1
|
Smith EM, Papadimas A, Gabor C, Cooney C, Wu T, Rasko D, Barry EM. The role of the minor colonization factor CS14 in adherence to intestinal cell models by geographically diverse ETEC isolates. mSphere 2023; 8:e0030223. [PMID: 37787523 PMCID: PMC10597352 DOI: 10.1128/msphere.00302-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low- to middle-income countries. ETEC adheres to small intestinal epithelia via colonization factors (CFs) and secretes heat-stable toxin and/or heat-labile toxin, causing dysregulated ion transport and water secretion. There are over 30 CFs identified, including major CFs associated with moderate-to-severe diarrhea (MSD) and minor CFs for which a role in pathogenesis is less clear. The Global Enteric Multicenter Study identified CS14, a class 5a fimbriae, as the only minor CF significantly associated with MSD and was recommended for inclusion in ETEC vaccines. Despite detection of CS14 in ETEC isolates, the sequence conservation of the CS14 operon, its role in adherence, and functional cross-reactivity to other class 5a fimbriae like CFA/I and CS4 are not understood. Sequence analysis determined that the CS14 operon is >99.9% identical among seven geographically diverse isolates with expanded sequence analysis demonstrating SNPs exclusively in the gene encoding the tip adhesin CsuD. Western blots and electron microscopy demonstrated that CS14 expression required the growth of isolates on CFA agar with the iron chelator deferoxamine mesylate. CS14 expression resulted in significantly increased adherence to cultured intestinal cells and human enteroids. Anti-CS14 antibodies and anti-CS4 antibodies, but not anti-CFA/I antibodies, inhibited the adherence of a subset of ETEC isolates, demonstrating CS14-specific inhibition with partial cross-reactivity within the class 5a fimbrial family. These data provide support for CS14 as an important fimbrial CF and its consideration as a vaccine antigen in future strategies. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) infection causes profuse watery diarrhea in adults and children in low- to middle-income countries and is a leading cause of traveler's diarrhea. Despite increased use of rehydration therapies, young children especially can suffer long-term effects including gastrointestinal dysfunction as well as stunting and malnutrition. As there is no licensed vaccine for ETEC, there remains a need to identify and understand specific antigens for inclusion in vaccine strategies. This study investigated one adhesin named CS14. This adhesin is expressed on the bacterial surface of ETEC isolates and was recently recognized for its significant association with diarrheal disease. We demonstrated that CS14 plays a role in bacterial adhesion to human target cells, a critical first step in the disease process, and that adherence could be blocked by CS14-specific antibodies. This work will significantly impact the ETEC field by supporting inclusion of CS14 as an antigen for ETEC vaccines.
Collapse
Affiliation(s)
- Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antonia Papadimas
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Caitlin Gabor
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ceanna Cooney
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tao Wu
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Fleckenstein JM. Confronting challenges to enterotoxigenic Escherichia coli vaccine development. FRONTIERS IN TROPICAL DISEASES 2021; 2:709907. [PMID: 35937717 PMCID: PMC9355458 DOI: 10.3389/fitd.2021.709907] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) are a diverse and genetically plastic pathologic variant (pathovar) of E. coli defined by their production of heat-labile (LT) and heat-stable (ST) enterotoxins. These pathogens, which came to recognition more than four decades ago in patients presenting with severe cholera-like diarrhea, are now known to cause hundreds of millions of cases of symptomatic infection annually. Children in low-middle income regions of the world lacking access to clean water and basic sanitation are disproportionately affected by ETEC. In addition to acute diarrheal morbidity, these pathogens remain a significant cause of mortality in children under the age of five years and have also been linked repeatedly to sequelae of childhood malnutrition and growth stunting. Vaccines that could prevent ETEC infections therefore remain a high priority. Despite several decades of effort, a licensed vaccine that protects against the breadth of these pathogens remains an aspirational goal, and the underlying genetic plasticity of E. coli has posed a fundamental challenge to development of a vaccine that can encompass the complete antigenic spectrum of ETEC. Nevertheless, novel strategies that include toxoids, a more complete understanding of ETEC molecular pathogenesis, structural details of target immunogens, and the discovery of more highly conserved antigens essential for virulence should accelerate progress and make a broadly protective vaccine feasible.
