1
|
Yu X, Zhou J, Ye W, Xu J, Li R, Huang L, Chai Y, Wen M, Xu S, Zhou Y. Time-course swRNA-seq uncovers a hierarchical gene regulatory network in controlling the response-repair-remodeling after wounding. Commun Biol 2024; 7:694. [PMID: 38844830 PMCID: PMC11156874 DOI: 10.1038/s42003-024-06352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Wounding initiates intricate responses crucial for tissue repair and regeneration. Yet, the gene regulatory networks governing wound healing remain poorly understood. Here, employing single-worm RNA sequencing (swRNA-seq) across 12 time-points, we delineated a three-stage wound repair process in C. elegans: response, repair, and remodeling. Integrating diverse datasets, we constructed a dynamic regulatory network comprising 241 transcription regulators and their inferred targets. We identified potentially seven autoregulatory TFs and five cross-autoregulatory loops involving pqm-1 and jun-1. We revealed that TFs might interact with chromatin factors and form TF-TF combinatory modules via intrinsically disordered regions to enhance response robustness. We experimentally validated six regulators functioning in transcriptional and translocation-dependent manners. Notably, nhr-76, daf-16, nhr-84, and oef-1 are potentially required for efficient repair, while elt-2 may act as an inhibitor. These findings elucidate transcriptional responses and hierarchical regulatory networks during C. elegans wound repair, shedding light on mechanisms underlying tissue repair and regeneration.
Collapse
Affiliation(s)
- Xinghai Yu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jinghua Zhou
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenkai Ye
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingxiu Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rui Li
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, 430072, China
| | - Li Huang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Yi Chai
- The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang, 314400, China
| | - Miaomiao Wen
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang, 314400, China.
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol 2024; 156:93-106. [PMID: 37648621 PMCID: PMC10872800 DOI: 10.1016/j.semcdb.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Collapse
Affiliation(s)
- Shiqi Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Tyler J Yang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Romero H, Aguilar PS, Graña M, Langleib M, Gudiño V, Podbilewicz B. Membrane fusion and fission during eukaryogenesis. Curr Opin Cell Biol 2024; 86:102321. [PMID: 38219525 DOI: 10.1016/j.ceb.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
All eukaryotes can be traced back to a single shared ancestral lineage that emerged from interactions between different prokaryotic cells. Current models of eukaryogenesis describe various selective forces and evolutionary mechanisms that contributed to the formation of eukaryotic cells. Central to this process were significant changes in cellular structure, resulting in the configuration of a new cell type characterized by internal membrane compartments. Additionally, eukaryogenesis results in a life cycle that relies on cell-cell fusion. We discuss the potential roles of proteins involved in remodeling cellular membranes, highlighting two critical stages in the evolution of eukaryotes: the internalization of symbiotic partners and a scenario wherein the emergence of sexual reproduction is linked to a polyploid ancestor generated by cell-cell fusion.
Collapse
Affiliation(s)
- Héctor Romero
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias/CURE, Universidad de la República, Uruguay; Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático (CICADA), Espacio Interdisciplinario, Universidad de la República, Uruguay.
| | - Pablo S Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina.
| | - Martin Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mauricio Langleib
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias/CURE, Universidad de la República, Uruguay; Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Virginia Gudiño
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
| | - Benjamin Podbilewicz
- Department of Biology, Technion Israel Institute of Technology, Haifa, Israel; Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| |
Collapse
|
4
|
Shao Q, Wijaya CS, Wang S, Meng X, Yuan C, Ma C, Xu S. The SNARE complex formed by RIC-4/SEC-22/SYX-2 promotes C. elegans epidermal wound healing. Cell Rep 2023; 42:113349. [PMID: 37910502 DOI: 10.1016/j.celrep.2023.113349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Maintaining cellular viability relies on the integrity of the plasma membrane, which must be repaired upon damage. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is a crucial mechanism involved in membrane repair. In C. elegans epidermal cell hyp 7, syntaxin-2 (SYX-2) facilitates large membrane wound repair; however, the underlying molecular mechanism remains unclear. Here, we found that SNAP-25 protein RIC-4 and synaptobrevin protein SEC-22 are required for SYX-2 recruitment at the wound site. They interact to form a SNARE complex to promote membrane repair in vivo and fusion in vitro. Moreover, we found that SEC-22 localized in multiple intracellular compartments, including endosomes and the trans-Golgi network, which recruited to the wounds. Furthermore, inhibition of RAB-5 disrupted SEC-22 localization and prevented its interaction with SYX-2. Our findings suggest that RAB-5 facilitates the formation of the RIC-4/SEC-22/SYX-2 SNARE complex and provides valuable insights into the molecular mechanism of how cells repair large membrane wounds.
