1
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
2
|
Gorji Z, Modaresi M, Yekanni-Nejad S, Mahmoudi M. Effects of low glycemic index/high-fat, high-calorie diet on glycemic control and lipid profiles of children and adolescence with cystic fibrosis: A randomized double-blind controlled clinical trial. Diabetes Metab Syndr 2020; 14:87-92. [PMID: 31991298 DOI: 10.1016/j.dsx.2019.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Low glycemic index diets seem to be potentially effective to improve glycemic control and reduce lipid profiles. Hence, this study aimed to evaluate the effect of a low glycemic index/high fat, high-calorie diet on glycemic status and lipid profiles of patients with cystic fibrosis. METHODS In this randomized clinical trial, 44 children and adolescents with cystic fibrosis were randomized to receive for three months either a high fat, high-calorie diet (n = 22) or a low glycemic index/high fat, high-calorie diet (n = 22) with similar calorie and macronutrients composition. Patients in high fat, high-calorie diet arm were allowed to use all sources of carbohydrates with different glycaemic indices; whereas those in another arm consumed carbohydrates from low glycemic index sources. Serum levels of lipid profiles (triglyceride, total cholesterol, HDL cholesterol, LDL cholesterol), insulin, fasting blood glucose, and glycated hemoglobin were measured at baseline and after the intervention. RESULTS Between-group differences were significant only for fasting blood glucose (P < 0.001). However, fasting blood glucose (P = 0.003) and glycated hemoglobin (P = 0.002) significantly decreased after the intervention in the low glycemic index group, while in another group a significant increase in fasting blood glucose (P = 0.038) and triglyceride (P = 0.004) was found. No significant within-group differences were observed in other variables in both groups. CONCLUSIONS It seems that adherence to a low glycemic index/high fat, high-calorie diet can improve glycemic indices in children and adolescents with cystic fibrosis compared to the high fat, high-calorie diet. TRIAL REGISTRATION IRCT2017102325267N5.
Collapse
Affiliation(s)
- Zahra Gorji
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Modaresi
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran, Iran.
| | - Saeed Yekanni-Nejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Mahmoudi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Gastroenterology and Hepatology Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Lehoux Dubois C, Boudreau V, Tremblay F, Lavoie A, Berthiaume Y, Rabasa-Lhoret R, Coriati A. Association between glucose intolerance and bacterial colonisation in an adult population with cystic fibrosis, emergence of Stenotrophomonas maltophilia. J Cyst Fibros 2017; 16:418-424. [DOI: 10.1016/j.jcf.2017.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
|
4
|
Boudreau V, Coriati A, Hammana I, Ziai S, Desjardins K, Berthiaume Y, Rabasa-Lhoret R. Variation of glucose tolerance in adult patients with cystic fibrosis: What is the potential contribution of insulin sensitivity? J Cyst Fibros 2016; 15:839-845. [DOI: 10.1016/j.jcf.2016.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/30/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023]
|
5
|
Glucose Fluctuations are Not Modulated by the Proportion of Calories from Macronutrients or Spontaneous Total Energy Expenditure in Adults with Cystic Fibrosis. Can J Diabetes 2016; 40:389-392. [DOI: 10.1016/j.jcjd.2016.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/20/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022]
|
6
|
Litvin M, Nwachukwu S. Cystic Fibrosis Related Diabetes: a Unique Challenge in Diabetes Care. MISSOURI MEDICINE 2016; 113:384-389. [PMID: 30228505 PMCID: PMC6139848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cystic Fibrosis (CF) is a common autosomal recessive disease that affects multiple organs due to a defect in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This transporter is present in various organs and tissues, including the airway epithelium, sinuses, pancreas, intestine, biliary tree, the vas deferens, and the sweat ducts, making CF a multi-system disease1. As CF patients are living longer, pancreatic function declines and diabetes emerges, further complicating the nutritional status and care of these patients.
Collapse
Affiliation(s)
- Marina Litvin
- Marina Litvin, MD, is an Assistant Professor, Division of Endocrinology, Metabolism, and Lipid Research, department of Medicine, Washington University School of Medicine, St. Louis
| | - Schola Nwachukwu
- Schola Nwachukwu, MD, is a Clinical Fellow, Division of Endocrinology, Metabolism, and Lipid Research, department of Medicine, Washington University School of Medicine, St. Louis
| |
Collapse
|
7
|
Prentice B, Hameed S, Verge CF, Ooi CY, Jaffe A, Widger J. Diagnosing cystic fibrosis-related diabetes: current methods and challenges. Expert Rev Respir Med 2016; 10:799-811. [DOI: 10.1080/17476348.2016.1190646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bernadette Prentice
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
| | - Shihab Hameed
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
- Department of Endocrinology, Sydney Children’s Hospital, Randwick, Australia
| | - Charles F. Verge
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
- Department of Endocrinology, Sydney Children’s Hospital, Randwick, Australia
| | - Chee Y. Ooi
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
- Department of Gastroenterology, Sydney Children’s Hospital, Randwick, Australia
| | - Adam Jaffe
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
| | - John Widger
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia
- School of Women’s and Children’s Health, The University of New South Wales, Randwick, Australia
| |
Collapse
|
8
|
Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int 2016; 27:1401-1412. [PMID: 26431978 DOI: 10.1007/s00198-015-3343-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.