Collapse
Affiliation(s)
- James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri, USA
- Medicine Service, Infectious Diseases, John Cochran Saint Louis Veterans Affairs Health Care System, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Sheikh A, Rashu R, Begum YA, Kuhlman FM, Ciorba MA, Hultgren SJ, Qadri F, Fleckenstein JM. Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions. PLoS Negl Trop Dis 2017; 11:e0005586. [PMID: 28531220 PMCID: PMC5456409 DOI: 10.1371/journal.pntd.0005586] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rasheduzzaman Rashu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - F. Matthew Kuhlman
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Matthew A. Ciorba
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research (CWIDR), Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - James M. Fleckenstein
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
4
|
Fleckenstein JM, Rasko DA. Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design. Methods Mol Biol 2016; 1403:363-83. [PMID: 27076141 DOI: 10.1007/978-1-4939-3387-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a genetically diverse E. coli pathovar that share in the ability to produce heat-labile toxin and/or heat-stable toxins. While these pathogens contribute substantially to the burden of diarrheal illness in developing countries, at present, there is no suitable broadly protective vaccine to prevent these common infections. Most vaccine development attempts to date have followed a classical approach involving a relatively small group of antigens. The extraordinary underlying genetic plasticity of E. coli has confounded the antigen valency requirements based on this approach. The recent discovery of additional virulence proteins within this group of pathogens, as well as the availability of whole-genome sequences from hundreds of ETEC strains to facilitate identification of conserved molecules, now permits a reconsideration of the classical approaches, and the exploration of novel antigenic targets to complement existing strategies overcoming antigenic diversity that has impeded progress toward a broadly protective vaccine. Progress to date in antigen discovery and methods currently available to explore novel immunogens are outlined here.
Collapse
Affiliation(s)
- James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 South Euclid Avenue, St. Louis, MO, USA.
- Molecular Microbiology and Molecular Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, USA.
| | - David A Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Tailoring the Immune Response via Customization of Pathogen Gene Expression. J Pathog 2014; 2014:651568. [PMID: 24719769 PMCID: PMC3955589 DOI: 10.1155/2014/651568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/23/2013] [Indexed: 12/27/2022] Open
Abstract
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.
Collapse
|
6
|
Wajima T, Sabui S, Kano S, Ramamurthy T, Chatterjee NS, Hamabata T. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate. Plasmid 2013; 70:343-52. [DOI: 10.1016/j.plasmid.2013.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/15/2013] [Accepted: 07/28/2013] [Indexed: 11/15/2022]
|
7
|
Nada RA, Armstrong A, Shaheen HI, Nakhla I, Sanders JW, Riddle MS, Young S, Sebeny P. Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli isolated from U.S. military personnel participating in Operation Bright Star, Egypt, from 2005 to 2009. Diagn Microbiol Infect Dis 2013; 76:272-7. [PMID: 23639795 DOI: 10.1016/j.diagmicrobio.2013.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major health problem for travelers to the Middle East. During the autumn months of 2005, 2007, and 2009, U.S. military personnel participated in Operation Bright Star (OBS) exercises in Egypt. Out of 181 military personnel enrolled in a diarrheal surveillance study, E. coli-like colonies were isolated from 170 patients. Isolates were tested for the detection of ETEC enterotoxins and colonization factors (CFs) using phenotypic and genotypic methods. Additionally, we studied the secular trends of ETEC isolates obtained from OBS studies since 1999. ETEC was isolated from 51.2% and 60.0% of the patients based on enzyme-linked immunosorbent assay and polymerase chain reaction (PCR), respectively. Heat stable (ST) was the dominant enterotoxin detected followed by heat labile (LT) and LTST. Additionally, we detected a CF in 59.7% and 67.6% of the ETEC-positive isolates using dot blot and PCR assays, respectively. The predominant CF isolated was CS6 followed by CS3.