Collapse
Affiliation(s)
- Qingfang Shao
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chandra Sugiarto Wijaya
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinan Meng
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Yuan
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Suhong Xu
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Road, Haining, Zhejiang 314400, China; Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Meng X, Wijaya CS, Shao Q, Xu S. Triggered Golgi membrane enrichment promotes PtdIns(4,5)P2 generation for plasma membrane repair. J Cell Biol 2023; 222:214098. [PMID: 37158801 PMCID: PMC10176212 DOI: 10.1083/jcb.202303017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
The maintenance of plasma membrane integrity and a capacity for efficiently repairing damaged membranes are essential for cell survival. Large-scale wounding depletes various membrane components at the wound sites, including phosphatidylinositols, yet little is known about how phosphatidylinositols are generated after depletion. Here, working with our in vivo C. elegans epidermal cell wounding model, we discovered phosphatidylinositol 4-phosphate (PtdIns4P) accumulation and local phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] generation at the wound site. We found that PtdIns(4,5)P2 generation depends on the delivery of PtdIns4P, PI4K, and PI4P 5-kinase PPK-1. In addition, we show that wounding triggers enrichment of the Golgi membrane to the wound site, and that is required for membrane repair. Moreover, genetic and pharmacological inhibitor experiments support that the Golgi membrane provides the PtdIns4P for PtdIns(4,5)P2 generation at the wounds. Our findings demonstrate how the Golgi apparatus facilitates membrane repair in response to wounding and offers a valuable perspective on cellular survival mechanisms upon mechanical stress in a physiological context.
Collapse
Affiliation(s)
- Xinan Meng
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
| | - Chandra Sugiarto Wijaya
- Department of Burn and Wound Repair of the Second Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine , Hangzhou Zhejiang, China
| | - Qingfang Shao
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
| | - Suhong Xu
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute , Haining Zhejiang, China
- Department of Burn and Wound Repair of the Second Affiliated Hospital, Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University School of Medicine , Hangzhou Zhejiang, China
| |
Collapse
|
6
|
Vijayaraghavan T, Dhananjay S, Ho XY, Giordano-Santini R, Hilliard M, Neumann B. The dynamin GTPase mediates regenerative axonal fusion in Caenorhabditis elegans by regulating fusogen levels. PNAS NEXUS 2023; 2:pgad114. [PMID: 37181046 PMCID: PMC10167995 DOI: 10.1093/pnasnexus/pgad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/29/2023] [Accepted: 03/21/2023] [Indexed: 05/16/2023]
Abstract
Axonal fusion is a neuronal repair mechanism that results in the reconnection of severed axon fragments, leading to the restoration of cytoplasmic continuity and neuronal function. While synaptic vesicle recycling has been linked to axonal regeneration, its role in axonal fusion remains unknown. Dynamin proteins are large GTPases that hydrolyze lipid-binding membranes to carry out clathrin-mediated synaptic vesicle recycling. Here, we show that the Caenorhabditis elegans dynamin protein DYN-1 is a key component of the axonal fusion machinery. Animals carrying a temperature-sensitive allele of dyn-1(ky51) displayed wild-type levels of axonal fusion at the permissive temperature (15°C) but presented strongly reduced levels at the restrictive temperature (25°C). Furthermore, the average length of regrowth was significantly diminished in dyn-1(ky51) animals at the restrictive temperature. The expression of wild-type DYN-1 cell-autonomously into dyn-1(ky51) mutant animals rescued both the axonal fusion and regrowth defects. Furthermore, DYN-1 was not required prior to axonal injury, suggesting that it functions specifically after injury to control axonal fusion. Finally, using epistatic analyses and superresolution imaging, we demonstrate that DYN-1 regulates the levels of the fusogen protein EFF-1 post-injury to mediate axonal fusion. Together, these results establish DYN-1 as a novel regulator of axonal fusion.
Collapse
Affiliation(s)
- Tarika Vijayaraghavan
- Neuroscience Programme, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Samiksha Dhananjay
- Neuroscience Programme, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Xue Yan Ho
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brent Neumann
- Neuroscience Programme, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
7
|
Activation of SIRT1 promotes membrane resealing via cortactin. Sci Rep 2022; 12:15328. [PMID: 36097021 PMCID: PMC9468153 DOI: 10.1038/s41598-022-19136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.
