1
|
Long X, Yang Y, Zhou K. Sepsis induces the cardiomyocyte apoptosis and cardiac dysfunction through activation of YAP1/Serpine1/caspase-3 pathway. Open Med (Wars) 2024; 19:20241018. [PMID: 39308919 PMCID: PMC11416050 DOI: 10.1515/med-2024-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024] Open
Abstract
Background Sepsis triggers myocardial injury and dysfunction, leading to a high mortality rate in patients. Cardiomyocyte apoptosis plays a positive regulatory role in septic myocardial injury and dysfunction. However, the mechanism is unclear. Methods Bioinformatics analysis was used to identify differentially expressed genes in septic mice heart and validate key genes and pathways. The correlation of protein-protein and protein-pathway was analyzed. Sequentially, the cecal ligament and puncture (CLP) was used to induce septic mice, followed by Serpine1 inhibitor treatment. Finally, the regulatory relationship of Yes-associated protein1 (YAP1), Serpine1, and caspase-3 was verified in LPS-exposed mouse cardiomyocytes. Results Bioinformatic analysis found that Serpine1 expression is decreased in septic mice heart tissue and closely related to the HIPPO signaling pathway, while YAP1 is negatively correlated with apoptosis. In vivo, CLP induced a reduction of survival rate, cardiac dysfunction, and an increase in Serpine1 and Cleaved Caspase-3 expression, which could be reversed by a Serpine1 inhibitor. In vitro, LPS induced the mouse cardiomyocytes apoptosis, which could be reversed by Serpine1 inhibitor. Silencing YAP1 and Serpine1 reversed the LPS-induced increase in Serpine1 and Cleaved Caspase-3 expression, but silencing Serpine1 did not affect the LPS-induced YAP1 expression. Conclusion Sepsis induced mouse cardiomyocytes apoptosis and cardiac dysfunction through activation of YAP1/Serpine1/caspase-3 pathway.
Collapse
Affiliation(s)
- Xueyuan Long
- Department of Cardiovascular Medicine, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yanpeng Yang
- Department of Cardiovascular Medicine, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Ke Zhou
- Department of Cardiovascular Medicine, Chongqing University Central Hospital, Chongqing, 400014, China
| |
Collapse
|
2
|
Li Z, Zhao H, Hu H, Shang H, Ren Y, Qiu W, Su H, Lyu H, Chen X. Mechanisms of resistance to trastuzumab in HER2-positive gastric cancer. Chin J Cancer Res 2024; 36:306-321. [PMID: 38988489 PMCID: PMC11230884 DOI: 10.21147/j.issn.1000-9604.2024.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.
Collapse
Affiliation(s)
- Zhifei Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Huan Zhao
- Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Huihui Hu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Haili Shang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Yongjing Ren
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Wenhui Qiu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Su
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Huifang Lyu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| |
Collapse
|
3
|
Yang J, Li S, Wang J, Liu G, Zhang C, Li X, Liu X. Calmodulin 2 expression is associated with poor prognosis in breast cancer. Pathol Res Pract 2024; 258:155326. [PMID: 38754328 DOI: 10.1016/j.prp.2024.155326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Calmodulin 2 (CALM2) belongs to the highly conserved calcium-binding protein family, implicated in the pathogenesis of various malignant tumors. However, its involvement in breast cancer (BRCA) remains unclear. This study aimed to examine CALM2 expression in BRCA and its associations with prognosis, clinicopathological features, protein-protein interactions, and immune cell infiltration. MATERIALS AND METHODS Online bioinformatics tools were employed to assess CALM2 expression and its clinical relevance in BRCA. Western blotting and immunohistochemistry were utilized to evaluate CALM2 expression in BRCA cell lines and tissues. Logistic regression was applied to analyze the relationship between CALM2 expression levels and clinicopathological parameters. Transwell assay was performed to validate the role of CALM2 in BRCA migration and invasion. RESULTS CALM2 expression was significantly elevated in BRCA, with increased levels predicting poor overall survival (OS) and disease-free survival (DFS). Moreover, high CALM2 expression correlated with poorer DFS specifically in triple-negative breast cancer (TNBC). CALM2 expression in BRCA showed significant associations with lymph node metastasis, TP53 mutation status, and menopause status. Silencing CALM2 in BRCA cells demonstrated inhibition of cell migration and invasion in vitro. CONCLUSIONS CALM2 is overexpressed in BRCA and its upregulation is significantly correlated with poor patient prognosis. Elevated CALM2 expression holds promise as a potential molecular marker for predicting poor survival and as a therapeutic target in BRCA.