Collapse
Affiliation(s)
- Rania A Nada
- U.S. Naval Medical Research Unit No. 3, Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant. Vaccine 2013; 31:2457-64. [PMID: 23541621 DOI: 10.1016/j.vaccine.2013.03.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/07/2013] [Accepted: 03/14/2013] [Indexed: 01/28/2023]
Abstract
A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant. Two test vaccines were prepared under GMP: (1) A prototype E. coli CFA/I-only formalin-killed whole-cell+LCTBA vaccine, and (2) A "complete" inactivated multivalent ETEC-CF (CFA/I, CS3, CS5 and CS6 antigens) whole-cell+LCTBA vaccine. These vaccines, when given intragastrically alone or together with dmLT in mice, were well tolerated and induced strong intestinal-mucosal IgA antibody responses as well as serum IgG and IgA responses to each of the vaccine CF antigens as well as to LT B subunit (LTB). Both mucosal and serum responses were further enhanced (adjuvanted) when the vaccines were co-administered with dmLT. We conclude that the new multivalent oral ETEC vaccine, both alone and especially in combination with the dmLT adjuvant, shows great promise for further testing in humans.
Collapse
|
9
|
Sebeny PJ, Nakhla I, Moustafa M, Bruton JA, Cline J, Hawk D, El-Mohammady H, Nada RA, Ahmed SF, Pimentel G, Young SYN. Hotel clinic-based diarrheal and respiratory disease surveillance in U.S. service members participating in Operation Bright Star in Egypt, 2009. Am J Trop Med Hyg 2012; 87:312-8. [PMID: 22855764 DOI: 10.4269/ajtmh.2012.11-0318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We conducted clinic-based, influenza-like illness and diarrheal disease surveillance among U.S. service members participating in Operation Bright Star 2009. Epidemiologic data and samples were collected. Nasopharyngeal swab specimens were tested for viruses, and feces was tested for microbiologic, immunologic, and molecular diagnostics. A survey was used to collect self-reported data. From 1,529 surveys, 41% reported diarrheal disease and 25% reported respiratory illness (incidence rate = 62 of 100 versus 37 of 100 person-months; incidence rate ratio = 1.7, 95% confidence interval = 1.5-1.9). Enterotoxigenic Escherichia coli was identified in 74% (69 of 93) of fecal samples. In the influenza-like illness case series, 17% (9 of 52) were positive for influenza A; all were positive for pandemic (pH1N1) 2009 virus. Rates of decreased work performance reported by patients with diarrhea and influenza-like illness were similar (46% versus 48%; P = 0.8). Diarrheal diseases and respiratory illness remain common among deployed military personnel, with important operational impact. Despite an ongoing influenza pandemic, diarrheal disease incidence was higher than that of respiratory illness.
Collapse
Affiliation(s)
- Peter J Sebeny
- United States Naval Medical Research Unit Number 3, Cairo, Egypt.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Isidean SD, Riddle MS, Savarino SJ, Porter CK. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 2011; 29:6167-78. [PMID: 21723899 DOI: 10.1016/j.vaccine.2011.06.084] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022]
Affiliation(s)
- S D Isidean
- Enteric Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | |
Collapse
|
11
|
Enterotoxigenic Escherichia coli CS6 gene products and their roles in CS6 structural protein assembly and cellular adherence. Microb Pathog 2011; 51:243-9. [PMID: 21729748 DOI: 10.1016/j.micpath.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/08/2011] [Accepted: 06/17/2011] [Indexed: 11/21/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces a variety of colonization factors necessary for attachment to the host cell, among which CS6 is one of the most prevalent in ETEC isolates from developing countries. The CS6 operon is composed of 4 genes, cssA, cssB, cssC, and cssD. The molecular mechanism of CS6 assembly and cell surface presentation, and the contribution of each protein to the attachment of the bacterium to intestinal cells remain unclear. In the present study, a series of css gene-deletion mutants of the CS6 operon were constructed in the ETEC genetic background, and their effect on adhesion to host cells and CS6 assembly was studied. Each subunit deletion resulted in a reduction in the adhesion to intestinal cells to the same level of laboratory E. coli strains, and this effect was restored by complementary plasmids, suggesting that the 4 proteins are necessary for CS6 expression. Bacterial cell fractionation and western blotting of the mutant strains suggested that the formation of a CssA-CssB-CssC complex is necessary for recognition by CssD and transport of CssA-CssB to the outer membrane as a colonization factor.
