1
|
Root-Bernstein R, Chiles K, Huber J, Ziehl A, Turke M, Pietrowicz M. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098336. [PMID: 37176044 PMCID: PMC10179352 DOI: 10.3390/ijms24098336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
What triggers type 1 diabetes mellitus (T1DM)? One common assumption is that triggers are individual microbes that mimic autoantibody targets such as insulin (INS). However, most microbes highly associated with T1DM pathogenesis, such as coxsackieviruses (COX), lack INS mimicry and have failed to induce T1DM in animal models. Using proteomic similarity search techniques, we found that COX actually mimicked the INS receptor (INSR). Clostridia were the best mimics of INS. Clostridia antibodies cross-reacted with INS in ELISA experiments, confirming mimicry. COX antibodies cross-reacted with INSR. Clostridia antibodies further bound to COX antibodies as idiotype-anti-idiotype pairs conserving INS-INSR complementarity. Ultraviolet spectrometry studies demonstrated that INS-like Clostridia peptides bound to INSR-like COX peptides. These complementary peptides were also recognized as antigens by T cell receptor sequences derived from T1DM patients. Finally, most sera from T1DM patients bound strongly to inactivated Clostridium sporogenes, while most sera from healthy individuals did not; T1DM sera also exhibited evidence of anti-idiotype antibodies against idiotypic INS, glutamic acid decarboxylase, and protein tyrosine phosphatase non-receptor (islet antigen-2) antibodies. These results suggest that T1DM is triggered by combined enterovirus-Clostridium (and possibly combined Epstein-Barr-virus-Streptococcal) infections, and the probable rate of such co-infections approximates the rate of new T1DM diagnoses.
Collapse
Affiliation(s)
| | - Kaylie Chiles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Alison Ziehl
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Maja Pietrowicz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Hinke SA, Cieniewicz AM, Kirchner T, D'Aquino K, Nanjunda R, Aligo J, Perkinson R, Cooper P, Boayke K, Chiu ML, Jarantow S, Lacy ER, Liang Y, Johnson DL, Whaley JM, Lingham RB, Kihm AJ. Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody. Mol Metab 2018; 10:87-99. [PMID: 29453154 PMCID: PMC5985231 DOI: 10.1016/j.molmet.2018.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/02/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Insulin resistance is a key feature of Type 2 Diabetes (T2D), and improving insulin sensitivity is important for disease management. Allosteric modulation of the insulin receptor (IR) with monoclonal antibodies (mAbs) can enhance insulin sensitivity and restore glycemic control in animal models of T2D. Methods A novel human mAb, IRAB-A, was identified by phage screening using competition binding and surface plasmon resonance assays with the IR extracellular domain. Cell based assays demonstrated agonist and sensitizer effects of IRAB-A on IR and Akt phosphorylation, as well as glucose uptake. Lean and diet-induced obese mice were used to characterize single-dose in vivo pharmacological effects of IRAB-A; multiple-dose IRAB-A effects were tested in obese mice. Results In vitro studies indicate that IRAB-A exhibits sensitizer and agonist properties distinct from insulin on the IR and is translated to downstream signaling and function; IRAB-A bound specifically and allosterically to the IR and stabilized insulin binding. A single dose of IRAB-A given to lean mice rapidly reduced fed blood glucose for approximately 2 weeks, with concomitant reduced insulin levels suggesting improved insulin sensitivity. Phosphorylated IR (pIR) from skeletal muscle and liver were increased by IRAB-A; however, phosphorylated Akt (pAkt) levels were only elevated in skeletal muscle and not liver vs. control; immunochemistry analysis (IHC) confirmed the long-lived persistence of IRAB-A in skeletal muscle and liver. Studies in diet-induced obese (DIO) mice with IRAB-A reduced fed blood glucose and insulinemia yet impaired glucose tolerance and led to protracted insulinemia during a meal challenge. Conclusion Collectively, the data suggest IRAB-A acts allosterically on the insulin receptor acting non-competitively with insulin to both activate the receptor and enhance insulin signaling. While IRAB-A produced a decrease in blood glucose in lean mice, the data in DIO mice indicated an exacerbation of insulin resistance; these data were unexpected and suggested the interplay of complex unknown pharmacology. Taken together, this work suggests that IRAB-A may be an important tool to explore insulin receptor signaling and pharmacology. A novel anti-insulin receptor monoclonal antibody (IRAB-A) was identified that has both agonist and sensitizing activities. IRAB-A increases the receptor's affinity for insulin by binding to an allosteric site and does not compete with insulin. Mice injected once with IRAB-A show improved glycemia and reduced insulinemia, indicative of enhanced insulin sensitivity. In diet induced obese mice, the insulin sensitizing effect of IRAB-A appears to depend on the degree of insulin resistance. Chronic treatment of obese mice showed mixed effects on glucose homeostasis under normal fed or meal challenged conditions.