Collapse
|
8
|
Recruitment of tetraspanin TSP-15 to epidermal wounds promotes plasma membrane repair in C. elegans. Dev Cell 2022; 57:1630-1642.e4. [PMID: 35777354 DOI: 10.1016/j.devcel.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
Maintaining the integrity of the plasma membrane after cellular damage is essential for cell survival. However, it is unclear how cells repair large membrane injuries in vivo. Here, we report that the tetraspanin protein, TSP-15, is recruited to large membrane wounds and forms a ring-like structure in C. elegans epidermis and promotes membrane repair after an injury. TSP-15 recruits from the adjacent region underneath the plasma membrane to the wound site in a RAB-5-dependent manner upon membrane damage. Genetic and live-imaging analysis suggested that the endosomal sorting complex required for transport III (ESCRT III) is necessary for recruiting TSP-15 from the early endosome to the damaged membrane. Moreover, TSP-15 interacts with and is required for the accumulation of t-SNARE protein Syntaxin-2, which facilitates membrane repair. These findings provide valuable insights into the role of the conserved tetraspanin TSP-15 in the cellular repair of large wounds resulting from environmental insults.
Collapse
|
9
|
Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair. Nat Cell Biol 2022; 24:825-832. [PMID: 35654840 DOI: 10.1038/s41556-022-00920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Various mechanisms contribute to membrane repair1-8 but the machinery that mediates the repair of large wounds on the plasma membrane is less clear. We found that shortly after membrane damage, Tetraspanin-enriched macrodomains are assembled around the damage site. Tetraspanin-enriched macrodomains are in the liquid-ordered phase and form a rigid ring around the damaged site. This restricts the spread of the damage and prevents membrane disintegration, thus facilitating membrane repair by other mechanisms. Functionally, Tetraspanin 4 helps cells mitigate damage caused by laser, detergent, pyroptosis and natural killer cells. We propose that assembly of Tetraspanin-enriched macrodomains creates a physical barrier to contain membrane damage.
Collapse
|
10
|
Martin E, Suzanne M. Functions of Arp2/3 Complex in the Dynamics of Epithelial Tissues. Front Cell Dev Biol 2022; 10:886288. [PMID: 35557951 PMCID: PMC9089454 DOI: 10.3389/fcell.2022.886288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelia are sheets of cells that communicate and coordinate their behavior in order to ensure their barrier function. Among the plethora of proteins involved in epithelial dynamics, actin nucleators play an essential role. The branched actin nucleation complex Arp2/3 has numerous functions, such as the regulation of cell-cell adhesion, intracellular trafficking, the formation of protrusions, that have been well described at the level of individual cells. Here, we chose to focus on its role in epithelial tissue, which is rising attention in recent works. We discuss how the cellular activities of the Arp2/3 complex drive epithelial dynamics and/or tissue morphogenesis. In the first part, we examined how this complex influences cell-cell cooperation at local scale in processes such as cell-cell fusion or cell corpses engulfment. In the second part, we summarized recent papers dealing with the impact of the Arp2/3 complex at larger scale, focusing on different morphogenetic events, including cell intercalation, epithelial tissue closure and epithelial folding. Altogether, this review highlights the central role of Arp2/3 in a diversity of epithelial tissue reorganization.
Collapse
Affiliation(s)
- Emmanuel Martin
- Molecular, Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.,FR3743 Centre de Biologie Intégrative (CBI), Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.,FR3743 Centre de Biologie Intégrative (CBI), Toulouse, France
| |
Collapse
|
11
|
Zhou J, Duan M, Wang X, Zhang F, Zhou H, Ma T, Yin Q, Zhang J, Tian F, Wang G, Yang C. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat Cell Biol 2022; 24:526-537. [PMID: 35418624 DOI: 10.1038/s41556-022-00883-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
Collapse
Affiliation(s)
- Junxiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tengfei Ma
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jie Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Tian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
12
|
Xu J, Meng X, Yang Q, Zhang J, Hu W, Fu H, Chen JW, Ma W, Chisholm AD, Sun Q, Xu S. Redox-sensitive CDC-42 clustering promotes wound closure in C. elegans. Cell Rep 2021; 37:110040. [PMID: 34818546 DOI: 10.1016/j.celrep.2021.110040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/09/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
Abstract
Tissue damage induces immediate-early signals, activating Rho small GTPases to trigger actin polymerization essential for later wound repair. However, how tissue damage is sensed to activate Rho small GTPases locally remains elusive. Here, we found that wounding the C. elegans epidermis induces rapid relocalization of CDC-42 into plasma membrane-associated clusters, which subsequently recruits WASP/WSP-1 to trigger actin polymerization to close the wound. In addition, wounding induces a local transient increase and subsequent reduction of H2O2, which negatively regulates the clustering of CDC-42 and wound closure. CDC-42 CAAX motif-mediated prenylation and polybasic region-mediated cation-phospholipid interaction are both required for its clustering. Cysteine residues participate in intermolecular disulfide bonds to reduce membrane association and are required for negative regulation of CDC-42 clustering by H2O2. Collectively, our findings suggest that H2O2-regulated fine-tuning of CDC-42 localization can create a distinct biomolecular cluster that facilitates rapid epithelial wound repair after injury.