Collapse
Affiliation(s)
- Ju Yang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Shuixian Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Li
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Haddad N, Gamaethige SM, Wehida N, Elbediwy A. Drug Repurposing: Exploring Potential Anti-Cancer Strategies by Targeting Cancer Signalling Pathways. BIOLOGY 2024; 13:386. [PMID: 38927266 PMCID: PMC11200741 DOI: 10.3390/biology13060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The repurposing of previously clinically approved drugs as an alternative therapeutic approach to treating disease has gained significant attention in recent years. A multitude of studies have demonstrated various and successful therapeutic interventions with these drugs in a wide range of neoplastic diseases, including multiple myeloma, leukaemia, glioblastoma, and colon cancer. Drug repurposing has been widely encouraged due to the known efficacy, safety, and convenience of already established drugs, allowing the bypass of the long and difficult road of lead optimization and drug development. Repurposing drugs in cancer therapy is an exciting prospect due to the ability of these drugs to successfully target cancer-associated genes, often dysregulated in oncogenic signalling pathways, amongst which are the classical cancer signalling pathways; WNT (wingless-related integration type) and Hippo signalling. These pathways play a fundamental role in controlling organ size, tissue homeostasis, cell proliferation, and apoptosis, all hallmarks of cancer initiation and progression. Prolonged dysregulation of these pathways has been found to promote uncontrolled cellular growth and malignant transformation, contributing to carcinogenesis and ultimately leading to malignancy. However, the translation of cancer signalling pathways and potential targeted therapies in cancer treatment faces ongoing challenges due to the pleiotropic nature of cancer cells, contributing to resistance and an increased rate of incomplete remission in patients. This review provides analyses of a range of potential anti-cancer compounds in drug repurposing. It unravels the current understanding of the molecular rationale for repurposing these drugs and their potential for targeting key oncogenic signalling pathways.
Collapse
Affiliation(s)
| | | | - Nadine Wehida
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
| |
Collapse
|
5
|
Zhou R, Li L, Zhang Y, Liu Z, Wu J, Zeng D, Sun H, Liao W. Integrative analysis of co-expression pattern of solute carrier transporters reveals molecular subtypes associated with tumor microenvironment hallmarks and clinical outcomes in colon cancer. Heliyon 2024; 10:e22775. [PMID: 38163210 PMCID: PMC10754711 DOI: 10.1016/j.heliyon.2023.e22775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yue Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| |
Collapse
|
6
|
Yu S, Feng W, Zeng J, Zhou S, Peng Y, Zhang P. GALNT12 promotes fibrosarcoma growth by accelerating YAP1 nuclear localization. Oncol Lett 2023; 26:543. [PMID: 38020290 PMCID: PMC10660188 DOI: 10.3892/ol.2023.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Fibrosarcoma is a highly malignant type of soft tissue sarcoma that currently lacks effective treatment options. Polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) belongs to the uridine diphosphate N-acetylgalactosamine gene family, which is involved in numerous biological processes of diseases, such as tumor progression. Its upregulated expression is closely associated with the development of colorectal cancer. However, research on the role of GALNT12 in fibrosarcoma is currently limited. The present study aimed to assess the expression and biological function of GALNT12 in fibrosarcoma. Patient data and tissue samples were collected and public datasets were obtained from the Gene Expression Omnibus (GSE24369 and GSE21124). Immunofluorescence assays were performed to observe the cellular localization of GALNT12. GALNT12 expression was measured using reverse transcription-quantitative PCR, western blotting and immunohistochemistry. Small interfering RNAs were constructed to knock down GALNT12 expression in HT-1080 cells. Cell Counting Kit-8 and EdU assays were used to assess fibrosarcoma cell proliferation. Wound healing and Transwell assays were used to detect migration. Gene set enrichment analysis was performed to identify key pathways. Paired and unpaired Student's t-test, Fisher's exact test and one-way ANOVA (followed by Tukey's Honest Significant Difference test) were used to analyze the data. It was demonstrated that GALNT12 expression was upregulated in both fibrosarcoma cell lines and tissue samples and predicted poor patient prognosis. In vitro experiments demonstrated that high GALNT12 expression levels significantly increased HT-1080 cell proliferation and migration. Furthermore, it was demonstrated that high GALNT12 expression levels were closely associated with the yes1 associated transcriptional regulator (YAP1) signaling pathway. Knockdown of GALNT12 inhibited YAP1 nuclear translocation, which affected activation of key downstream genes including AMOTL2, BIRC5 and CYR61. Therefore, the present study demonstrated that GALNT12 promoted fibrosarcoma progression. GALNT12 could be a potential biomarker for this disease and may potentially provide new ideas for targeted therapy of fibrosarcoma in the future.