Collapse
|
12
|
Money NN, Maves RC, Sebeny P, Kasper MR, Riddle MS, Wu M, Lee JE, Schnabel D, Bowden R, Oaks EV, Ocaña V, Acosta L, Gotuzzo E, Lanata C, Ochoa T, Aguayo N, Bernal M, Meza R, Canal E, Gregory M, Cepeda D, Listiyaningsih E, Putnam SD, Young S, Mansour A, Nakhla I, Moustafa M, Hassan K, Klena J, Bruton J, Shaheen H, Farid S, Fouad S, El-Mohamady H, Styles T, Shiau LCDRD, Espinosa B, McMullen K, Reed E, Neil D, Searles D, Nevin R, Von Thun A, Sessions C. Enteric disease surveillance under the AFHSC-GEIS: current efforts, landscape analysis and vision forward. BMC Public Health 2011; 11 Suppl 2:S7. [PMID: 21388567 PMCID: PMC3092417 DOI: 10.1186/1471-2458-11-s2-s7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mission of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) is to support global public health and to counter infectious disease threats to the United States Armed Forces, including newly identified agents or those increasing in incidence. Enteric diseases are a growing threat to U.S. forces, which must be ready to deploy to austere environments where the risk of exposure to enteropathogens may be significant and where routine prevention efforts may be impractical. In this report, the authors review the recent activities of AFHSC-GEIS partner laboratories in regards to enteric disease surveillance, prevention and response. Each partner identified recent accomplishments, including support for regional networks. AFHSC/GEIS partners also completed a Strengths, Weaknesses, Opportunities and Threats (SWOT) survey as part of a landscape analysis of global enteric surveillance efforts. The current strengths of this network include excellent laboratory infrastructure, equipment and personnel that provide the opportunity for high-quality epidemiological studies and test platforms for point-of-care diagnostics. Weaknesses include inconsistent guidance and a splintered reporting system that hampers the comparison of data across regions or longitudinally. The newly chartered Enterics Surveillance Steering Committee (ESSC) is intended to provide clear mission guidance, a structured project review process, and central data management and analysis in support of rationally directed enteric disease surveillance efforts.
Collapse
Affiliation(s)
- Nisha N Money
- Armed Forces Health Surveillance Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cohen D, Tobias J, Spungin-Bialik A, Sela T, Kayouf R, Volovik Y, Yavzori M, Ephros M. Phenotypic Characteristics of EnterotoxigenicEscherichia coliAssociated with Acute Diarrhea Among Israeli Young Adults. Foodborne Pathog Dis 2010; 7:1159-64. [DOI: 10.1089/fpd.2009.0510] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv, Israel
| | - Joshua Tobias
- Department of Microbiology and Immunology, WHO Collaborating Center for Research on Enterotoxigenic Escherichia coli (ETEC), Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Anya Spungin-Bialik
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv, Israel
| | - Tamar Sela
- Medical Corps, Israel Defense Forces, Tel-Aviv, Israel
| | - Raid Kayouf
- Medical Corps, Israel Defense Forces, Tel-Aviv, Israel
| | - Yael Volovik
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv, Israel
| | - Miri Yavzori
- Medical Corps, Israel Defense Forces, Tel-Aviv, Israel
| | - Moshe Ephros
- Department of Pediatrics, Faculty of Medicine, Carmel Medical Center and Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Allelic variation in colonization factor CS6 of enterotoxigenic Escherichia coli isolated from patients with acute diarrhoea and controls. J Med Microbiol 2010; 59:770-779. [DOI: 10.1099/jmm.0.017582-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colonization factor antigens (CFAs) are important virulence factors in enterotoxigenic Escherichia coli (ETEC). Using a multiplex PCR and RT-PCR, this study tested the presence of common colonization factor-encoding genes and their expression in 50 ETEC strains isolated from stool specimens. The samples were from patients (children) with acute diarrhoea (cases) admitted to the Infectious Disease Hospital (Kolkata, India) and from normal children (controls) under 5 years of age from the community. The results indicated that coli surface antigen 6 (CS6) was the most prevalent CFA (78 %) expressed by these ETEC strains. Sequence analysis of both of the CS6 structural genes, i.e. cssA and cssB, in different ETEC isolates revealed the presence of point mutations in a systematic fashion. Based on the analysis of these variations, it was found that CssA had three alleles and CssB had two. Based on the allelic variations, subtyping of CS6 into AIBI, AIIBII, AIIIBI, AIBII and AIIIBII is proposed. The point mutations in the different alleles were reflected in a partial alteration in the secondary structure of both subunits, as determined by computational analysis. The functional significance of these changes was confirmed with cellular binding studies in Caco-2 cells with representative ETEC isolates. CS6 with AI or AIII allelic subtypes showed a higher binding capacity than AII, whereas BI showed stronger binding than BII. The AII and BII alleles were mostly detected in controls rather than in cases. The antibody specificity of BI and BII also varied due to alteration of the amino acids. Thus, CS6 variants are formed as a result of different allelic combinations of CssA and CssB, and these changes at the functional level might be important in the development of an effective ETEC vaccine.