Collapse
Affiliation(s)
- Jingxiu Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinan Meng
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingxian Yang
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jianqin Zhang
- Department of Biochemistry and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongying Fu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jack Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weirui Ma
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Qiming Sun
- Department of Biochemistry and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
13
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
14
|
Dynamics of Myosin II Filaments during Wound Repair in Dividing Cells. Cells 2021; 10:cells10051229. [PMID: 34067877 PMCID: PMC8156316 DOI: 10.3390/cells10051229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Wound repair of cell membranes is essential for cell survival. Myosin II contributes to wound pore closure by interacting with actin filaments in larger cells; however, its role in smaller cells is unclear. In this study, we observed wound repair in dividing cells for the first time. The cell membrane in the cleavage furrow, where myosin II localized, was wounded by laserporation. Upon wounding, actin transiently accumulated, and myosin II transiently disappeared from the wound site. Ca2+ influx from the external medium triggered both actin and myosin II dynamics. Inhibition of calmodulin reduced both actin and myosin II dynamics. The wound closure time in myosin II-null cells was the same as that in wild-type cells, suggesting that myosin II is not essential for wound repair. We also found that disassembly of myosin II filaments by phosphorylation did not contribute to their disappearance, indicating a novel mechanism for myosin II delocalization from the cortex. Furthermore, we observed that several furrow-localizing proteins such as GAPA, PakA, myosin heavy chain kinase C, PTEN, and dynamin disappeared upon wounding. Herein, we discuss the possible mechanisms of myosin dynamics during wound repair.
Collapse
|
15
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
16
|
Pooranachithra M, Satheesh Kumar C, Bhaskar JP, Venkateswaran K, Ravichandiran V, Balamurugan K. Proteomic analysis of Caenorhabditis elegans wound model reveals novel molecular players involved in repair. J Proteomics 2021; 240:104222. [PMID: 33831597 DOI: 10.1016/j.jprot.2021.104222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Wound repair is a multistep process which involves coordination of multiple molecular players from different cell types and pathways. Though the cellular processes that are taking place in order to repair damage is already known, molecular players involved in crucial pathways are still scarce. In this regard, the present study intends to uncover crucial players that are involved in the central repair events through proteomics approach which included 2-D GE and LC-MS/MS using Caenorhabditis elegans wound model. Initial gel-based 2-D GE and following protein-protein interaction (PPI) network analyses revealed active role of calcium signaling, acetylcholine transport and serotonergic neurotransmitter pathways. Further, gel-free LC-MS/MS and following PPI network analyses revealed the incidence of actin nucleation at the initial hours immediately after injury. Further by visualizing the PPI network and the interacting players, pink-1, a mitochondrial Serine/threonine-protein kinase which is known to regulate mitochondrial dynamics, was found to be the central player in facilitating the mitochondrial fission and its role was further verified using qPCR analysis and pink-1 transgenic worms. Overall, the study delivers new insights from crucial regulatory pathways and central players involved in wound repair using high throughput proteomic approaches and the mass spectrometry Data (PXD024629/PXD024744) are available via ProteomeXchange. SIGNIFICANCE.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| | | | - James Prabhanand Bhaskar
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India.
| | - Krishnan Venkateswaran
- ITC - Life Sciences and Technology Centre, Peenya Industrial Area, 1(st) Phase, Bangalore 560058, Karnataka, India.