Collapse
Affiliation(s)
- Site Yu
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jizhang Zeng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Situo Zhou
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yinghua Peng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pihong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
7
|
Sayedyahossein S, Thines L, Sacks DB. Ca 2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal 2023; 110:110846. [PMID: 37549859 PMCID: PMC10529277 DOI: 10.1016/j.cellsig.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The Hippo signaling pathway is a master regulator of organ size and tissue homeostasis. Hippo integrates a broad range of cellular signals to regulate numerous processes, such as cell proliferation, differentiation, migration and mechanosensation. Ca2+ is a fundamental second messenger that modulates signaling cascades involved in diverse cellular functions, some of which are also regulated by the Hippo pathway. Studies published over the last five years indicate that Ca2+ can influence core Hippo pathway components. Nevertheless, comprehensive understanding of the crosstalk between Ca2+ signaling and the Hippo pathway, and possible mechanisms through which Ca2+ regulates Hippo, remain to be elucidated. In this review, we summarize the multiple intersections between Ca2+ and the Hippo pathway and address the biological consequences.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Li T, Niu Z, Yu T, Li J, Lu X, Huang M, Wang Q, Yu X, Feng J, Xu B, Bing D, Li X, Lu L, Liang H, Yang R, Wang B, Shan H. Nucleosome assembly protein 1 like 1 (NAP1L1) promotes cardiac fibrosis by inhibiting YAP1 ubiquitination and degradation. MedComm (Beijing) 2023; 4:e348. [PMID: 37593048 PMCID: PMC10427634 DOI: 10.1002/mco2.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Myocardial fibrosis post myocardial infarction (MI) is characterized by abnormal extracellular matrix (ECM) deposition and cardiac dysfunction could finally develop into serious heart disease, like heart failure. Lots of regulating factors involved in this pathological process have been reported while the specific mediators and underlying mechanisms remain to need to be further investigated. As part of the NAP1 family, Nucleosome assembly protein 1 like 1 (NAP1L1) is expressed in a wide variety of tissues. Here, we report that NAP1L1 is a significant regulator of cardiac fibrosis and is upregulated in ischemic cardiomyopathy patient hearts. Enhanced expression of NAP1L1 can promote cardiac fibroblasts (CFs) proliferation, migration, and differentiation into myofibroblasts. In contrast, loss of NAP1L1 decreased fibrosis-related mRNA and protein levels, inhibited the trans-differentiation, and blunted migration and proliferation of CFs after Transforming Growth Factorβ1(TGF-β1)stimulation. In vivo, NAP1L1 knockout mice enhanced cardiac function and reduced fibrosis area in response to MI stimuli. Mechanically, NAP1L1 binding to Yes-associated protein 1 (YAP1) protein influences its stability, and silencing NAP1L1 can inhibit YAP1 expression by promoting its ubiquitination and degradation in CFs. Collectively, NAP1L1 could potentially be a new therapeutic target for various cardiac disorders, including myocardial fibrosis.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Zhihui Niu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Tong Yu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical TechnologyShanghai University of Engineering ScienceShanghaiChina
| | - Jinrui Li