Collapse
Affiliation(s)
- Simon A Hinke
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Anne M Cieniewicz
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Thomas Kirchner
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Katharine D'Aquino
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Rupesh Nanjunda
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Jason Aligo
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Robert Perkinson
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Philip Cooper
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Ken Boayke
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Mark L Chiu
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Steve Jarantow
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Eilyn R Lacy
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Yin Liang
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Dana L Johnson
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Jean M Whaley
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Russell B Lingham
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA
| | - Anthony J Kihm
- Janssen BioTherapeutics, Janssen Pharmaceutical Research & Development LLC, 1400 McKean Road, Spring House PA 19477, USA.
| |
Collapse
|
3
|
Hirai H, Ogata E, Kikuchi N, Kohno T, Machii N, Hasegawa K, Watanabe T, Satoh H. The effects of liraglutide on both hypereosinophilic insulin allergy and the characteristics of anti-insulin antibodies in type 2 diabetes mellitus: a case report. J Med Case Rep 2016; 10:202. [PMID: 27456688 PMCID: PMC4960667 DOI: 10.1186/s13256-016-0994-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/06/2016] [Indexed: 12/27/2022] Open
Abstract
Background Liraglutide is one of the glucagon-like peptide-1 analogs; there are only a few reports of liraglutide being used for the treatment of insulin allergy. Furthermore, anti-insulin immunoglobulin G antibodies are occasionally detected in patients with diabetes. Hence, we report a case in which switching to liraglutide therapy ameliorated both the symptoms of insulin allergy with hypereosinophilia and the characteristics of insulin antibodies in a patient with type 2 diabetes mellitus. Case presentation We present the case of a 70-year-old Japanese man with type 2 diabetes who developed insulin allergy with hypereosinophilia. Anti-insulin antibodies, high glycated hemoglobin levels (approximately 12 %), and high serum insulin levels were detected. Because a change in his insulin treatment was inefficient, treatment with liraglutide to protect residual insulin secretion was started, resulting in improvements in his insulin allergy, serum glycated hemoglobin, insulin, and eosinophil levels. Scatchard plots revealed decreased binding capacity and increased affinity constant for high affinity sites of anti-insulin antibodies. Conclusions Liraglutide might be useful for treating insulin allergy and anti-insulin antibodies in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Emi Ogata
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Nobuyuki Kikuchi
- Department of Dermatology, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Teruyuki Kohno
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Noritaka Machii
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Koji Hasegawa
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Tsuyoshi Watanabe
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Hiroaki Satoh
- Department of Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, 960-1295, Japan.
| |
Collapse
|
4
|
Papadimitriou DT, Bothou C, Skarmoutsos F, Alexandrides TK, Papaevangelou V, Papadimitriou A. The autoimmune hypothesis for acute bilateral cataract in type 1 diabetes. DIABETES & METABOLISM 2016; 42:386-387. [PMID: 27209440 DOI: 10.1016/j.diabet.2016.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 04/24/2016] [Indexed: 12/17/2022]
Affiliation(s)
- D T Papadimitriou
- Department of pediatric-adolescent endocrinology & diabetes, Athens medical centre, Athens, Greece; Division of pediatric endocrinology, Attikon university hospital, Athens, Greece.
| | - C Bothou
- Department of pediatric-adolescent endocrinology & diabetes, Athens medical centre, Athens, Greece
| | - F Skarmoutsos
- Department of pediatric ophthalmology, Athens medical centre, Athens, Greece
| | - T K Alexandrides
- Endocrine division, department of internal medicine, school of medicine, university of Patras, Patras, Greece
| | - V Papaevangelou
- Third department of pediatrics, Attikon university hospital, Athens, Greece
| | - A Papadimitriou
- Division of pediatric endocrinology, Attikon university hospital, Athens, Greece
| |
Collapse
|