1
|
Donaka R, Zheng H, Ackert-Bicknell CL, Karasik D. Early life lipid overload in Native American Myopathy is phenocopied by stac3 knockout in zebrafish. Gene 2025; 936:149123. [PMID: 39592070 DOI: 10.1016/j.gene.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Understanding the early stages of human congenital myopathies is critical for proposing strategies for improving musculoskeletal muscle performance, such as restoring the functional integrity of the cytoskeleton. SH3 and cysteine-rich domain 3 (STAC3) are proteins involved in nutrient regulation and are an essential component of the excitation-contraction (EC) coupling machinery for Ca2+ releasing. A mutation in STAC3 causes debilitating Native American Myopathy (NAM) in humans, while loss of this gene in mice and zebrafish (ZF) results in premature death. Clinically, NAM patients demonstrated increased lipids in skeletal muscle, but it is unclear if neutral lipids are associated with altered muscle function in NAM. Using a CRISPR/Cas9 induced stac3-/- knockout (KO) zebrafish model, we determined that loss of stac3 leads to delayed larval hatching which corresponds with muscle weakness and decreased whole-body Ca2+ level during early skeletal development. Specifically, we observed defects in the cytoskeleton in F-actin and slow muscle fibers at 5 and 7 days post-fertilizations (dpf). Myogenesis regulators such as myoD and myf5, mstnb were significantly altered in stac3-/- larvae. These muscle alterations were associated with elevated neutral lipid levels starting at 5 dpf and persisting beyond 7 dpf. Larva lacking stac3 had reduced viability with no larva knockouts surviving past 11 dpf. This data suggests that our stac3-/- zebrafish serve as an alternative model to study the diminished muscle function seen in NAM patients. The data gathered from this new model over time supports a mechanistic view of lipotoxicity as a critical part of the pathology of NAM and the associated loss of function in muscle.
Collapse
Affiliation(s)
- Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Houfeng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Cloud Town, Xihu District, 310024 Hangzhou, Zhejiang, China
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA.
| |
Collapse
|
2
|
Yong P, Zhang Z, Du S. Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death. J Genet Genomics 2024; 51:1187-1203. [PMID: 39209151 PMCID: PMC11570343 DOI: 10.1016/j.jgg.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells. The loss of Prdm1a, a regulator of slow muscle differentiation, results in strong myomaker and myomixer expression and slow muscle cell fusion. This abnormal fusion is further confirmed by the direct ectopic expression of myomaker or myomixer in slow muscle cells of transgenic models. Using the transgenic models, we show that the heterologous fusion between slow and fast muscle cells can alter slow muscle cell migration and gene expression. Furthermore, the overexpression of myomaker and myomixer also disrupts membrane integrity, resulting in muscle cell death. Collectively, this study identifies that the fiber-type-specific expression of fusogenic proteins is critical for preventing inappropriate fusion between slow and fast fibers in fish embryos, highlighting the need for precise regulation of fusogenic gene expression to maintain muscle fiber integrity and specificity.
Collapse
Affiliation(s)
- Pengzheng Yong
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Zhanxiong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America.
| |
Collapse
|
3
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
4
|
Wherley TJ, Thomas S, Millay DP, Saunders T, Roy S. Molecular regulation of myocyte fusion. Curr Top Dev Biol 2024; 158:53-82. [PMID: 38670716 PMCID: PMC11503471 DOI: 10.1016/bs.ctdb.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.
Collapse
Affiliation(s)
- Tanner J Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Serena Thomas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Timothy Saunders
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Pediatrics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Promoter-Adjacent DNA Hypermethylation Can Downmodulate Gene Expression: TBX15 in the Muscle Lineage. EPIGENOMES 2022; 6:epigenomes6040043. [PMID: 36547252 PMCID: PMC9778270 DOI: 10.3390/epigenomes6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
TBX15, which encodes a differentiation-related transcription factor, displays promoter-adjacent DNA hypermethylation in myoblasts and skeletal muscle (psoas) that is absent from non-expressing cells in other lineages. By whole-genome bisulfite sequencing (WGBS) and enzymatic methyl-seq (EM-seq), these hypermethylated regions were found to border both sides of a constitutively unmethylated promoter. To understand the functionality of this DNA hypermethylation, we cloned the differentially methylated sequences (DMRs) in CpG-free reporter vectors and tested them for promoter or enhancer activity upon transient transfection. These cloned regions exhibited strong promoter activity and, when placed upstream of a weak promoter, strong enhancer activity specifically in myoblast host cells. In vitro CpG methylation targeted to the DMR sequences in the plasmids resulted in 86−100% loss of promoter or enhancer activity, depending on the insert sequence. These results as well as chromatin epigenetic and transcription profiles for this gene in various cell types support the hypothesis that DNA hypermethylation immediately upstream and downstream of the unmethylated promoter region suppresses enhancer/extended promoter activity, thereby downmodulating, but not silencing, expression in myoblasts and certain kinds of skeletal muscle. This promoter-border hypermethylation was not found in cell types with a silent TBX15 gene, and these cells, instead, exhibit repressive chromatin in and around the promoter. TBX18, TBX2, TBX3 and TBX1 display TBX15-like hypermethylated DMRs at their promoter borders and preferential expression in myoblasts. Therefore, promoter-adjacent DNA hypermethylation for downmodulating transcription to prevent overexpression may be used more frequently for transcription regulation than currently appreciated.
Collapse
|