1
|
Green KJ, Pokorny J, Jarrell B. Dangerous liaisons: Loss of keratinocyte control over melanocytes in melanomagenesis. Bioessays 2024; 46:e2400135. [PMID: 39233509 DOI: 10.1002/bies.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Melanomas arise from transformed melanocytes, positioned at the dermal-epidermal junction in the basal layer of the epidermis. Melanocytes are completely surrounded by keratinocyte neighbors, with which they communicate through direct contact and paracrine signaling to maintain normal growth control and homeostasis. UV radiation from sunlight reshapes this communication network to drive a protective tanning response. However, repeated rounds of sun exposure result in accumulation of mutations in melanocytes that have been considered as primary drivers of melanoma initiation and progression. It is now clear that mutations in melanocytes are not sufficient to drive tumor formation-the tumor environment plays a critical role. This review focuses on changes in melanocyte-keratinocyte communication that contribute to melanoma initiation and progression, with a particular focus on recent mechanistic insights that lay a foundation for developing new ways to intercept melanoma development.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, USA
| | - Jenny Pokorny
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Brieanna Jarrell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
2
|
Meng J, Li J, Zhao Y. Comprehensive analysis of lncRNAs modified by m6A methylation in sheep skin. Anim Biosci 2024; 37:1887-1990. [PMID: 38754841 PMCID: PMC11541038 DOI: 10.5713/ab.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE N6-methyladenosine (m6A) is the most prevalent methylation of mRNA and plays crucial roles in various physiological processes, including pigmentation. Yet, the regulatory mechanisms, including long noncoding RNAs (lncRNAs) m6A methylation contributing to pigmentation in sheep skin remains unclear. The purpose of this study was to identify potential lncRNAs and the m6A methylation of lncRNAs associated with pigmentation. METHODS RNA-seq and MeRIP-seq were performed to study the expression of lncRNAs and the m6A methylation of lncRNAs in black and white sheep skin. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the consistency with the RNA-seq and MeRIP-seq data. RESULTS We identified 168 differentially expressed lncRNAs between the two sheep skin colors. The differentially expressed lncRNAs enriched in the pathway of ECM-receptor interaction, Rap1 signaling pathway, and Non-homologous end-joining may play essential roles in pigmentation. We identified 577 m6A peaks and 617 m6A peaks in black and white sheep skin, respectively, among which 20 m6A peaks showed significant differences. The enriched motif in sheep skin was "GGACU", which aligned with the consensus motif "RRACH" (R = A or G, H = A, C or U). Differently methylated lncRNAs enriched in PI3K-Akt signaling pathway and Wnt signaling pathway might participate in skin pigmentation. ENSOARG00020015168 was the unique lncRNA with high expression and methylation (Hyper-Up) in black sheep shin. A lncRNA-mRNA network was constructed, with pigmentation-related genes, such as PSEN2, CCND3, COL2A1, and ERCC3. CONCLUSION The m6A modifications of lncRNAs in black and white colored sheep skin were analyzed comprehensively, providing new candidates for the regulation of pigmentation.
Collapse
Affiliation(s)
- Jinzhu Meng
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou 554300,
China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128,
China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin 132000,
China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, Guizhou 554300,
China
| |
Collapse
|
3
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Ye M, Fan Y, Fu C, He H, Xiao J. Biocompatible recombinant type III collagen enhancing skin repair and anti-wrinkle effects. Biomater Sci 2024. [PMID: 39436415 DOI: 10.1039/d4bm01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Treating sunburn and other UV-induced skin damage issues remains a significant challenge in the field of dermatology. In this study, we synthesized a highly bioactive recombinant type III collagen (rCol III) to accelerate the healing of UV-damaged skin. The high-purity rCol III demonstrated excellent biocompatibility and bioactivity, significantly promoting the adhesion, proliferation, and migration of HFF-1 cells. In a mouse UV-damage model, Combo evaluations demonstrated that rCol III contributed to restore transepidermal water loss (TEWL) values of UV-damaged skin to normal levels. Histological analysis further confirmed that rCol III substantially accelerated skin repair by enhancing collagen regeneration. Additionally, rCol III facilitated the regeneration of zebrafish tail fin tissue and alleviated shrinkage caused by excessive UV exposure. The biocompatible and bioactive rCol III offers a novel strategy for treating UV-induced skin damage, holding immense potential for applications in skin tissue engineering.
