1
|
Hufft-Martinez BM, Wang HH, Saadi I, Tran PV. Actin cytoskeletal regulation of ciliogenesis in development and disease. Dev Dyn 2024; 253:1076-1093. [PMID: 38958410 PMCID: PMC11611694 DOI: 10.1002/dvdy.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Primary cilia are antenna-like sensory organelles that are evolutionarily conserved in nearly all modern eukaryotes, from the single-celled green alga, Chlamydomonas reinhardtii, to vertebrates and mammals. Cilia are microtubule-based cellular projections that have adapted to perform a broad range of species-specific functions, from cell motility to detection of light and the transduction of extracellular mechanical and chemical signals. These functions render cilia essential for organismal development and survival. The high conservation of cilia has allowed for discoveries in C. reinhardtii to inform our understanding of the basic biology of mammalian primary cilia, and to provide insight into the genetic etiology of ciliopathies. Over the last two decades, a growing number of studies has revealed that multiple aspects of ciliary homeostasis are regulated by the actin cytoskeleton, including centrosome migration and positioning, vesicle transport to the basal body, ectocytosis, and ciliary-mediated signaling. Here, we review actin regulation of ciliary homeostasis, and highlight conserved and divergent mechanisms in C. reinhardtii and mammalian cells. Further, we compare the disease manifestations of patients with ciliopathies to those with mutations in actin and actin-associated genes, and propose that primary cilia defects caused by genetic alteration of the actin cytoskeleton may underlie certain birth defects.
Collapse
Affiliation(s)
| | - Henry H Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Institute of Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Pamela V Tran
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
2
|
Tian R, Zhao P, Ding X, Wang X, Jiang X, Chen S, Cai Z, Li L, Chen S, Liu W, Sun Q. TBC1D4 antagonizes RAB2A-mediated autophagic and endocytic pathways. Autophagy 2024; 20:2426-2443. [PMID: 38964379 PMCID: PMC11572321 DOI: 10.1080/15548627.2024.2367907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Macroautophagic/autophagic and endocytic pathways play essential roles in maintaining homeostasis at different levels. It remains poorly understood how both pathways are coordinated and fine-tuned for proper lysosomal degradation of diverse cargoes. We and others recently identified a Golgi-resident RAB GTPase, RAB2A, as a positive regulator that controls both autophagic and endocytic pathways. In the current study, we report that TBC1D4 (TBC1 domain family member 4), a TBC domain-containing protein that plays essential roles in glucose homeostasis, suppresses RAB2A-mediated autophagic and endocytic pathways. TBC1D4 bound to RAB2A through its N-terminal PTB2 domain, which impaired RAB2A-mediated autophagy at the early stage by preventing ULK1 complex activation. During the late stage of autophagy, TBC1D4 impeded the association of RUBCNL/PACER and RAB2A with STX17 on autophagosomes by direct interaction with RUBCNL via its N-terminal PTB1 domain. Disruption of the autophagosomal trimeric complex containing RAB2A, RUBCNL and STX17 resulted in defective HOPS recruitment and eventually abortive autophagosome-lysosome fusion. Furthermore, TBC1D4 inhibited RAB2A-mediated endocytic degradation independent of RUBCNL. Therefore, TBC1D4 and RAB2A form a dual molecular switch to modulate autophagic and endocytic pathways. Importantly, hepatocyte- or adipocyte-specific tbc1d4 knockout in mice led to elevated autophagic flux and endocytic degradation and tissue damage. Together, this work establishes TBC1D4 as a critical molecular brake in autophagic and endocytic pathways, providing further mechanistic insights into how these pathways are intertwined both in vitro and in vivo.Abbreviations: ACTB: actin beta; ATG9: autophagy related 9; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; CLEM: correlative light electron microscopy; Ctrl: control; DMSO: dimethyl sulfoxide; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; FL: full length; GAP: GTPase-activating protein; GFP: green fluorescent protein; HOPS: homotypic fusion and protein sorting; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; OE: overexpression; PG: phagophore; PtdIns3K: class III phosphatidylinositol 3-kinase; SLC2A4/GLUT4: solute carrier family 2 member 4; SQSTM1/p62: sequestosome 1; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TAP: tandem affinity purification; TBA: total bile acid; TBC1D4: TBC1 domain family member 4; TUBA1B: tubulin alpha 1b; ULK1: unc-51 like autophagy activating kinase 1; VPS39: VPS39 subunit of HOPS complex; WB: western blot; WT: wild type.
Collapse
Affiliation(s)
- Rui Tian
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianming Ding
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 PMCID: PMC11530833 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
4
|
Otani H, Nakazato R, Koike K, Ohta K, Ikegami K. Excess microtubule and F-actin formation mediates shortening and loss of primary cilia in response to a hyperosmotic milieu. J Cell Sci 2024; 137:jcs261988. [PMID: 39056167 DOI: 10.1242/jcs.261988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.