Collapse
|
15
|
Nada RA, Shaheen HI, Touni I, Fahmy D, Armstrong AW, Weiner M, Klena JD. Design and validation of a multiplex polymerase chain reaction for the identification of enterotoxigenic Escherichia coli and associated colonization factor antigens. Diagn Microbiol Infect Dis 2010; 67:134-42. [PMID: 20356697 DOI: 10.1016/j.diagmicrobio.2010.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/18/2010] [Accepted: 01/31/2010] [Indexed: 10/19/2022]
Abstract
Development of a genetic tool for the detection of genes encoding enterotoxins and colonization factors would greatly enhance enterotoxigenic Escherichia coli (ETEC) surveillance. Oligonucleotide primers were designed to amplify genes encoding human ST, porcine ST, LT and the structural genes of colonization factor antigen (CFA)/I, CS1 to CS8, CS12 to CS15, CS17 to CS22, and PCFO71. Screening 89 ETEC isolates phenotypically expressing a known CFA showed that, without exception, the multiplex polymerase chain reaction (mPCR) detected the structural gene of the expressed CFA, in addition to CS21 in 22.5% of isolates. Silent genes such as cssB (CS6) were also detected in 9.0%. Additionally, we screened 71 CFA phenotypically negative isolates and detected a CFA in more than 50% of tested isolates. In conclusion, we have designed a simple 4-step mPCR for the rapid detection of ETEC virulence factors. The assay is rapid, reproducible, relatively inexpensive, and has the potential to be field applicable.
Collapse
Affiliation(s)
- Rania A Nada
- US Naval Medical Research Unit No. 3, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
16
|
Sueker JJ, Chretien JP, Gaydos JC, Russell KL. Global Infectious Disease Surveillance at DoD Overseas Laboratories, 1999-2007. Am J Trop Med Hyg 2010; 82:23-7. [PMID: 20064990 DOI: 10.4269/ajtmh.2010.09-0139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The United States Department of Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS) conducted a review in 2008 of projects funded by DoD-GEIS at five partner overseas laboratories from 1999 through 2007. During this period, the annual overseas programming budget grew from US$1.038 million to US$21 million. The review describes the distribution of project priorities and geographic locations over the years, the types of outcomes the projects generated, and the frequency with which they involved collaboration with other public health agencies and organizations, including CDC and WHO. Areas for further program strengthening are identified.
Collapse
Affiliation(s)
- J Jeremy Sueker
- Armed Forces Health Surveillance Center, Silver Spring, Maryland 20910, USA.
| | | | | | | |
Collapse
|
17
|
Characterization and studies of the cellular interaction of native colonization factor CS6 purified from a clinical isolate of enterotoxigenic Escherichia coli. Infect Immun 2009; 77:2125-35. [PMID: 19237522 DOI: 10.1128/iai.01397-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS6 is a widely expressed colonization factor of enterotoxigenic Escherichia coli (ETEC). To date, CS6 has not been well characterized in its native state. Here, we purified CS6 for the first time from an ETEC clinical isolate. Purified CS6 was composed of two structural subunits, CssA and CssB, which were present in equal amounts and tightly linked through noncovalent, detergent-stable association. The CssA subunit was poorly immunogenic, whereas CssB was highly immunogenic. Although the predicted molecular mass of CssA is 15 kDa, the purified CssA has an effective molecular mass of 18.5 kDa due to fatty acid modification. When purified CS6 was screened for its ability to bind with different extracellular matrix proteins, fibronectin (Fn) was found to interact with CS6 as well as CssA in a dose-dependent and saturable manner. This interaction was inhibited both by a synthetic peptide corresponding to the C-terminal hydrophilic, surface-exposed region of CssA (positions 112 to 126) and by the antibody derived against this region. Enzyme-linked immunosorbent assay results showed that CssA interacted with the 70-kDa N-terminal domain of Fn. The modifications on CssA probably do not play a role in Fn binding. Preincubation of INT 407 cells with CssA, but not CssB, inhibited ETEC binding to these cells. The results suggested that CS6-expressing ETEC binds to Fn of INT 407 cells through the C-terminal region of CssA. Purified CS6 was found to colocalize with Fn along the junctions of INT 407 cells. Based on the results obtained, we propose that CS6-expressing ETEC binds to the intestinal cells through Fn for colonization.