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xin Lu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Mengqin Huang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Qianqian Wang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xiaojiang Yu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Jiayue Feng
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Bingqian Xu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Danyang Bing
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xuelian Li
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
| | - Lifang Lu
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Basic Medicine, The Centre of Functional Experiment TeachingHarbin Medical UniversityHarbinChina
| | - Haihai Liang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070)Chinese Academy of Medical SciencesHarbinChina
| | - Rui Yang
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Pharmacology, School of Basic MedicineInner Mongolia Medical UniversityHohhotChina
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhanChina
| | - Hongli Shan
- Department of Pharmacology (State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of PharmacyHarbin Medical UniversityHarbinChina
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical TechnologyShanghai University of Engineering ScienceShanghaiChina
- Department of Basic Medicine, The Centre of Functional Experiment TeachingHarbin Medical UniversityHarbinChina
| |
Collapse
|
9
|
Xu XC, Jiang JX, Zhou YQ, He S, Liu Y, Li YQ, Wei PP, Bei JX, Sun J, Luo CL. SRSF3/AMOTL1 splicing axis promotes the tumorigenesis of nasopharyngeal carcinoma through regulating the nucleus translocation of YAP1. Cell Death Dis 2023; 14:511. [PMID: 37558679 PMCID: PMC10412622 DOI: 10.1038/s41419-023-06034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Dysregulation of serine/arginine splicing factors (SRSFs) and abnormal alternative splicing (AS) have been widely implicated in various cancers but scarcely investigated in nasopharyngeal carcinoma (NPC). Here we examine the expression of 12 classical SRSFs between 87 NPC and 10 control samples, revealing a significant upregulation of SRSF3 and its association with worse prognosis in NPC. Functional assays demonstrate that SRSF3 exerts an oncogenic function in NPC progression. Transcriptome analysis reveals 1,934 SRSF3-regulated AS events in genes related to cell cycle and mRNA metabolism. Among these events, we verify the generation of a long isoform of AMOTL1 (AMOTL1-L) through a direct bond of the SRSF3 RRM domain with the exon 12 of AMOTL1 to promote exon inclusion. Functional studies also reveal that AMOTL1-L promotes the proliferation and migration of NPC cells, while AMOTL1-S does not. Furthermore, overexpression of AMOTL1-L, but not -S, significantly rescues the inhibitory effects of SRSF3 knockdown. Additionally, compared with AMOTL1-S, AMOTL1-L has a localization preference in the intracellular than the cell membrane, leading to a more robust interaction with YAP1 to promote nucleus translocation. Our findings identify SRSF3/AMOTL1 as a novel alternative splicing axis with pivotal roles in NPC development, which could serve as promising prognostic biomarkers and therapeutic targets for NPC.
Collapse
Affiliation(s)
- Xiao-Chen Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jia-Xin Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Ya-Qing Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Yang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Yi-Qi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, National Cancer Centre of Singapore, Singapore, Singapore
| | - Jian Sun
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China.
| | - Chun-Ling Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, P. R. China.
