at steps 9–10 during spermatid elongation. With the manchette disappearing at steps 13–14, the head and the tail segregated. To explore the molecular mechanism underlying this process, bioinformatic analysis was performed and showed that Sun5 may interact with Nesprin3. Further coimmunoprecipitation (Co-IP) and immunofluorescence assays confirmed that Sun5 and Nesprin3 were indeed bona fide interaction partners that formed the linker of the nucleoskeleton and cytoskeleton (LINC) complex participating in the connection of the head and tail of spermatozoa. Nesprin3 was located posterior and anterior to the nucleus during spermiogenesis in wild-type mice, whereas it lost its localization at the implantation fossa of the posterior region in Sun5–/– mice. Without correct localization of Nesprin3 at the nuclear membrane, the centrosome, which is the originator of the flagellum, was distant from the nucleus, which led to the separation of the head and tail. In addition, isobaric tag for relative and absolute quantitation results showed that 47 proteins were upregulated, and 56 proteins were downregulated, in the testis in Sun5–/– mice, and the downregulation of spermatogenesis-related proteins (Odf1 and Odf2) may also contribute to the damage to the spermatozoa head-to-tail linkage. Our findings suggested that Sun5 is essential for the localization of Nesprin3 at the posterior nuclear membrane, which plays an essential role in the sperm head-tail connection.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linfei Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
The Microtubule Cytoskeleton during the Early Drosophila Spermiogenesis. Cells 2020; 9:cells9122684. [PMID: 33327573 PMCID: PMC7765066 DOI: 10.3390/cells9122684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022] Open
Abstract
Sperm elongation and nuclear shaping in Drosophila largely depends on the microtubule cytoskeleton that in early spermatids has centrosomal and non-centrosomal origins. We report here an additional γ-tubulin focus localized on the anterior pole of the nucleus in correspondence of the apical end of the perinuclear microtubules that run within the dense complex. The perinuclear microtubules are nucleated by the pericentriolar material, or centriole adjunct, that surrounds the basal body and are retained to play a major role in nuclear shaping. However, we found that both the perinuclear microtubules and the dense complex are present in spermatids lacking centrioles. Therefore, the basal body or the centriole adjunct seem to be dispensable for the organization and assembly of these structures. These observations shed light on a novel localization of γ-tubulin and open a new scenario on the distribution of the microtubules and the organization of the dense complex during early Drosophila spermiogenesis.
Collapse
|