Collapse
|
18
|
Phenotypic and genotypic analysis of enterotoxigenic Escherichia coli in samples obtained from Egyptian children presenting to referral hospitals. J Clin Microbiol 2008; 47:189-97. [PMID: 18971368 DOI: 10.1128/jcm.01282-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hospital surveillance was established in the Nile River Delta to increase the understanding of the epidemiology of diarrheal disease among Egyptian children. Between September 2000 and August 2003, samples obtained from children less than 5 years of age who had diarrhea and who were seeking hospital care were cultured for enteric bacteria. Colonies from each culture with a morphology typical of that of Escherichia coli were tested for the heat-labile (LT) and heat-stable (ST) toxins by a GM-1-specific enzyme-linked immunosorbent assay and colonization factor (CF) antigens by an immunodot blot assay. Enterotoxigenic E. coli (ETEC) isolates were recovered from 320/1,540 (20.7%) children, and ETEC isolates expressing a known CF were identified in 151/320 (47%) samples. ST CFA/I, ST CS6, ST CS14, and LT and ST CS5 plus CS6 represented 75% of the CFs expressed by ETEC isolates expressing a detectable CF. Year-to-year variability in the proportion of ETEC isolates that expressed a detectable CF was observed (e.g., the proportion that expressed CFA/I ranged from 10% in year 1 to 21% in year 3); however, the relative proportions of ETEC isolates expressing a CF were similar over the reporting period. The proportion of CF-positive ETEC isolates was higher among isolates that expressed ST. ETEC isolates expressing CS6 were isolated significantly less often (P < 0.001) than isolates expressing CFA/I in children less than 1 year of age. Macrorestriction profiling of CFA/I-expressing ETEC isolates by using the restriction enzyme XbaI and pulsed-field gel electrophoresis demonstrated a wide genetic diversity among the isolates that did not directly correlate with the virulence of the pathogen. The genome plasticity demonstrated in the ETEC isolates collected in this work suggests an additional challenge to the development of a globally effective vaccine for ETEC.
Collapse
|
19
|
Roland KL, Cloninger C, Kochi SK, Thomas LJ, Tinge SA, Rouskey C, Killeen KP. Construction and preclinical evaluation of recombinant Peru-15 expressing high levels of the cholera toxin B subunit as a vaccine against enterotoxigenic Escherichia coli. Vaccine 2007; 25:8574-84. [DOI: 10.1016/j.vaccine.2007.09.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 11/27/2022]
|
20
|
Nicklasson M, Sjöling A, Lebens M, Tobias J, Janzon A, Brive L, Svennerholm AM. Mutations in the periplasmic chaperone leading to loss of surface expression of the colonization factor CS6 in enterotoxigenic Escherichia coli (ETEC) clinical isolates. Microb Pathog 2007; 44:246-54. [PMID: 18037262 DOI: 10.1016/j.micpath.2007.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause diarrhoea by adhesion to human enterocytes by one or more colonization factors (CFs) and secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins. Expression of coli surface antigen 6 (CS6) on the bacterial surface, usually associated with ETEC strains that produce ST alone or in combination with LT, is rarely found in strains expressing only LT. However, a number of LT-only strains which are genotypically positive but phenotypically negative for CS6 have been identified. In this study, eight such strains from India and Guinea-Bissau belonging to different clones were analysed. The CS6 operon cssABCD was transcribed but protein analyses suggested that the structural subunits CssA and CssB of CS6 were absent in the periplasm. Most strains contained truncating mutations within the periplasmic chaperone-encoding gene cssC and protein modelling indicated that this severely affected the substrate-binding capacity of the chaperone. A single-nucleotide polymorphism (SNP) (A-->T) in the 5'-untranslated region of cssC distinguished the eight strains from ETEC strains that do express CS6 on the surface and may be a potential marker for ETEC strains containing phenotypically silent cssABCD. The study emphasizes the importance of using both genotypic and phenotypic methods in epidemiological studies of ETEC, e.g. for vaccine development.