Collapse
Affiliation(s)
- Hiroshi Otani
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kanae Koike
- Natural Science Center for Basic Research and Development , Hiroshima University, Higashi Hiroshima 739-8527, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center , Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
5
|
Sharma R, Kalot R, Levin Y, Babayeva S, Kachurina N, Chung CF, Liu KJ, Bouchard M, Torban E. The CPLANE protein Fuzzy regulates ciliogenesis by suppressing actin polymerization at the base of the primary cilium via p190A RhoGAP. Development 2024; 151:dev202322. [PMID: 38546045 PMCID: PMC11006408 DOI: 10.1242/dev.202322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.
Collapse
Affiliation(s)
- Rhythm Sharma
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Yossef Levin
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Sima Babayeva
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Nadezda Kachurina
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| | - Chen-Feng Chung
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Maxime Bouchard
- Rosalind and Morris Goodman Cancer Institute, Department of Medicine of the McGill University,McGill University, Montreal H3A 1A3, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal H4A 3J1, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, McGill University, Montreal H4A 3J1, QC, Canada
| |
Collapse
|
6
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. J Cell Sci 2024; 137:jcs261047. [PMID: 37665101 PMCID: PMC10499034 DOI: 10.1242/jcs.261047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering homotypic fusion and protein sorting (HOPS) complex disrupts this actin clearing and ciliogenesis, but it remains unclear how the ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body, and that this effect is specific to polarized epithelial cells. We also find that Rab19 functions in endolysosomal cargo trafficking in addition to having its previously identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion leads to the abnormal accumulation of Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin clearing and ciliogenesis in polarized epithelial cells.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
8
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
9
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Ceglowski J, Hoffman HK, Neumann AJ, Hoff KJ, McCurdy BL, Moore JK, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. EMBO Rep 2024; 25:198-227. [PMID: 38177908 PMCID: PMC10883266 DOI: 10.1038/s44319-023-00005-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- Julia Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Huxley K Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Andrew J Neumann
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Katie J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Bailey L McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80015, USA.
| |
Collapse
|
11
|
Serres MP, Shaughnessy R, Escot S, Hammich H, Cuvelier F, Salles A, Rocancourt M, Verdon Q, Gaffuri AL, Sourigues Y, Malherbe G, Velikovsky L, Chardon F, Sassoon N, Tinevez JY, Callebaut I, Formstecher E, Houdusse A, David NB, Pylypenko O, Echard A. MiniBAR/GARRE1 is a dual Rac and Rab effector required for ciliogenesis. Dev Cell 2023; 58:2477-2494.e8. [PMID: 37875118 DOI: 10.1016/j.devcel.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.
Collapse
Affiliation(s)
- Murielle P Serres
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Ronan Shaughnessy
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Sophie Escot
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Hussein Hammich
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Frédérique Cuvelier
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- Institut Pasteur, Université de Paris, UTechS Photonic BioImaging (UTechS PBI), Centre de Recherche et de Ressources Technologiques C2RT, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Murielle Rocancourt
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Quentin Verdon
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Anne-Lise Gaffuri
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Yannick Sourigues
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Gilles Malherbe
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Florian Chardon
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Nathalie Sassoon
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris, Image Analysis Hub, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Etienne Formstecher
- Hybrigenics Services SAS, 1 rue Pierre Fontaine 91000 Evry, Courcouronnes, France
| | - Anne Houdusse
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Nicolas B David
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Olena Pylypenko
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
12
|
Bruel AL, Ganga AK, Nosková L, Valenzuela I, Martinovic J, Duffourd Y, Zikánová M, Majer F, Kmoch S, Mohler M, Sun J, Sweeney LK, Martínez-Gil N, Thauvin-Robinet C, Breslow DK. Pathogenic RAB34 variants impair primary cilium assembly and cause a novel oral-facial-digital syndrome. Hum Mol Genet 2023; 32:2822-2831. [PMID: 37384395 PMCID: PMC10481091 DOI: 10.1093/hmg/ddad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.