Collapse
Affiliation(s)
- Mingzhu Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yirui Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Caihong Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Huixia He
- College of School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| |
Collapse
|
5
|
Cui YZ, Xu F, Zhou Y, Wang ZY, Yang XY, Fu NC, Chen XB, Zheng YX, Chen XY, Ye LR, Li YY, Man XY. SPRY1 Deficiency in Keratinocytes Induces Follicular Melanocyte Stem Cell Migration to the Epidermis through p53/Stem Cell Factor/C-KIT Signaling. J Invest Dermatol 2024; 144:2255-2266.e4. [PMID: 38462125 DOI: 10.1016/j.jid.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes (KCs). KCs and melanocytes respond to UV exposure by eliciting a tanning response. However, how KCs and melanocytes interact in the absence of UV exposure is unknown. In this study, we demonstrate that after SPRY1 knockout in epidermal KCs, melanocyte stem cells in the hair follicle exit the niche without depleting the pool of these cells. We also found that melanocyte stem cells migrate to the epidermis in a p53/stem cell factor/C-KIT-dependent manner induced by a tanning-like response resulting from SPRY1 loss in epidermal KCs. Once there, these cells differentiate into functional melanocytes. These findings provide an example in which the migration of melanocyte stem cells to the epidermis is due to loss of SPRY1 in epidermal KCs and show the potential for developing therapies for skin pigmentation disorders by manipulating melanocyte stem cells.
Collapse
Affiliation(s)
- Ying-Zhe Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing-Yu Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ni-Chang Fu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Xin Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Yan Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Ran Ye
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Flora P, Ezhkova E. Cleavage Under Targets & Release Using Nuclease (CUT&RUN) of Histone Modifications in Epidermal Stem Cells of Adult Murine Skin. Methods Mol Biol 2024; 2736:9-21. [PMID: 37615890 PMCID: PMC10841116 DOI: 10.1007/7651_2023_499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Cleavage Under Targets & Release Using Nuclease (CUT&RUN) has swiftly become the preferred procedure over the past few years for genomic mapping and detecting interactions between chromatin and its bound proteins. CUT&RUN is now being widely used for characterizing the epigenetic landscape in many cell types as it utilizes far less cell numbers when compared to Chromatin Immunoprecipitation-sequencing (ChIP-seq), thereby making it a powerful tool for researchers working with limited material. This protocol has been specifically optimized for detecting histone modifications in fluorescence-activated cell sorting (FACS)-isolated epidermal stem cells from adult mice.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Ko T, Choi R, Issa K, Gupta R, Llinas E, Morey L, Finlay JB, Goldstein BJ. Polycomb repressive complex 2 regulates basal cell fate during adult olfactory neurogenesis. Stem Cell Reports 2023; 18:2283-2296. [PMID: 37832538 PMCID: PMC10679661 DOI: 10.1016/j.stemcr.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Adult neurogenesis occurs in the mammalian olfactory epithelium to maintain populations of neurons that are vulnerable to injury yet essential for olfaction. Multipotent olfactory basal stem cells are activated by damage, although mechanisms regulating lineage decisions are not understood. Using mouse lesion models, we focused on defining the role of Polycomb repressive complexes (PRCs) in olfactory neurogenesis. PRC2 has a well-established role in developing tissues, orchestrating transcriptional programs via chromatin modification. PRC2 proteins are expressed in olfactory globose basal cells (GBCs) and nascent neurons. Conditional PRC2 loss perturbs lesion-induced neuron production, accompanied by altered histone modifications and misexpression of lineage-specific transcription factors in GBCs. De-repression of Sox9 in PRC2-mutant GBCs is accompanied by increased Bowman's gland production, defining an unrecognized role for PRC2 in regulating gland versus neuron cell fate. Our findings support a model for PRC2-dependent mechanisms promoting sensory neuronal differentiation in an adult neurogenic niche.
Collapse
Affiliation(s)
- Tiffany Ko
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rhea Choi
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Khalil Issa
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rupali Gupta
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward Llinas
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John B Finlay
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bradley J Goldstein
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Zhang W, Jin M, Lu Z, Li T, Wang H, Yuan Z, Wei C. Whole Genome Resequencing Reveals Selection Signals Related to Wool Color in Sheep. Animals (Basel) 2023; 13:3265. [PMID: 37893989 PMCID: PMC10603731 DOI: 10.3390/ani13203265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
9
|
Huang L, Li F, Ye L, Yu F, Wang C. Epigenetic regulation of embryonic ectoderm development in stem cell differentiation and transformation during ontogenesis. Cell Prolif 2023; 56:e13413. [PMID: 36727213 PMCID: PMC10068960 DOI: 10.1111/cpr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Dynamic chromatin accessibility regulates stem cell fate determination and tissue homeostasis via controlling gene expression. As a histone-modifying enzyme that predominantly mediates methylation of lysine 27 in histone H3 (H3K27me1/2/3), Polycomb repressive complex 2 (PRC2) plays the canonical role in targeting developmental regulators during stem cell differentiation and transformation. Embryonic ectoderm development (EED), the core scaffold subunit of PRC2 and as an H3K27me3-recognizing protein, has been broadly implicated with PRC2 stabilization and allosterically stimulated PRC2. Accumulating evidences from experimental data indicate that EED-associating epigenetic modifications are indispensable for stem cell maintenance and differentiation into specific cell lineages. In this review, we discuss the most updated advances to summarize the structural architecture of EED and its contributions and underlying mechanisms to mediating lineage differentiation of different stem cells during epigenetic modification to expand our understanding of PRC2.