Collapse
Affiliation(s)
- Matilda Nicklasson
- Department of Microbiology and Immunology, Institute of Biomedicine, Göteborg University, P.O. Box 435, 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Sjöling A, Wiklund G, Savarino SJ, Cohen DI, Svennerholm AM. Comparative analyses of phenotypic and genotypic methods for detection of enterotoxigenic Escherichia coli toxins and colonization factors. J Clin Microbiol 2007; 45:3295-301. [PMID: 17687011 PMCID: PMC2045327 DOI: 10.1128/jcm.00471-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of childhood diarrhea in developing countries and in travelers. However, this pathogen has often not been reported in surveys of diarrheal pathogens, due to lack of simple standardized methods to detect ETEC in many laboratories. ETEC expresses one or both of two different enterotoxin subtypes: heat-stable toxins, a heat-labile toxin (LT), and more than 22 different colonization factors (CFs) that mediate adherence to the intestinal cell wall. Here we compare established phenotypic and genotypic detection methods and newly developed PCR detection methods with respect to sensitivity, specificity, positive predictive value, and ease of performance. The methods include GM1-enzyme-linked immunosorbent assay and dot blot techniques using specific monoclonal antibodies (MAbs) for phenotypic detection of the toxins and CFs, respectively, as well as different PCR and DNA/DNA hybridization techniques, including new PCR assays, for genotypic identification of the toxin and CF genes, respectively. We found very good general agreement in results derived from genotypic and phenotypic methods. In a few strains, LT and CFs were identified genetically but not phenotypically. Based on our analyses, we recommend initial screening for ETEC in clinical samples by multiplex toxin gene PCR. Toxin-positive strains may then be analyzed by dot blot tests for detection of the CFs expressed on the bacterial surface and by PCR for determination of additional CFs for which MAbs are currently lacking as well as for strains that harbor silent CF genes.
Collapse
Affiliation(s)
- A Sjöling
- Department of Microbiology and Immunology, Institute of Biomedicine, Box 435, 405 30 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Qadri F, Ahmed T, Ahmed F, Bhuiyan MS, Mostofa MG, Cassels FJ, Helander A, Svennerholm AM. Mucosal and systemic immune responses in patients with diarrhea due to CS6-expressing enterotoxigenic Escherichia coli. Infect Immun 2007; 75:2269-74. [PMID: 17296752 PMCID: PMC1865745 DOI: 10.1128/iai.01856-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization factor CS6 expressed by enterotoxigenic Escherichia coli (ETEC) is a nonfimbrial polymeric protein. A substantial proportion of ETEC strains isolated from patients in endemic settings and in people who travel to regions where ETEC is endemic are ETEC strains expressing CS6, either alone or in combination with fimbrial colonization factor CS5 or CS4. However, relatively little is known about the natural immune responses elicited against CS6 expressed by ETEC strains causing disease. We studied patients who were hospitalized with diarrhea (n = 46) caused by CS6-expressing ETEC (ETEC expressing CS6 or CS5 plus CS6) and had a disease spectrum ranging from severe dehydration (27%) to moderate or mild dehydration (73%). Using recombinant CS6 antigen, we found that more than 90% of the patients had mucosal immune responses to CS6 expressed as immunoglobulin (IgA) antibody-secreting cells (ASC) or antibody in lymphocyte supernatant (ALS) and that about 57% responded with CS6-specific IgA antibodies in feces. More than 80% of the patients showed IgA seroconversion to CS6. Significant increases in the levels of anti-CS6 antibodies of the IgG isotype were also observed in assays for ASC (75%), ALS (100%), and serum (70%). These studies demonstrated that patients hospitalized with the noninvasive enteric pathogen CS6-expressing ETEC responded with both mucosal and systemic antibodies against CS6. Studies are needed to determine if the anti-CS6 responses protect against reinfection and if protective levels of CS6 immunity are induced by vaccination.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibody Specificity
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Child, Preschool
- Diarrhea/immunology
- Diarrhea/microbiology
- Escherichia coli/immunology
- Escherichia coli/pathogenicity
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/metabolism
- Feces/chemistry
- Female
- Hospitalization
- Humans
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin A, Secretory/blood
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin G/blood
- Infant
- Male
- Middle Aged
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|