Collapse
Affiliation(s)
- Ange-Line Bruel
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Anil Kumar Ganga
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Jelena Martinovic
- Unit of Embryo-Fetal Pathology, AP-HP, Antoine Béclère Hospital, Paris Saclay University, 92141 Clamart, France
| | - Yannis Duffourd
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Filip Majer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 128 08, Czech Republic
| | - Markéta Mohler
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava 708 52, Czech Republic
| | - Jingbo Sun
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Lauren K Sweeney
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Núria Martínez-Gil
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute,08035 Barcelona, Spain
| | - Christel Thauvin-Robinet
- INSERM U1231 Génétique des Anomalies du Développement (GAD), University Bourgogne Franche-Comté, 21070 Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU-TRANSLAD), Centre Hospitalo-Universitaire (CHU) Dijon Bourgogne, 21079 Dijon, France
- Centre de Génétique et Centre de référence maladies rares ‘Anomalies du Développement et Syndromes Malformatifs’, FHU-TRANSLAD, Hôpital d'Enfants, CHU Dijon Bourgogne, 21079 Dijon, France
| | - David K Breslow
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Ceglowski J, Hoffman H, Hoff K, McCurdy B, Moore J, Prekeris R. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550533. [PMID: 37546873 PMCID: PMC10402096 DOI: 10.1101/2023.07.25.550533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as, axonemal microtubule growth and stabilization in polarized epithelia are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/β-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.
Collapse
Affiliation(s)
- J. Ceglowski
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - H.K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - K.J. Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - B.L. McCurdy
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - J.K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| | - R. Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80015
| |
Collapse
|
14
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527563. [PMID: 36798155 PMCID: PMC9934645 DOI: 10.1101/2023.02.07.527563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically-docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering HOPS complex disrupts this actin-clearing and ciliogenesis, but it remains unclear how ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin-clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body. We also find that Rab19 functions in endolysosomal cargo trafficking apart from its previously-identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion abnormally accumulates Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin-clearing and ciliogenesis. Summary statement Loss of HOPS-mediated lysosomal fusion indirectly blocks apical actin clearing and ciliogenesis in polarized epithelia by trapping Rab19 on late endosomes and depleting Rab19 from the basal body.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Odabasi E, Conkar D, Deretic J, Batman U, Frikstad KAM, Patzke S, Firat-Karalar EN. CCDC66 regulates primary cilium length and signaling via interactions with transition zone and axonemal proteins. J Cell Sci 2023; 136:286879. [PMID: 36606424 DOI: 10.1242/jcs.260327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
The primary cilium is a microtubule-based organelle that serves as a hub for many signaling pathways. It functions as part of the centrosome or cilium complex, which also contains the basal body and the centriolar satellites. Little is known about the mechanisms by which the microtubule-based ciliary axoneme is assembled with a proper length and structure, particularly in terms of the activity of microtubule-associated proteins (MAPs) and the crosstalk between the different compartments of the centrosome or cilium complex. Here, we analyzed CCDC66, a MAP implicated in cilium biogenesis and ciliopathies. Live-cell imaging revealed that CCDC66 compartmentalizes between centrosomes, centriolar satellites, and the ciliary axoneme and tip during cilium biogenesis. CCDC66 depletion in human cells causes defects in cilium assembly, length and morphology. Notably, CCDC66 interacts with the ciliopathy-linked MAPs CEP104 and CSPP1, and regulates axonemal length and Hedgehog pathway activation. Moreover, CCDC66 is required for the basal body recruitment of transition zone proteins and intraflagellar transport B (IFT-B) machinery. Overall, our results establish CCDC66 as a multifaceted regulator of the primary cilium and provide insight into how ciliary MAPs and subcompartments cooperate to ensure assembly of functional cilia.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Deniz Conkar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Kari-Anne M Frikstad
- Department of Radiation Biology, Institute of Cancer Research, OUH-Norwegian Radium Hospital, Oslo N-0379, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute of Cancer Research, OUH-Norwegian Radium Hospital, Oslo N-0379, Norway
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey.,School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
16
|
Zhao H, Khan Z, Westlake CJ. Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol 2023; 133:20-31. [PMID: 35351373 PMCID: PMC9510604 DOI: 10.1016/j.semcdb.2022.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.
Collapse
Affiliation(s)
- Huijie Zhao
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Ziam Khan
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA.