Collapse
Affiliation(s)
- J Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP-Santé (FED 4231), Université Reims Champagne Ardenne, 1, Avenue du Maréchal Juin, 51095, Reims, France.
| | | | | | | | | |
Collapse
|
9
|
Meijer L, Nelson DJ, Riazanski V, Gabdoulkhakova AG, Hery-Arnaud G, Le Berre R, Loaëc N, Oumata N, Galons H, Nowak E, Gueganton L, Dorothée G, Prochazkova M, Hall B, Kulkarni AB, Gray RD, Rossi AG, Witko-Sarsat V, Norez C, Becq F, Ravel D, Mottier D, Rault G. Modulating Innate and Adaptive Immunity by (R)-Roscovitine: Potential Therapeutic Opportunity in Cystic Fibrosis. J Innate Immun 2016; 8:330-49. [PMID: 26987072 PMCID: PMC4800827 DOI: 10.1159/000444256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
(R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Collapse
Affiliation(s)
- Laurent Meijer
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Deborah J. Nelson
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Vladimir Riazanski
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Aida G. Gabdoulkhakova
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Ill., USA
| | - Geneviève Hery-Arnaud
- Unité de Bactériologie, Hôpital de la Cavale Blanche, CHRU Brest, Brest, France
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
| | - Rozenn Le Berre
- EA3882-LUBEM, Université de Brest, UFR de Médecine et des Sciences de la Santé, Brest, France
- Département de Médecine Interne et Pneumologie, CHRU Brest, Brest, France
| | - Nadège Loaëc
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Nassima Oumata
- Centre de Perharidy, ManRos Therapeutics, Roscoff, France
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Descartes UMR-S 1022 INSERM, Paris, France
| | - Emmanuel Nowak
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | | - Guillaume Dorothée
- Immune System, Neuroinflammation and Neurodegenerative Diseases Laboratory, Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CdR Saint-Antoine, INSERM, UMRS 938, Paris, France
- Hôpital Saint-Antoine, CdR Saint-Antoine, UMRS 938, UPMC University Paris 06, Sorbonne Universités, Paris, France
| | - Michaela Prochazkova
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Bradford Hall
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Md., USA
| | - Robert D. Gray
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, CNRS, Université de Poitiers, Poitiers, France
| | | | - Dominique Mottier
- Hôpital de la Cavale Blanche, CHRU Brest, Centre d'Investigation Clinique, INSERM CIC 1412, Brest, France
| | | |
Collapse
|
10
|
Barrio R. Management of endocrine disease: Cystic fibrosis-related diabetes: novel pathogenic insights opening new therapeutic avenues. Eur J Endocrinol 2015; 172:R131-41. [PMID: 25336504 DOI: 10.1530/eje-14-0644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). CFTR is primarily present in epithelial cells of the airways, intestine and in cells with exocrine and endocrine functions. Mutations in the gene encoding the channel protein complex (CFTR) cause alterations in the ionic composition of secretions from the lung, gastrointestinal tract, liver, and also the pancreas. CF-related diabetes (CFRD), the most common complication of CF, has a major detrimental impact on pulmonary function, nutrition and survival. Glucose derangements in CF seem to start from early infancy and, even when the pathophysiology is multifactorial, insulin insufficiency is clearly a major component. Consistently, recent evidence has confirmed that CFTR is an important regulator of insulin secretion by islet β-cells. In addition, several other mechanisms were also recognized from cellular and animals models also contributing to either β-cell mass reduction or β-cell malfunction. Understanding such mechanisms is crucial for the development of the so-called 'transformational' therapies in CF, including the preservation of insulin secretion. Innovative therapeutic approaches aim to modify specific CFTR mutant proteins or positively modulate their function. CFTR modulators have recently shown in vitro capacity to enhance insulin secretion and thereby potential clinical utility in CFDR, including synergistic effects between corrector and potentiator drugs. The introduction of incretins and the optimization of exocrine pancreatic replacement complete the number of therapeutic options of CFRD besides early diagnosis and implementation of insulin therapy. This review focuses on the recently identified pathogenic mechanisms leading to CFRD relevant for the development of novel pharmacological avenues in CFRD therapy.
Collapse
Affiliation(s)
- Raquel Barrio
- Pediatric Diabetes UnitDepartment of Pediatrics, Ramón y Cajal University Hospital, Alcalá University, Crta. Colmenar Km 9.1, 28034 Madrid, Spain
| |
Collapse
|