| | | | - Krishnaswamy Balamurugan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
17
|
Ren W, Zhao W, Cao L, Huang J. Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 2021; 8:634849. [PMID: 33634110 PMCID: PMC7900405 DOI: 10.3389/fcell.2020.634849] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) depicts a genetically encoded and an orderly mode of cellular mortality. When triggered by internal or external stimuli, cells initiate PCDs through evolutionary conserved regulatory mechanisms. Actin, as a multifunctional cytoskeleton protein that forms microfilament, its integrity and dynamics are essential for a variety of cellular processes (e.g., morphogenesis, membrane blebbing and intracellular transport). Decades of work have broadened our knowledge about different types of PCDs and their distinguished signaling pathways. However, an ever-increasing pool of evidences indicate that the delicate relationship between PCDs and the actin cytoskeleton is beginning to be elucidated. The purpose of this article is to review the current understanding of the relationships between different PCDs and the actin machinery (actin, actin-binding proteins and proteins involved in different actin signaling pathways), in the hope that this attempt can shed light on ensuing studies and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Weida Ren
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanyu Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingbo Cao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Ma Y, Xie J, Wijaya CS, Xu S. From wound response to repair - lessons from C. elegans. CELL REGENERATION 2021; 10:5. [PMID: 33532882 PMCID: PMC7855202 DOI: 10.1186/s13619-020-00067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
As a result of evolution, the ability to repair wounds allows organisms to combat environment insults. Although the general process of wound healing at the tissue level has been described for decades, the detailed molecular mechanisms regarding the early wound response and rapid wound repair at the cellular level remain little understood. Caenorhabditis elegans is a model organism widely used in the field of development, neuroscience, programmed cell death etc. The nematode skin is composed of a large epidermis associated with a transparent extracellular cuticle, which likely has a robust capacity for epidermal repair. Yet, until the last decades, relatively few studies had directly analyzed the wound response and repair process. Here we review recent findings in how C. elegans epidermis responds to wounding and initiates early actin-polymerization-based wound closure as well as later membrane repair. We also discussed some remained outstanding questions for future study.
Collapse
Affiliation(s)
- Yicong Ma
- The Zhejiang University-University of Edinburgh Institute and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jing Xie
- The Zhejiang University-University of Edinburgh Institute and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chandra Sugiarto Wijaya
- Center for Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Suhong Xu
- The Zhejiang University-University of Edinburgh Institute and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Center for Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
20
|
Wijaya CS, Meng X, Yang Q, Xu S. Protocol to Induce Wounding and Measure Membrane Repair in Caenorhabditis elegans Epidermis. STAR Protoc 2020; 1:100175. [PMID: 33377069 PMCID: PMC7757402 DOI: 10.1016/j.xpro.2020.100175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Efficient membrane repair after injury is essential for cell and animal survival. Caenorhabditis elegans epidermal cell hpy7 has emerged as a powerful genetic system to investigate the molecular mechanism of membrane repair in vivo. This protocol describes detailed approaches for how to perform wounding on the epidermis and how to examine membrane repair by trypan blue staining, confocal imaging, and data analysis. For details on the use and execution of this protocol, please refer to Meng et al. (2020). Protocol for needle-induced wounding in C. elegans epidermis Tips on how to use C. elegans epidermis for membrane repair Diverse assays for measuring the consequence of membrane repair
Collapse
Affiliation(s)
- Chandra Sugiarto Wijaya
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China.,School of Basic Medical Sciences, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Xinan Meng
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China.,School of Basic Medical Sciences, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Qingxian Yang
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China.,School of Basic Medical Sciences, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China.,School of Basic Medical Sciences, Zhejiang University School of Medicine, 310058 Hangzhou, China.,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd, Haining, Zhejiang 314400, China
| |
Collapse
|
21
|
Ghose P, Wehman AM. The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Curr Top Dev Biol 2020; 144:409-432. [PMID: 33992160 DOI: 10.1016/bs.ctdb.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis is an essential process by which cellular debris and pathogens are cleared from the environment. Cells extend their plasma membrane to engulf objects and contain them within a limiting membrane for isolation from the cytosol or for intracellular degradation in phagolysosomes. The basic mechanisms of phagocytosis and intracellular clearance are well conserved between animals. Indeed, much of our understanding is derived from studies on the nematode worm, Caenorhabditis elegans. Here, we review the latest progress in understanding the mechanisms and functions of phagocytic clearance from C. elegans studies. In particular, we highlight new insights into phagocytic signaling pathways, phagosome formation and phagolysosome resolution, as well as the challenges in studying these cyclic processes.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, University of Texas, Arlington, TX, United States.
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, United States.
| |
Collapse
|