| |
Collapse
|
17
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
18
|
Luo N, Fu M, Zhang Y, Li X, Zhu W, Yang F, Chen Z, Mei Q, Peng X, Shen L, Zhang Y, Li Q, Hu G. Prognostic Role of M6A-Associated Immune Genes and Cluster-Related Tumor Microenvironment Analysis: A Multi-Omics Practice in Stomach Adenocarcinoma. Front Cell Dev Biol 2022; 10:935135. [PMID: 35859893 PMCID: PMC9291731 DOI: 10.3389/fcell.2022.935135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
N6-methylandrostenedione (m6A) methylation plays a very important role in the development of malignant tumors. The immune system is the key point in the progression of tumors, particularly in terms of tumor treatment and drug resistance. Tumor immunotherapy has now become a hot spot and a new approach for tumor treatment. However, as far as the stomach adenocarcinoma (STAD) is concerned, the in-depth research is still a gap in the m6A-associated immune markers. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases is extremely important for our research, where we obtained gene mutation, gene expression data and relevant clinical information of STAD patients. Firstly, the samples from GEO were used as external validation groups, while the TCGA samples were divided into a training group and an internal validation group randomly. Using the way of Single factor COX-LASSO- and multi-factor Cox to construct the prognostic model. Then, all samples were subjected to cluster analysis to generate high and low expression groups of immune gene. Meanwhile, we also collected the correlation between these types and tumor microenvironment. On this basis, a web version of the dynamic nomogram APP was developed. In addition, we performed microenvironmental correlation, copy number variation and mutation analyses for model genes. The prognostic model for STAD developed here demonstrated a very strong predictive ability. The results of cluster analysis manifested that the immune gene low expression group had lower survival rate and higher degree of immune infiltration. Therefore, the immune gene low expression group was associated with lower survival rates and a higher degree of immune infiltration. Gene set enrichment analysis suggested that the potential mechanism might be related to the activation of immunosuppressive functions and multiple signaling pathways. Correspondingly, the web version of the dynamic nomogram APP produced by the DynNom package has successfully achieved rapid and accurate calculation of patient survival rates. Finally, the multi-omics analysis of model genes further enriched the research content. Interference of RAB19 was confirmed to facilitate migration of STAD cells in vitro, while its overexpression inhibited these features. The prognostic model for STAD constructed in this study is accurate and efficient based on multi-omics analysis and experimental validation. Additionally, the results of the correlation analysis between the tumor microenvironment and m6Ascore are the basics of further exploration of the pathophysiological mechanism in STAD.
Collapse
Affiliation(s)
- Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| |
Collapse
|
19
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
20
|
Abstract
Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Langousis G, Cavadini S, Boegholm N, Lorentzen E, Kempf G, Matthias P. Structure of the ciliogenesis-associated CPLANE complex. SCIENCE ADVANCES 2022; 8:eabn0832. [PMID: 35427153 PMCID: PMC9012472 DOI: 10.1126/sciadv.abn0832] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
22
|
Ganga AK, Kennedy MC, Oguchi ME, Gray S, Oliver KE, Knight TA, De La Cruz EM, Homma Y, Fukuda M, Breslow DK. Rab34 GTPase mediates ciliary membrane formation in the intracellular ciliogenesis pathway. Curr Biol 2021; 31:2895-2905.e7. [PMID: 33989527 DOI: 10.1016/j.cub.2021.04.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
The primary cilium is an essential organizing center for signal transduction, and ciliary defects cause congenital disorders known collectively as ciliopathies.1-3 Primary cilia form by two pathways that are employed in a cell-type- and tissue-specific manner: an extracellular pathway in which the cilium grows out from the cell surface and an intracellular pathway in which the nascent cilium first forms inside the cell.4-8 After exposure to the external environment, cilia formed via the intracellular pathway may have distinct functional properties, as they often remain recessed within a ciliary pocket.9,10 However, the precise mechanism of intracellular ciliogenesis and its relatedness to extracellular ciliogenesis remain poorly understood. Here we show that Rab34, a poorly characterized GTPase recently linked to cilia,11-13 is a selective mediator of intracellular ciliogenesis. We find that Rab34 is required for formation of the ciliary vesicle at the mother centriole and that Rab34 marks the ciliary sheath, a unique sub-domain of assembling intracellular cilia. Rab34 activity is modulated by divergent residues within its GTPase domain, and ciliogenesis requires GTP binding and turnover by Rab34. Because Rab34 is found on assembly intermediates that are unique to intracellular ciliogenesis, we tested its role in the extracellular pathway used by polarized MDCK cells. Consistent with Rab34 acting specifically in the intracellular pathway, MDCK cells ciliate independently of Rab34 and its paralog Rab36. Together, these findings establish that different modes of ciliogenesis have distinct molecular requirements and reveal Rab34 as a new GTPase mediator of ciliary membrane biogenesis.
Collapse
Affiliation(s)
- Anil Kumar Ganga
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Margaret C Kennedy
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mai E Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kendall E Oliver
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Tracy A Knight
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - David K Breslow
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
23
|
Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development 2021; 148:dev195552. [PMID: 33914866 PMCID: PMC8126410 DOI: 10.1242/dev.195552] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of vertebrate Hedgehog signaling are linked to the biology of the primary cilium, an antenna-like organelle that projects from the surface of most vertebrate cell types. Although the advantages of restricting signal transduction to cilia are often noted, the constraints imposed are less frequently considered, and yet they are central to how Hedgehog signaling operates in developing tissues. In this Review, we synthesize current understanding of Hedgehog signal transduction, ligand secretion and transport, and cilia dynamics to explore the temporal and spatial constraints imposed by the primary cilium on Hedgehog signaling in vivo.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|