Collapse
Affiliation(s)
- Liuyan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ghuwalewala S, Lee SA, Jiang K, Baidya J, Chovatiya G, Kaur P, Shalloway D, Tumbar T. Binary organization of epidermal basal domains highlights robustness to environmental exposure. EMBO J 2022; 41:e110488. [PMID: 35949182 PMCID: PMC9475544 DOI: 10.15252/embj.2021110488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Adulte interfollicular epidermis (IFE) renewal is likely orchestrated by physiological demands of its complex tissue architecture comprising spatial and cellular heterogeneity. Mouse tail and back skin display two kinds of basal IFE spatial domains that regenerate at different rates. Here, we elucidate the molecular and cellular states of basal IFE domains by marker expression and single-cell transcriptomics in mouse and human skin. We uncover two paths of basal cell differentiation that in part reflect the IFE spatial domain organization. We unravel previously unrecognized similarities between mouse tail IFE basal domains defined as scales and interscales versus human rete ridges and inter-ridges, respectively. Furthermore, our basal IFE transcriptomics and gene targeting in mice provide evidence supporting a physiological role of IFE domains in adaptation to differential UV exposure. We identify Sox6 as a novel UV-induced and interscale/inter-ridge preferred basal IFE-domain transcription factor, important for IFE proliferation and survival. The spatial, cellular, and molecular organization of IFE basal domains underscores skin adaptation to environmental exposure and its unusual robustness in adult homeostasis.
Collapse
Affiliation(s)
| | - Seon A Lee
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Kevin Jiang
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Joydeep Baidya
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Gopal Chovatiya
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Pritinder Kaur
- Curtin Medical School/Curtin Health Innovation Research InstituteCurtin UniversityPerthWAAustralia
| | - David Shalloway
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Tudorita Tumbar
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
11
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
12
|
Wu W, Yang J, Tao H, Lei M. Environmental Regulation of Skin Pigmentation and Hair Regeneration. Stem Cells Dev 2022; 31:91-96. [PMID: 35285756 DOI: 10.1089/scd.2022.29011.wwu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wang Wu
- 111 Project Laboratory of Biomechanics and Tissue Repair, Department of Bioengineering, College of Bioengineering, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
- Cosmetic and Plastic Center and Chongqing University Three Gorges Hospital and Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jing Yang
- Department of Dermatology, Chongqing University Three Gorges Hospital and Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Hongjun Tao
- Cosmetic and Plastic Center and Chongqing University Three Gorges Hospital and Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, Department of Bioengineering, College of Bioengineering, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Department of Bioengineering, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Polycomb repressive complex 2 in adult hair follicle stem cells is dispensable for hair regeneration. PLoS Genet 2021; 17:e1009948. [PMID: 34905545 PMCID: PMC8670713 DOI: 10.1371/journal.pgen.1009948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are multipotent cells that cycle through quiescence and activation to continuously fuel the production of hair follicles. Prior genome mapping studies had shown that tri-methylation of histone H3 at lysine 27 (H3K27me3), the chromatin mark mediated by Polycomb Repressive Complex 2 (PRC2), is dynamic between quiescent and activated HFSCs, suggesting that transcriptional changes associated with H3K27me3 might be critical for proper HFSC function. However, functional in vivo studies elucidating the role of PRC2 in adult HFSCs are lacking. In this study, by using in vivo loss-of-function studies we show that, surprisingly, PRC2 plays a non-instructive role in adult HFSCs and loss of PRC2 in HFSCs does not lead to loss of HFSC quiescence or changes in cell identity. Interestingly, RNA-seq and immunofluorescence analyses of PRC2-null quiescent HFSCs revealed upregulation of genes associated with activated state of HFSCs. Altogether, our findings show that transcriptional program under PRC2 regulation is dispensable for maintaining HFSC quiescence and hair regeneration.
Collapse
|
14
|
He M, Raftrey B, Hsu YC. Epigenetic fun(ction) in the sun. Dev Cell 2021; 56:2537-2539. [PMID: 34582768 DOI: 10.1016/j.devcel.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tanning, or increased epidermal pigmentation, protects organisms from ultraviolet radiation (UV)-induced damages. In this issue of Development Cell, Li et al. demonstrate a key role for a chromatin regulator-the Polycomb complex-in epidermal stem cells (EpSCs) in mediating UV-induced tanning responses and epidermal pigmentation.
Collapse
Affiliation(s)
- Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institue, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Brian Raftrey
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institue, Cambridge, MA 02138, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institue, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|