| |
Collapse
|
10
|
Luo J, Deng L, Zou H, Guo Y, Tong T, Huang M, Ling G, Li P. New insights into the ambivalent role of YAP/TAZ in human cancers. J Exp Clin Cancer Res 2023; 42:130. [PMID: 37211598 DOI: 10.1186/s13046-023-02704-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
Hippo signaling was first identified in Drosophila as a key controller of organ size by regulating cell proliferation and anti-apoptosis. Subsequent studies have shown that this pathway is highly conserved in mammals, and its dysregulation is implicated in multiple events of cancer development and progression. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) (hereafter YAP/TAZ) are the downstream effectors of the Hippo pathway. YAP/TAZ overexpression or activation is sufficient to induce tumor initiation and progression, as well as recurrence and therapeutic resistance. However, there is growing evidence that YAP/TAZ also exert a tumor-suppressive function in a context-dependent manner. Therefore, caution should be taken when targeting Hippo signaling in clinical trials in the future. In this review article, we will first give an overview of YAP/TAZ and their oncogenic roles in various cancers and then systematically summarize the tumor-suppressive functions of YAP/TAZ in different contexts. Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based tumor targeted therapy and potential future directions.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Mingli Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Gengqiang Ling
- Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Jin RR, Zeng C, Chen Y. MiR-22-3p regulates the proliferation, migration and invasion of colorectal cancer cells by directly targeting KDM3A through the Hippo pathway. Histol Histopathol 2022; 37:1241-1252. [PMID: 36173030 DOI: 10.14670/hh-18-526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) has one of the highest incidences and mortality rates of all malignancies worldwide. microRNAs (miRNAs) have been reported to be involved in many biological processes of diseases. MiR-22-3p is considered to be involved in cancer progression, but its role in CRC remains unclear. In this study, we detected that in CRC, the level of miR-22-3p is downregulated. MiR-22-3p has antitumor effects in CRC. miR-22-3p can reduce the proliferative, invasive and migrative capacity of CRC cells. Luciferase reporter analyses confirmed that KDM3A was a target of miR-22-3p, which can directly target the 3'UTR of KDM3A and decrease the expression of KDM3A in CRC cells. Our study also confirmed that KDM3A plays a role as an oncogene in CRC. KDM3A overexpression attenuated the tumor suppressor effects of miR-22-3p in CRC cells, demonstrating that miR-22-3p exerts antitumor effects by targeting KDM3A. Overexpression of miR-22-3p in CRC reduced YAP1 expression, whereas overexpression of KDM3A restored the expression of YAP1. In summary, miR-22-3p might inhibit the progression of CRC by targeting KDM3A to regulate the HIPPO signaling pathway, which may provide an opportunity for the treatment of CRC.
Collapse
Affiliation(s)
- Rui-Ri Jin
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Chunyan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| | - Youxiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
12
|
Xu R, Yang Z, Fan J, Huang X, Long L, Yu S, Zhang X, Li X, Huang H. Knowledge base and emerging trends in YAP1 research. Am J Transl Res 2022; 14:6467-6483. [PMID: 36247309 PMCID: PMC9556511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that mediates the Hippo signaling pathway, which participates in the development and growth of the body; it plays key roles in tumorigenesis, metastasis, and therapy resistance. However, the pathophysiological mechanism of YAP1 has not been fully elucidated. Therefore, we explored the status and evolutionary trend in YAP1 research via bibliometric analysis. A total of 2,928 publications were downloaded from Web of Science Core Collection (WOSCC). The co-citation network map was drawn via CiteSpace and VOSviewer software. We analyzed the co-authorship networks among countries, journals, and authors, as well as co-occurrence of co-cited references, citation bursts, and keywords in YAP1 research, in order to predict its literature development. The present research evaluates the annual publication trends of YAP1 literature, and the following results were established: research on YAP1 are of steady increase; China present the highest co-citation; the Journal of Biological Chemistry (J Biol Chem) was the most productive journal, while Cell press received the most citations from co-cited references; Among the authors in the overall citations Bin Zhao is the most promising collaborator for emerging scholars in this field; and lastly, co-occurrence keyword analysis indicated that the emerging trends in YAP1 research were mainly focused on cancer therapy. We established that projects on YAP1 research is presently in its rapid developmental stage with active global collaboration. In addition, the mechanism and clinical significance of YAP1 in cancer was established as the potential trend of future studies.
Collapse
Affiliation(s)
- Rong Xu
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Zhiying Yang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
- Changsha Health Vocational CollegeChangsha, Hunan, China
| | - Jiahui Fan
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Xueying Huang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Linna Long
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Siying Yu
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Xiaorui Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Xia Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/Second Affiliated Hospital, Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - He Huang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/Second Affiliated Hospital, Xinjiang Medical UniversityUrumqi, Xinjiang, China
| |
Collapse
|
13
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|